Lecture 11 - Unit 11,12A Notes

11.1 Minimal norm solution

- There is an assumption is SVD of A exists

- If σ_i is not 0, then $\hat{c}_i = \hat{b}_i / \sigma_i$. If σ_i is 0, then we cannot do the division. Be careful of what is 0 in computers, eg: e^{-16}.

- Solve $Ac = b$, get $c = A^{-1}b$. In this case, A is not full rank, we have $c = A^+b$. This is the minus norm solution c.

Figure 1: Write $A = U\Sigma V^T$, which is SVD decomposition. Then we can substitute $\hat{c} = v^Tc$, $\hat{b} = u^Tb$ and get $\Sigma \hat{c} = \hat{b}$. $c = V\hat{c}$ because $V^TV = I$.

And we can calculate $\hat{c}_i = \frac{\hat{b}_i}{\sigma_i}$ if $\sigma_i \neq 0$. Be careful what is 0 numerically in computers.
11.2 Sum of Rank One Matrices

\[A = U \Sigma V^*, \text{where } \Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 & \ldots \\ 0 & \sigma_2 & 0 & \ldots \\ 0 & 0 & \sigma_3 & \ldots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} \]

- If we expand \(U, V \) in vectors, then we have \(A = \sum_i \sigma_i u_i v_i^T \). \(u_i v_i^T \) is the outer product of \(u, v \) and the result is a matrix of the same size as \(A \). Here \(u_i v_i^T \) are matrices of rank 1.
- \(A = \sum_{\sigma_i \neq 0} \sigma_i u_i v_i^T \). We can drop the \(u, v \) if their corresponding \(\sigma = 0 \).

11.3 Approximating a Matrix

- Numerically, we can drop terms of very small \(\sigma_i \), so \(A = \sum_{\sigma_i > \epsilon} \sigma_i u_i v_i^T \).
- If keep \(r \) largest singular values, then \(\sum_{i=1}^{r} \sigma_i u_i v_i^T \) is the rank-\(r \) approximation.

11.4 PCA

- We can use a finite number of the largest \(\sigma_i \)’s to reconstruct \(A \).

11.5 Finding Low Rank Approximation

- \(A^T A = V \Sigma^T \Sigma V^T \). \(A^T A \) and \(A A^T \) is symmetric but not positive definite.
 If \(A \) is not full rank (there exists \(\sigma_i = 0 \)), then \(A^T A \) and \(A A^T \) will not be SPD.
- We choose to use the smaller one from \(A^T A \) and \(A A^T \), and the dimension of it means the number of \(\sigma \) you can have.

11.6 Computing Eigenvalues

- In practice, we never solve polynomials to compute eigenvalues, because it is too expensive.
- Similarity transform preserves eigenvalues. \(T^{-1} A T \) and \(A \) has the same eigenvalues.
- If \(A \) is real and symmetric, then \(A \) will have real eigenvalues.
- Triangular matrices’ eigenvalues are the diagonal entries. We want to use similarity transform to make \(T^{-1} A T \) triangular matrices.
- Schur form is \(A = Q U Q^{-1} \), where \(U \) is an upper triangular matrix.

11.7 Condition Number

- The condition number is \(\frac{\| \lambda \|}{\| \lambda \|} \) where \(\lambda, \mu \) are normalized right and left eigenvectors.
- Symmetric matrices have the same right and left eigenvectors, so they have condition number 1.
11.8 QR Iteration

• We compute QR decomposition of A_k: $A_k = Q_k R_k$. Then $A_{k+1} = R_k Q_k = Q_k^T Q_k R_k Q_k = Q_k^T A_k Q_k$. All A_k are similar to A.

• We can use power method to find largest eigenvalue of A^{-1}, then we can find the smallest eigenvalue of A.

• If A has distinct eigenvalues, then A_k converge to Schur form (a triangular matrix) of A.

11.9 Power Method

• Power method computes the largest eigenvalue and its corresponding eigenvector.

• If we can take out the largest eigenvalue and eigenvector, we can keep using power method to compute the second largest eigenvalue and eigenvector.

11.10 Unit 12A - Regularization

• As we solve least square problems, we can add regularization term. We form a minimization problem: $\min ||Ax - b||_2^2$ and add a regularization term $\lambda ||x||_2^2$. We also observe that $\min(||Ax - b||_2^2 + \lambda ||x||_2^2)$ is equal to $\min(||A^T \sqrt{\lambda} I - A^T \sqrt{\lambda} I x - b||_2^2$.

• If $\lambda = 1$, we have the equation $A^T I x = b$.

• Go back to the minimal norm equation solution, if one σ_i is very small, we need to be careful of $\hat{c}_i = \hat{b}_i / \sigma_i$. Adding regularization would fix this problem.

• In diagonal entries of $\Sigma^T \Sigma$, we add 1 to each σ_i. This changes more if σ_i is small.

11.11 Unit 12A - Full Rank Scenario

• After adding regularization, $\hat{c}_i = \hat{b}_i * \frac{\sigma_i}{\sigma_i^2 + 1}$. This will stabilize the small singular values by pushing \hat{c}_i to 0.

• You can use $\lambda = \epsilon$ and this will affect a lot on cases where $\sigma_i < \epsilon$.
