Notation
Unit 1: Intro

- \(x, y, z\) data inputs/outputs
- \(i = 1, m\) subscript enumerates data (and thus rows of \(A\))
- \(f\) function of the data
- \(\hat{x}, \hat{y}, \hat{z}, \hat{f}, \hat{\phi}\) inference/approximation of same variables
- \(c\) unknown parameters to characterize functions
- \(k = 1, n\) subscript enumerates \(c\) (and thus columns of \(A\))
- A matrix (\(I\) identity), \(b\) right hand side (\(y\) used when it is the actual data \(y\))
- \(a_k\) column of \(A\)
- Quadratic Formula slide: uses standard notation for all variables
- \(\phi\) basis functions
- \(\theta\) pose parameters, \(\varphi\) collection of all vertex positions for a triangle surface mesh
- Cloth Slides: \(S, D\) functions, \(u, v\) texture space, \(n\) normal direction, \(I\) image data, \(h\) interpolation function
Unit 2: Linear Systems

- a_{ik} elements of A
- A^T transpose, A^{-1} inverse
- \hat{e}_i standard basis vectors
- Gaussian Elimination slides m_{ik} special column, M_{ik}, L_{ik} special matrices
- I_{mxm} size mxm identity
- U upper triangular matrix, L lower triangular matrix
- \hat{c} transformed version of c
- P permutation matrix (with its own special notation)
Unit 3: Understanding Matrices

- λ eigenvalue (scalar)
- v eigenvector, u right eigenvector (both column vectors)
- α scalar
- * superscript is complex conjugate (for imaginary numbers)
- $i = \sqrt{-1}$ when dealing with complex numbers
- \hat{c}, \hat{b} perturbed or transformed b, c
- \hat{A}^{-1}, \hat{I} approximate version A^{-1}, I
- U, V orthogonal (for SVD)
- Σ diagonal (not necessarily square, potentially zeros on diagonal)
- σ singular values
Unit 4: Special Matrices

- ν, u column vectors
- u_k, v_k columns of U, V
- Λ diagonal matrix of eigenvalues
- l_{ik} element of L
- \hat{A} approximation of A
Unit 5: Iterative Solvers

- q superscript, integer for sequences/iterations (iterative solvers)
- ϵ small number
- t time
- X, V position and velocity
- r, e residual and error (column vectors)
- s search direction
- \bar{S} column vector
- β scalar
Unit 6: Local Approximations

- h scalar (relatively small)
- $f^{(p)}$ parenthesis (integer) indicate taking p derivatives
- f' and f'' one derivative and two derivatives
- Cubic Splines Slide: special notation
- p integer, polynomial degree, order of accuracy, etc.
- w weighting function
Unit 7: Curse of Dimensionality

- A, V area and volume
- r radius
- N integer, number of sample points
- \vec{x} vector of data input to a function
Unit 8: Least Squares

- False Statements (first slide): a, b scalars
- D, \hat{D} diagonal matrices
Unit 9: Basic Optimization

• F system of functions (output is a vector not a scalar)
• ∂ partial derivative symbol
• J Jacobian matrix of all first partial derivatives
• F' Jacobian of F
• ∇f gradient of scalar function f (Jacobian transposed)
• H matrix of all second partial derivatives of scalar function f (Jacobian of gradient transposed)
• c^* critical point (special value of c)
• $\tilde{A}, \tilde{b}, \tilde{c}$ matrix, and two vectors
Unit 10: Solving Least Squares

- Σ diagonal invertible matrix (no zeros on the diagonal)
- $I_{n \times n}$ stresses the size of the identity as $n \times n$
- \hat{b}_r, \hat{b}_z sub-vectors of \hat{b} of shorter length (range and zero abbreviations)
- Q orthogonal matrix
- q_k column of Q
- R upper triangular matrix
- r_{ik} entry of R
- \tilde{Q} submatrix
- **Householder slides**: \hat{v} normal vector, H householder matrix, a column vector (all this notation is specialized)
Unit 11: Zero Singular Values

- c_r, c_z sub-vectors of \hat{c} of shorter length (range and zero abbreviations)
- A^+ pseudo-inverse of A
- T matrix (for similarity transforms)
- **Power Method Slides:** A^q and λ^q are A and λ raised to the q power (not an iteration as is the case for other q’s on these slides)
Unit 12: Regularization

• c^* is an initial guess for c
• r used in its geometric series capacity (a scalar)
• θ angle between two vectors
• C, C^* curves (vertices connected by line segments)
Unit 13: Optimization

• f briefly is allowed to be either vector valued (or stay scalar)
• \hat{f} becomes the (scalar) cost function for optimization
• F system of functions (gradient in the case of optimization)
Unit 14: Nonlinear Systems

• c^* is a point to linearize about
• d is for the standard derivative
• t is an arbitrary variable
• dt is a differential
• Δ finite size difference
• g scalar function (that determines the line search parameter)
Unit 15: Root Finding

- \(\hat{g} \) modified \(g \)
- \(t \) search parameter in 1D, replacing \(\alpha \)
- \(t^* \) converged solution
- \(\hat{t} \) particular \(t \)
- \(C \) scalar
- \(p \) integer (power)
- \(g' \) derivative of \(g \)
- \(t_L, t_R \) interval bounds
- \(t_M \) interval midpoint
Unit 16: 1D Optimization

- $t_{\text{min}}, t_{M1}, t_{M2}$ more t values
- s scalar (interval size)
- f, τ scalars between 0 and 1
- H_F is a 3^{rd} order tensor of 2^{nd} derivatives
- OMG_f is a 3^{rd} order of 3^{rd} derivatives