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Underdetermined Systems

* Consider drawing a line y = ¢; + ¢, x through 3 data points
* When the points are colinear, there is a unique solution
* When the points are not colinear, there is a least squares solution

* When the points are co-located (i.e. identical), there are infinite solutions
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Underdetermined Systems

3 ER cs Y1
 The Vandermonde matrix equationis | 1 X, (Cz) = | V2
1 X3 Y3

* Let x; = x, = X3, so that the columns are multiples of each other (and the
matrix is rank 1)

* If y; =y, = y,3, theright hand side is in the range of the rank 1 columns implying
infinite solutions

* Otherwise, the right hand side is not in the range of the columns implying no
solutions (toss away the second column and c,, then do least squares on ¢,)



(Careful) Variable Classification
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* The first two rows, ¢c; = 1 and ¢; = 2, overdetermine ¢,
* The third row, ¢, = 3, uniquely determines ¢,
* The last row, Oc; = 0, leaves c; underdetermined with infinite possibilities

* It’s often misleading to classify an entire system (as either having a unique
solution, no solution, or infinite solutions)

* Rather, one should do the best they can with what has been given
* E.g. Shouldn’t skip dinner because of uncertainties about what time the sun will go down



Understanding Underdetermined Systems

* Transform Ac = b into ¢ = b (as usual)

AN

5 b
* For each g3, # 0, compute ¢, = a—k (as usual)
k

* When g3, = 0, ¢, is undefined (moreover, division by a small gy, is dubious)

» Tall matrices have extra rows with 0 = b, (g, = 0 rows contribute to this too),
and nonzero b;, imply a nonzero residual

* Wide matrices have extra columns of zeros, leaving some ¢;, undetermined (just
like 03, = 0 columns)



Understanding Underdetermined Systems

e Canwrite U(S )V for wide matrices, similarto A = U (g) VT for tall matrices

* In general, £ may contain zeros on the diagonal (for tall matrices too, if not full rank)
* For any matrix, can write A = U (g 8) VT with ¥ diagonal and full rank

 Then, X¢é = b has the form (2 O) (CAT) = lf’”
iRl

b p ¢ 5 o A
*lIrllz = U7 (b - Ao, = | AT) 5 (2 0) (r) : |(Ar> 7 (ZCT)
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* Thus, solving 3¢, = b, for ¢, minimizes the residual to |7 ||, = |b,||,

* Meanwhile, any values are acceptable for the non-determined ¢,



Minimum Norm Solution

* Setting ¢, = 0O stresses that these parameters have no bearing on the
solution

* This is more sensical than setting ¢, to some nonzero value as if those
values mattered

* Example:

* Consider a variable related to how a hat is worn while driving, which could matter
when the hat blocks the sun or keeps longer hair away from the eyes

* Someone with short hair driving at night would likely have no driving dependence
on a hat; in this case, reporting information about hats is misleading
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Pseudo-lnverse
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* The minimum norm solution is ¢ = (ngio ) b = A"b where the

vkuz
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pseudo-inverse is A" =} o

o
» When A is square and full rank AT = A~1

e Each term is an outer product between corresponding columns of U and V,
weighted by one over their corresponding singular value

e Each term is a size nxm matrix, so this a sum of matrices



Sum of Rank One Matrices

o= (f Drre=u( Y(2)=0(5) = Bt
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Zo'kiO U Ok Vi C = (ZakiO Ukukvk)c
* Thus, A = X5 20 O Ur Vi

e Each term is an outer product between corresponding columns of U and V,
weighted by their corresponding singular value

e Each term is a size mxn matrix (the same size as A)
* Each term is rank 1, since every column in the term is a multiple of u,



Recall: Understanding Ac (unit 3)
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* Ac projects ¢ onto the basis vectors in I/, scales by the associated singular values, and uses those results
as weights on the basis vectors in U



Matrix Approximation

* Use the p largest singular values: A = Zk . O U Vi

D 1

* The pseudo-inverse is approximated similarly: A™ =}, _, 5
k

Vkuk

* This is the best rank p approximation to A, and the main idea behind principle
component analysis (PCA)

» Often, thousands/millions of terms can be thrown away keeping only 10 to 100 terms

* Can also drop small singular values: A = )., -, O U Vi

* This makes the pseudo-inverse better conditioned: A" ~ ZGPE vkuk

* This relies on a good choice of € > 0



Recall: Approximating A (unit 3)
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* The first singular value is much bigger than the second, and so represents the vast
majority of what A does (note, the vectors in U and V are unit length)

* Thus, one could approximate A quite well by only using the terms associated with the
largest singular value

* This is not a valid factorization, but an approximation (and the idea behind PCA)
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Rank One Updates

* For real time applications (real time decision making, etc.), iteratively add one
term at a time (slowly improving the estimate)

b Tb b
cc=A"h =~ 1y +—v +—v +i
g1 ; g2 - 03 :

* Note the efficient ordering of the operations:
. u;;b is m multiplies, and the result times v, is n multiplies (for a total of m + n multiplies)
* Don’t form the size nxm matrix!
* Multiplying the size mxn matrix vku£ times b is m - n multiplies



Computing the SVD

c ATA=VETZVT so (ATA)V = V(ETX)
« AAT = UZZTUT so (AAT)U = U(ZZT)

* If g, # 0, then g is an eigenvalue of both ATA and AAT (with eigenvectors v,
and u;, respectively)

» Work with the smaller of AT A and AA” (which are both SP(S)D) to find the
eigenvalues o}

* Then, 0,? can be used in both A" A and AA” to find the corresponding
eigenvectors



Finding Eigenvectors from Eigenvalues

e Given an eigenvalue 1, form the matrix A — Al

« If Ais symmetric, then A—2Alis symmetric
« A — I has (at least) a rank 1 null space (from the definition of eigenvalues)

* Solve the linear system (/T = /11)12 = 0 to find the eigenvector v



Condition Number of Eigenproblems

* The condition number for finding an eigenvalue is different than the condition
number for solving a linear system

* The condition number for finding an eigenvalue/eigenvector pair is = where v;
LYR
and vy are the normalized left and right eigenvectors

 Symmetric (Hermitian) matrices have identical left and right eigenvectors; so,
v vy = 1 and the condition number is 1




Characteristic Polynomial

* The eigenvalue problem is typically written as Av = Av
 Alternatively, (/T =2 /U)v =~0.implying that A — A is_sifigular

e Setting det(/i — /11) = 0 leads to a~degree n characteristic polynomial equation
in A (for a size nxn matrix A)

* Finding the roots of this polyhomial equation can be guite difficult
e Recall how difficult itwas to find roots for a mere cubic equation

* Finding roots fordegree n > 3 polynomals is undesirable!



Similarity Transforms

e Similarity transforms, which look like T~1AT, preserve the eigenstructure
» T7YATv = Av or A(Tv) = A(Tv) still has eigenvalue A with a modified eigenvector Tv

« When 4 is real and symmetric (complex and Hermitian), there exists an orthogonal
(unitary) T that makes T~ AT diagonal with real eigenvalues
e eg. T=VforATA=VETXVT and T = U for AAT = UxXTUT

e Other interesting facts:
« When 4 has distinct eigenvalues, a T exists to make T~1AT diagonal

e Schur form: For any (square) matrix, a unitary T exists to make T AT upper triangular with
eigenvalues on the diagonal

* Jordan form: Any (square) matrix can be put into a form with eigenvalues on the diagonal and
nonzero off-diagonal elements only occurring on the band above the diagonal and only for defective
eigenvalues (which are repeated eigenvalues that don’t possess a full set of eigenvectors)




Similarity Transforms via QR lteration
e Starting with A° = A
 Compute the factorization A9 = Q9R9? with orthogonal Q4
e Then define A9+1 = RIQ4

 Note: R1Q49 = (Q9)"Q9R1Q4 = (Q9)TA2Q4 is a similarity transform of A4

« When the eigenvalues are distinct, A? converges to a triangular matrix

« When 4 is symmetric, A9 converges to a diagonal matrix



Power Method

 Computes the largest eigenvalue (great for rank 1 updates)
e Start with a c® # 0, and iterate c?*1 = Ac4
e Suppose ¢ is a linear combination of eigenvectors: c® = Dk AR Vg

q
Then c? = A9c¢® = Zk akAqu — Zk ak/lkvk — /’{max Zk 04 (Amax) (%%
Ak

q
: q
* As q — o, ( ) Si08ordt iz SsoiictEo A L = Ll

max

q+1
(Cq+1)i = Amax@max (Vmax)i

* Asq — oo, = A4y fOr every component i of ¢

(c9); Agzaxamax(vmax)i i
* Deflation removes an eigenvalue from A by subtracting off its rank 1 update

* The deflated ATA — v, vy or AAT — ofu,ul can then be used to compute the next
largest eigenvalue (repeatedly)




Power Method

 If c¥ =Y, a, v, happens to have a4, = 0, the method might fail (but roundoff
errors can help)

* ¢ needs to be periodically renormalized to stop it from growing too large
e When c? and A are real valued, cannot obtain complex numbers

 When the largest eigenvalue is repeated, one needs to determine a basis for the
multiple associated eigenvectors

* Inverse Iteration can be used to find the smallest eigenvalue of A, since the
largest elgenvalue of A=1 is the smallest eigenvalue of A

e %1 = A=1¢4 is updated by solving Ac?t! = ¢4 to find c9*1
» Useful for finding the condition number 224
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