Zero Singular Values
Underdetermined Systems

- Consider drawing a line $y = c_1 + c_2x$ through 3 data points.
- When the points are colinear, there is a unique solution.
- When the points are not colinear, there is a least squares solution.
- When the points are co-located (i.e., identical), there are infinite solutions.
Underdetermined Systems

• The Vandermonde matrix equation is \(\begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \)

• Let \(x_1 = x_2 = x_3 \), so that the columns are multiples of each other (and the matrix is rank 1)

• If \(y_1 = y_2 = y_3 \), the right hand side is in the range of the rank 1 columns implying infinite solutions

• Otherwise, the right hand side is not in the range of the columns implying no solutions (toss away the second column and \(c_2 \), then do least squares on \(c_1 \))
(Careful) Variable Classification

Consider

\[
\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2 \\
c_3
\end{pmatrix}
=
\begin{pmatrix}
1 \\
2 \\
3 \\
0
\end{pmatrix}
\]

- The first two rows, \(c_1 = 1 \) and \(c_1 = 2 \), overdetermine \(c_1 \)
- The third row, \(c_2 = 3 \), uniquely determines \(c_2 \)
- The last row, \(0c_3 = 0 \), leaves \(c_3 \) underdetermined with infinite possibilities

It’s often misleading to classify an entire system (as either having a unique solution, no solution, or infinite solutions)

Rather, one should do the best they can with what has been given
 - E.g. Shouldn’t skip dinner because of uncertainties about what time the sun will go down
Understanding Underdetermined Systems

• Transform $Ac = b$ into $\Sigma \hat{c} = \hat{b}$ (as usual)

• For each $\sigma_k \neq 0$, compute $\hat{c}_k = \frac{\hat{b}_k}{\sigma_k}$ (as usual)

• When $\sigma_k = 0$, \hat{c}_k is undefined (moreover, division by a small σ_k is dubious)

• Tall matrices have extra rows with $0 = \hat{b}_k$ ($\sigma_k = 0$ rows contribute to this too), and nonzero \hat{b}_k imply a nonzero residual

• Wide matrices have extra columns of zeros, leaving some \hat{c}_k undetermined (just like $\sigma_k = 0$ columns)
Understanding Underdetermined Systems

• Can write $U (\hat{\Sigma} \ 0) V^T$ for wide matrices, similar to $A = U \begin{pmatrix} \hat{\Sigma} \\ 0 \end{pmatrix} V^T$ for tall matrices
 - In general, $\hat{\Sigma}$ may contain zeros on the diagonal (for tall matrices too, if not full rank)
• For any matrix, can write $A = U \begin{pmatrix} \hat{\Sigma} \\ 0 \end{pmatrix} V^T$ with $\hat{\Sigma}$ diagonal and full rank
• Then, $\Sigma \hat{c} = \hat{b}$ has the form $\begin{pmatrix} \hat{\Sigma} \\ 0 \end{pmatrix} \begin{pmatrix} \hat{c}_r \\ \hat{c}_z \end{pmatrix} = \begin{pmatrix} \hat{b}_r \\ \hat{b}_z \end{pmatrix}$

• $\|r\|_2 = \|U^T (b - Ac)\|_2 = \left\| \begin{pmatrix} \hat{b}_r \\ \hat{b}_z \end{pmatrix} - \begin{pmatrix} \hat{\Sigma} \\ 0 \end{pmatrix} \begin{pmatrix} \hat{c}_r \\ \hat{c}_z \end{pmatrix} \right\|_2 = \left\| \begin{pmatrix} \hat{b}_r \\ \hat{b}_z \end{pmatrix} - \begin{pmatrix} \hat{\Sigma} \hat{c}_r \\ 0 \end{pmatrix} \right\|_2$
• Thus, solving $\hat{\Sigma} \hat{c}_r = \hat{b}_r$ for \hat{c}_r minimizes the residual to $\|r\|_2 = \|\hat{b}_z\|_2$
• Meanwhile, any values are acceptable for the non-determined \hat{c}_z
Minimum Norm Solution

• Setting $\hat{c}_z = 0$ stresses that these parameters have no bearing on the solution.

• This is more sensical than setting \hat{c}_z to some nonzero value as if those values mattered.

• Example:
 • Consider a variable related to how a hat is worn while driving, which could matter when the hat blocks the sun or keeps longer hair away from the eyes.
 • Someone with short hair driving at night would likely have no driving dependence on a hat; in this case, reporting information about hats is misleading.

• So, $c = V \hat{c} = V \begin{pmatrix} \hat{c}_r \\ \hat{c}_z \end{pmatrix} = V \begin{pmatrix} \hat{\Sigma}^{-1} \hat{b}_r \\ 0 \end{pmatrix} = \sum_{\sigma_k \neq 0} \nu_k \frac{\hat{b}_k}{\sigma_k} = \sum_{\sigma_k \neq 0} \nu_k \frac{u_k^T b}{\sigma_k}$.
Pseudo-Inverse

• The minimum norm solution is \(c = \left(\sum_{\sigma_k \neq 0} \frac{v_k u_k^T}{\sigma_k} \right) b = A^+ b \) where the pseudo-inverse is \(A^+ = \sum_{\sigma_k \neq 0} \frac{v_k u_k^T}{\sigma_k} \)

• When \(A \) is square and full rank \(A^+ = A^{-1} \)

• Each term is an outer product between corresponding columns of \(U \) and \(V \), weighted by one over their corresponding singular value

• Each term is a size \(nxm \) matrix, so this a sum of matrices
Sum of Rank One Matrices

- $Ac = U \begin{pmatrix} \hat{\Sigma} & 0 \\ 0 & 0 \end{pmatrix} V^T c = U \begin{pmatrix} \hat{\Sigma} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \hat{c}_r \\ 0 \end{pmatrix} = U \begin{pmatrix} \hat{\Sigma} \hat{c}_r \\ 0 \end{pmatrix} = \sum_{\sigma_k \neq 0} u_k \sigma_k \hat{c}_k = \sum_{\sigma_k \neq 0} u_k \sigma_k v_k^T c = (\sum_{\sigma_k \neq 0} \sigma_k u_k v_k^T) c$

- Thus, $A = \sum_{\sigma_k \neq 0} \sigma_k u_k v_k^T$

- Each term is an outer product between corresponding columns of U and V, weighted by their corresponding singular value.

- Each term is a size $m \times n$ matrix (the same size as A).

- Each term is rank 1, since every column in the term is a multiple of u_k.
Recall: Understanding Ac (unit 3)

\[Ac = \begin{pmatrix} .141 & .825 & -.420 & -.351 \\ .344 & .426 & .298 & .782 \\ .547 & .028 & .644 & -.509 \\ .750 & -.371 & -.542 & .079 \end{pmatrix} \begin{pmatrix} 25.5 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} .504 & .574 & .644 \\ -.761 & -.057 & .646 \\ .408 & -.816 & .408 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} \]

\[= \begin{pmatrix} .141 & .825 & -.420 & -.351 \\ .344 & .426 & .298 & .782 \\ .547 & .028 & .644 & -.509 \\ .750 & -.371 & -.542 & .079 \end{pmatrix} \begin{pmatrix} 25.5 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} \sigma_1 v_1^T c \\ \sigma_2 v_2^T c \\ \sigma_3 v_3^T c \end{pmatrix} \]

\[= u_1 \sigma_1 v_1^T c + u_2 \sigma_2 v_2^T c + u_3 \sigma_3 v_3^T c + u_4 0 \]

• Ac projects c onto the basis vectors in V, scales by the associated singular values, and uses those results as weights on the basis vectors in U
Matrix Approximation

• Use the p largest singular values: $A \approx \sum_{k=1}^{p} \sigma_k u_k v_k^T$

• The pseudo-inverse is approximated similarly: $A^+ \approx \sum_{k=1}^{p} \frac{1}{\sigma_k} v_k u_k^T$

• This is the best rank p approximation to A, and the main idea behind principle component analysis (PCA)
 • Often, thousands/millions of terms can be thrown away keeping only 10 to 100 terms

• Can also drop small singular values: $A \approx \sum_{\sigma_k > \epsilon} \sigma_k u_k v_k^T$

• This makes the pseudo-inverse better conditioned: $A^+ \approx \sum_{\sigma_k > \epsilon} \frac{1}{\sigma_k} v_k u_k^T$
 • This relies on a good choice of $\epsilon > 0$
Recall: Approximating A (unit 3)

\[
A = \begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & 12
\end{pmatrix}
\approx \begin{pmatrix}
.141 & .835 & -.410 & -.351 \\
.344 & .465 & .233 & .785 \\
.547 & .063 & .644 & -.509 \\
.750 & -.391 & -.592 & .099
\end{pmatrix} \begin{pmatrix}
25.5 & 0 & 0 \\
0 & 4.5 & 0 \\
0 & 0 & 1.0
\end{pmatrix} \begin{pmatrix}
.504 & .574 & .644 \\
-.496 & -.533 & -.542 \\
-.504 & -.476 & -.456
\end{pmatrix}
\]

- The first singular value is much bigger than the second, and so represents the vast majority of what A does (note, the vectors in U and V are unit length)
- Thus, one could approximate A quite well by only using the terms associated with the largest singular value
- This is not a valid factorization, but an approximation (and the idea behind PCA)
Rank One Updates

• For real time applications (real time decision making, etc.), iteratively add one term at a time (slowly improving the estimate)

\[c = A^+ b \approx \frac{u_1^T b}{\sigma_1} v_1 + \frac{u_2^T b}{\sigma_2} v_2 + \frac{u_3^T b}{\sigma_3} v_3 + \ldots \]

• Note the efficient ordering of the operations:
 • \(u_k^T b \) is \(m \) multiplies, and the result times \(v_k \) is \(n \) multiplies (for a total of \(m + n \) multiplies)
 • Don’t form the size \(nxm \) matrix!
 • Multiplying the size \(mxn \) matrix \(v_k u_k^T \) times \(b \) is \(m \cdot n \) multiplies
Computing the SVD

- $A^T A = V \Sigma^T \Sigma V^T$ so $(A^T A)V = V(\Sigma^T \Sigma)$
- $AA^T = U \Sigma \Sigma^T U^T$ so $(AA^T)U = U(\Sigma \Sigma^T)$

- If $\sigma_k \neq 0$, then σ_k^2 is an eigenvalue of both $A^T A$ and AA^T (with eigenvectors v_k and u_k respectively)

- Work with the smaller of $A^T A$ and AA^T (which are both SP(S)D) to find the eigenvalues σ_k^2
- Then, σ_k^2 can be used in both $A^T A$ and AA^T to find the corresponding eigenvectors
Finding Eigenvectors from Eigenvalues

• Given an eigenvalue λ, form the matrix $\hat{A} - \lambda I$

• If \hat{A} is symmetric, then $\hat{A} - \lambda I$ is symmetric

• $\hat{A} - \lambda I$ has (at least) a rank 1 null space (from the definition of eigenvalues)

• Solve the linear system $(\hat{A} - \lambda I)v = 0$ to find the eigenvector v
Condition Number of Eigenproblems

• The condition number for finding an eigenvalue is different than the condition number for solving a linear system.

• The condition number for finding an eigenvalue/eigenvector pair is \(\frac{1}{v_L^T v_R} \) where \(v_L \) and \(v_R \) are the normalized left and right eigenvectors.

• Symmetric (Hermitian) matrices have identical left and right eigenvectors; so, \(v_L^T v_R = 1 \) and the condition number is 1.
The eigenvalue problem is typically written as $\hat{A}v = \lambda v$

Alternatively, $(\hat{A} - \lambda I)v = 0$ implying that $\hat{A} - \lambda I$ is singular

Setting $\det(\hat{A} - \lambda I) = 0$ leads to a degree n characteristic polynomial equation in λ (for a size nxn matrix \hat{A})

Finding the roots of this polynomial equation can be quite difficult
- Recall how difficult it was to find roots for a mere cubic equation
- Finding roots for degree $n > 3$ polynomials is undesirable!
Similarity Transforms

• Similarity transforms, which look like \(T^{-1} \hat{A} T \), preserve the eigenstructure
 \(T^{-1} \hat{A} T v = \lambda v \) or \(\hat{A}(Tv) = \lambda(Tv) \) still has eigenvalue \(\lambda \) with a modified eigenvector \(Tv \)

• When \(\hat{A} \) is real and symmetric (complex and Hermitian), there exists an orthogonal (unitary) \(T \) that makes \(T^{-1} \hat{A} T \) diagonal with real eigenvalues
 \(T = V \) for \(\hat{A} T = V \Sigma^T \Sigma V^T \) and \(T = U \) for \(\hat{A} A = U \Sigma \Sigma^T U^T \)

• Other interesting facts:
 • When \(\hat{A} \) has distinct eigenvalues, a \(T \) exists to make \(T^{-1} \hat{A} T \) diagonal
 • Schur form: For any (square) matrix, a unitary \(T \) exists to make \(T^{-1} \hat{A} T \) upper triangular with eigenvalues on the diagonal
 • Jordan form: Any (square) matrix can be put into a form with eigenvalues on the diagonal and nonzero off-diagonal elements only occurring on the band above the diagonal and only for defective eigenvalues (which are repeated eigenvalues that don’t possess a full set of eigenvectors)
Similarity Transforms via QR Iteration

• Starting with $\hat{A}^0 = \hat{A}$

• Compute the factorization $\hat{A}^q = Q^q R^q$ with orthogonal Q^q

• Then define $\hat{A}^{q+1} = R^q Q^q$

• Note: $R^q Q^q = (Q^q)^T Q^q R^q Q^q = (Q^q)^T \hat{A}^q Q^q$ is a similarity transform of \hat{A}^q

• When the eigenvalues are distinct, \hat{A}^q converges to a triangular matrix

• When \hat{A} is symmetric, \hat{A}^q converges to a diagonal matrix
Power Method

- Computes the largest eigenvalue (great for rank 1 updates)
- Start with a $c^0 \neq 0$, and iterate $c^{q+1} = \hat{A} c^q$
- Suppose c^0 is a linear combination of eigenvectors: $c^0 = \sum_k \alpha_k v_k$
- Then $c^q = \hat{A}^q c^0 = \sum_k \alpha_k \hat{A}^q v_k = \sum_k \alpha_k \lambda_k^q v_k = \lambda_{\text{max}}^q \sum_k \alpha_k \left(\frac{\lambda_k}{\lambda_{\text{max}}} \right)^q v_k$
- As $q \to \infty$, $\left(\frac{\lambda_k}{\lambda_{\text{max}}} \right)^q \to 0$ for $\lambda_k < \lambda_{\text{max}}$; so, $c^q \to \lambda_{\text{max}}^q \alpha_{\text{max}} v_{\text{max}}$
- As $q \to \infty$, $rac{(c^{q+1})_i}{(c^q)_i} \to \frac{\lambda_{\text{max}}^q \alpha_{\text{max}} (v_{\text{max}})_i}{\lambda_{\text{max}}^q \alpha_{\text{max}} (v_{\text{max}})_i} = \lambda_{\text{max}}$ for every component i of c
- **Deflation** removes an eigenvalue from \hat{A} by subtracting off its rank 1 update
 - The deflated $A^T A - \sigma_k^2 v_k v_k^T$ or $AA^T - \sigma_k^2 u_k u_k^T$ can then be used to compute the next largest eigenvalue (repeatedly)
Power Method

• If $c^0 = \sum_k \alpha_k v_k$ happens to have $\alpha_{max} = 0$, the method might fail (but roundoff errors can help)

• c^q needs to be periodically renormalized to stop it from growing too large

• When c^0 and \hat{A} are real valued, cannot obtain complex numbers

• When the largest eigenvalue is repeated, one needs to determine a basis for the multiple associated eigenvectors

• Inverse Iteration can be used to find the smallest eigenvalue of \hat{A}, since the largest eigenvalue of \hat{A}^{-1} is the smallest eigenvalue of \hat{A}
 - $c^{q+1} = \hat{A}^{-1} c^q$ is updated by solving $\hat{A} c^{q+1} = c^q$ to find c^{q+1}
 - Useful for finding the condition number $\frac{\sigma_{max}}{\sigma_{min}}$