Notation
Unit 1: Intro

- \(x, y, z\) are data inputs/outputs
- \(A\) is a matrix (\(I\) for identity), \(b\) is the right hand side (\(y\) is used when the right hand side is the data)
- \(i = 1, m\) subscript enumerates data (and thus rows of a matrix \(A\))
- \(f\) is function of the data
- \(\hat{x}, \hat{y}, \hat{z}, \hat{f}, \hat{\phi}\) are inference/approximation of same variables or functions
- \(c\) represents unknown parameters to characterize functions
- \(k = 1, n\) subscript enumerates \(c\) (and thus columns of a matrix \(A\))
- \(a_k\) is column of \(A\)
- \(\Sigma_k\) is the sum over all \(k\), \(\Pi_{i\neq k}\) is the product over all \(i\) not equal to \(k\)
- Quadratic Formula slide: uses standard notation for the quadratic formula
- \(\phi\) are basis functions
- \(\theta\) are pose parameters, \(\varphi\) represents all vertex positions of the cloth mesh
- \(S\) are the skinned vertex positions of the body mesh, \(D\) is the displacement from the body mesh to the cloth mesh
- \(u, v\) are the 2D texture space coordinate system, \(n\) is the (unit) normal direction
- \(I\) is 2D RGB image data, \(\psi\) interpolates RGB values and converts them to a 3D displacement
Unit 2: Linear Systems

- R^n is an n dimensional Cartesian space (e.g. R^1, R^2, R^3)
- a_{ik} is the element in row i and column k of A
- A^T is the transpose of matrix A, and A^{-1} is its inverse
- $\det A$ is the determinant of A
- \exists is "there exists", and \forall is "for all"
- \hat{e}_i are the standard basis vectors, with a 1 in the i-th entry (and 0’s elsewhere)
- Gaussian Elimination slides m_{ik} special column, M_{ik}, L_{ik} elimination matrices
- I_{mxm} is a size $m\times m$ identity matrix
- U upper triangular matrix, L lower triangular matrix
- \hat{c} transformed version of c
- P permutation matrix (with it own special notation)
Unit 3: Understanding Matrices

- λ eigenvalue (scalar)
- v eigenvector, u right eigenvector (both column vectors)
- α is a scalar
- $i = \sqrt{-1}$ when dealing with complex numbers
- * superscript indicates a complex conjugate (for imaginary numbers)
- $\hat{b}, \tilde{b}, \hat{c}$ perturbed or transformed b, c
- \hat{A}^{-1}, \hat{I} approximate versions of A^{-1}, I
- U, V orthogonal (for SVD)
- u_k, v_k are columns of U, V
- Σ diagonal (not necessarily square, potentially has zeros on the diagonal)
- σ_k singular values (diagonal entries of Σ)
Unit 4: Special Matrices

• \(v, u \) column vectors
• \(u \cdot v \) or \(< u, v > \) is the inner product (or dot product) between \(u \) and \(v \)
• \(< u, v >_A \) is the \(A \) weighted inner product
• \(\Lambda \) is a diagonal matrix of eigenvalues
• \(l_{ik} \) is an element of \(L \)
• \(\hat{A} \) is an approximation of \(A \)
Unit 5: Iterative Solvers

- q superscript, integer for sequences/iterations (iterative solvers)
- ϵ small number
- t time
- X, V position and velocity
- r, e residual and error (column vectors)
- \hat{r}, \hat{e} are transformed versions of r, e
- s search direction
- α, β are scalars
- \bar{S} column vector (potential search direction)
Unit 6: Local Approximations

- p is an integer for sequences, polynomial degree, order of accuracy
- $p!$ is p factorial
- h scalar (relatively small)
- f' and f'' one derivative and two derivatives
- $f^{(p)}$ parenthesis (integer) indicates taking p derivatives
- ϕ basis functions
- w weighting function
Unit 7: Curse of Dimensionality

• A, V area and volume
• r radius
• N integer, number of sample points
• \vec{x} vector of data input to a function
Unit 8: Least Squares

• False Statements (first slide): a, b scalars
• D, \hat{D} diagonal matrices
Unit 9: Basic Optimization

• F system of functions (output is a vector not a scalar)
• ∂ partial derivative
• J Jacobian matrix of all first partial derivatives
• F' is the Jacobian of F
• ∇f gradient of scalar function f (Jacobian transposed)
• H matrix of all second partial derivatives of scalar function f (Jacobian of the gradient transposed)
• c^* critical point (special value of c)
• \tilde{A} matrix
• \tilde{b}, \tilde{c} vectors
Unit 10: Solving Least Squares

• Σ diagonal invertible matrix (no zeros on the diagonal)
• I_{nxn} stresses the size of the identity as nxn
• \hat{b}_r, \hat{b}_z sub-vectors of \hat{b} of shorter length (r for range, z for zero)
• \hat{Q} orthogonal matrix
• Q, \tilde{Q} are tall matrices with orthonormal columns (subsets of an orthogonal matrix)
• q_k column of Q
• R upper triangular matrix
• r_{ik} entry of R
• Householder slides: \hat{v} normal vector, H householder matrix, a column vector
Unit 11: Zero Singular Values

• c_r, c_z sub-vectors of \hat{c} of shorter length (range and zero abbreviations)
• A^+ pseudo-inverse of A
• T matrix (for similarity transforms)
• Q^q is orthogonal and R^q is upper triangular
• **Power Method Slides**: A^q and λ^q are A and λ raised to the q power
Unit 12: Regularization

• ϵ is a small positive number
• c^* is an initial guess for c
• r used in its geometric series capacity (a scalar)
• D is a diagonal matrix with all positive diagonal entries
• a_k is a column of A
• Θ is the angle between two vectors
• θ are pose parameters, φ represents all vertex positions of the face mesh
• C^* are 2D curves (vertices connected by line segments) drawn on the image
• C are 3D curves embedded on the 3D geometry, and subsequently projected into the 2D image space
Unit 13: Optimization

• f briefly is allowed to be either vector valued (or stay scalar valued)
• \hat{f} is a (scalar) cost function for optimization
• F is a system of functions (the gradient in the case of optimization)
• \hat{g} is a vector valued function of constraints
• η is a column vector of scalar Lagrange multipliers
Unit 14: Nonlinear Systems

- c^* is a point to linearize about
- d is for the standard derivative
- t is an arbitrary (scalar) variable
- dc is a vanishingly small differential (of c)
- Δ finite size difference
- α, β are scalars with $\beta \in [0,1)$
- g scalar function (that determines the line search parameter α)
Unit 15: Root Finding

- \hat{g} is a modified g
- t is a search parameter in 1D, replacing α
- t^* is the converged solution
- e is the error
- g' is the derivative of g
- \hat{t} is a particular t
- $C \geq 0$ is a scalar
- p integer (power)
- t_L, t_R interval bounds
- t_M interval midpoint
Unit 16: 1D Optimization

- t_{min}, t_{M1}, t_{M2} more t values
- δ scalar (interval size)
- $\lambda \in (0, .5)$ is a scalar
- $\tau \in (0,1)$ is a scalar
- H_F is a 3rd order tensor of 2nd derivatives of F
- OMG_f is a 3rd order tensor of 3rd derivatives of \hat{f}
Unit 17: Computing Derivatives

• H is the Heaviside function
• \hat{f} is a scalar function to be minimized
• \hat{g} is a vector-valued function of constraints (\hat{g}_i is a component of \hat{g})
• \hat{e}_i is the i-th standard basis vector
• n is a (possibly) high-dimensional unit normal
• $\epsilon > 0$, b are scalars
• e, log are the usual exponential and logarithmic functions
• C_1, C_2, C_3 are different sets of parameters
• f_1, f_2, f_3 are different functions
• X_1, X_2, X_3, X_4 are the data as it is processed through the pipeline
• X_{target} is the desired final result as the data is processed through the pipeline
Unit 18: Avoiding Derivatives

• \(\hat{m} \) is the integer length of the column vector output of \(f(x, y, c) \)
• \(\tilde{f}(c) \) is a column vector of size \(m \times \hat{m} \) that stacks the \(\hat{m} \) outputs of \(f(x_i, y_i, c) \) for each of the \(m \) data points \((x_i, y_i) \)
• \(\hat{e}_k \) is the standard basis vector
Unit 19: Descent Methods

• (covered in other units)
Unit 20: Momentum Methods

- t is time
- t_o, t_f initial and final time
- Δt time step size
- k_1, k_2, k_3, k_4 intermediate function approximations in RK methods
- \hat{c} intermediate states for TVD RK methods
- λ is a scalar, and represents an eigenvalue
- $X(t), V(t), A(t), F(t), M$ position, velocity, acceleration, force, mass
- v is the velocity of state c in parameter space
- $\alpha, \beta, \hat{\beta}$ are scalars