Computing Derivatives
Part II Roadmap

• Part I – Linear Algebra (units 1-12) \(Ac = b \)

• Part II – Optimization (units 13-20)
 • (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima
 • (units 17-18) Computing/Avoiding Derivatives
 • (unit 19) Hack 1.0: “I give up” \(H = I \) and \(J \) is mostly 0 (descent methods)
 • (unit 20) Hack 2.0: “It’s an ODE!?” (adaptive learning rate and momentum)
Smoothness

• Discontinuous functions cannot be differentiated
 • Even methods that don’t require derivatives struggle when functions are discontinuous

• Continuous functions may have kinks (discontinuities in derivatives)
 • Discontinuous derivatives can cause methods that depend on derivatives to fail, since function behavior cannot be adequately predicted from one side of the kink to the other

• Typically, functions need to be “smooth enough”, which has varying meaning depending on the approach

• Specialty approaches exist for special classes of functions, e.g. linear algebra, linear programming, convex optimization, second order cone program (SOCP), etc.
 • Nonlinear Systems/Optimization are more difficult, and best practices/techniques often do not exist
Biological Neurons (towards “real” AI)

- Aim to mimic human biological neural networks and learning
- Biological neurons are “all or none”, which motivates similar strategies in artificial neural networks
 - This leads to a discontinuous function with an identically zero derivative everywhere else
 - Disastrous for optimization!
- Biological neurons fire with increased frequency for stronger signals
 - This leads to a piecewise constant and discontinuous derivative
 - Problematic for optimization!
- Smoothing allows optimization to work, i.e. to minimize the loss to find the parameters/coefficients (for the network architecture)
Heaviside Function

- \(H(x) = 1 \) for \(x \geq 0 \), and \(H(x) = 0 \) for \(x < 0 \)
- Motivated by biological neurons being “all or none”, but has a discontinuity at 0 and an identically zero derivative everywhere else
Sigmoid Function (an example)

- Any smoothed Heaviside function, e.g. $S(x) = \frac{1}{1+e^{-x}}$ (there are many options)
- Continuous and monotonically increasing, although the derivative is close to zero away from $x = 0$
Rectifier Functions (an example)

- $R(x) = \max(x, 0)$ or similar functions which are continuous and have increasing values
- Motivated by biological neurons firing with increased frequency for stronger signals
- Piecewise constant and discontinuous derivative causes issues with optimization
Softplus Function

• Softplus function $SP(x) = \log(1 + e^x)$ smooths the discontinuous derivative typical of rectifier functions
Leaky Rectifier Function

• Modifies the negative part of a rectifier function to also have a positive slope instead of being set to zero

• Can be smoothed (as well)
Arg/Soft Max

• **Arg Max** returns 1 for the largest argument and 0 for the other arguments
• E.g. (.99,1) → (0,1), (1,. 99) → (1,0), etc.
• Highly discontinuous!

• **Soft Max** is a smoothed out version, e.g. \((x_1, x_2) \rightarrow \left(\frac{e^{x_1}}{e^{x_1} + e^{x_2}}, \frac{e^{x_2}}{e^{x_1} + e^{x_2}} \right)\)
• This is a smooth function of the arguments, differentiable, etc.
• Variants/weightings exist to make it closer/further from Arg Max (while preserving differentiability)
Example: Binary Classification

• Training data \((x_i, y_i)\) where the \(y_i = \pm 1\) are binary class labels

• Find plane \(n^T (x - x_o) = 0\) that separates the data between the two class labels \((n\) is the unit normal and \(x_o\) is a point on the plane)

• The closest \(x_i\) on each side of the plane are called support vectors

• If the plane is equidistant between the support vectors, then they lie on parallel planes: \(n^T (x - x_o) = \pm \epsilon\) (where \(\epsilon\) is the margin)

• Dividing by \(\epsilon\) to normalize gives \(c^T (x - x_o) = \pm 1\) where \(c\) is in the normal direction (not unit length); then, maximizing the margin \(\epsilon\) is equivalent to minimizing \(\|c\|_2\)
Example: Binary Classification

Minimize \(\hat{f}(c) = \frac{1}{2} c^T c \) subject to inequality constraints:

- \(c^T (x_i - x_o) \geq 1 \) when \(y_i = 1 \), and \(c^T (x_i - x_o) \leq -1 \) when \(y_i = -1 \)
- Can combine into \(y_i c^T (x_i - x_o) \geq 1 \) for every data point
- Alternatively, \(y_i (c^T x_i - b) \geq 1 \) with scalar unknown \(b = c^T x_o \)

New data will be inferred/classified based on the sign of \(c^T x_{new} - b \)

When approached via unconstrained optimization, the Heaviside function can be used to incorporate the constraints into the cost function

- Subsequently smoothing the Heaviside function is called **soft-margin**
(Inequality) Constrained Optimization

• Minimize \(\hat{f}(c) \) subject to \(\hat{g}(c) \geq 0 \) (or \(\hat{g}(c) > 0 \))

• Create a penalty term \(-H(-\hat{g}_i(c))\hat{g}_i(c) \) which is nonzero only when \(\hat{g}_i(c) < 0 \)
 • This penalty term is minimized by forcing negative \(\hat{g}_i(c) \) towards zero (as desired)

• Given a diagonal matrix \(D \) of (positive) weights indicating the relative importance of various constraints, unconstrained optimization can be used to minimize
 \[
 \hat{f}(c) - \sum_i H\left(-\hat{e}_i^T D \hat{g}(c)\right) \hat{e}_i^T D \hat{g}(c)
 \]
 • This requires differentiating the non-smooth Heaviside function
 • Smoothing the Heaviside function makes the modified cost function differentiable
Symbolic Differentiation

• When a function is known in closed form, it can be differentiated by hand
• Software packages such as Mathematica can aid in symbolic differentiation (and subsequent simplification)

• Some benefits of knowing the closed form derivative:
 • Provides a better understanding of the underlying problem
 • Enables well thought out smoothing/regularization
 • Allows one to implement more efficient code
 • Subsequently allows access to more accurate higher derivatives
 • Some of the aforementioned benefits enable the use of better solvers
 • Helps to write/maintain code with less bugs
 • Etc.
Example

• Suppose a code has the following functions:
 • \(f(t) = t^2 - 4 \) with \(f'(t) = 2t \), and \(g(t) = t - 2 \) with \(g'(t) = 1 \)

• Suppose another part of the code combines these functions:
 • \(h(t) = \frac{f(t)}{g(t)} \) with \(h'(t) = \frac{g(t)f'(t) - f(t)g'(t)}{(g(t))^2} \)

• Then \(h(2) = \frac{f(2)}{g(2)} = \frac{0}{0} \) and \(h'(2) = \frac{g(2)f'(2) - f(2)g'(2)}{(g(2))^2} = \frac{0.4 - 0.1}{0^2} \)

• Adding a small \(\epsilon > 0 \) to the denominators to avoid division by zero gives \(h(2) = 0 \) and \(h'(2) = 0 \)

• Adding a small \(\epsilon > 0 \) to denominators is often done whenever they are small, making \(h(t) \approx 0 \) and \(h'(t) \approx 0 \) for \(t \approx 2 \) as well

• Of course, \(h(t) = t + 2 \) is a straight line with \(h(2) = 4 \) and \(h'(t) = 1 \) everywhere
Symbolic Differentiation of Code

• Sometimes a function is not analytically known and/or merely represents the output of some source code

• But, *parts* of the code may have known derivatives, and those known derivatives can be utilized/leveraged via the mathematical rules for differentiation

• Moreover, when parts of the code are always used consecutively, they can be merged; subsequently, merged code with known derivatives in each part can often have the derivative treatment simplified for accuracy/robustness/efficiency
Differentiate the Right Thing

- Consider an iterative solver (e.g. CG, Minres, etc.) that solves $Ac = b$ to find c given b
- Sometimes the code is enormous, complicated, confusing, a black box, etc. (basically impenetrable)
- It is tempting to consider some of the code bases that claim to differentiate such chunks of code
 - Sometimes these approaches work, and the answers are reasonable
 - But, it is often difficult to know whether or not computational inaccuracies (as discussed in this class) are having an adverse effect on such a black box approach
- Alternatively, when invertible: $c = A^{-1}b$ and $\frac{\partial c_k}{\partial b_i} = \tilde{a}_{ki}$ where \tilde{a}_{ki} is an entry in A^{-1}
 - A similar approach can be taken for A^+, which can be estimated robustly via PCA, the Power Method, etc.
- The derivative is independent of the iterative solver (CG, Minres, etc.) and the errors that might accumulate within the iterative solver due to poor conditioning
 - More recently, this sort of approach is being referred to as an implicit layer
Used Car Sales

• Beware of the claim: it is good to be able to use something without understanding it

• The claim is often true, and many of us enjoy driving our cars without understanding much of what is under the hood

• However, those who design cars, manufacture cars, repair cars, etc. benefit greatly from understanding as much as possible about them, and the rest of us benefit enormously from their expertise

• Though, admittedly, there are those in the car business, such as those who sell used cars, who legitimately don’t require any real knowledge/expertise

• The question is: what kind of computer scientist do you want to be?
Oversimplified Thinking

• Beware of claims that drastically oversimplify

• E.g., some say that code is very simple and merely consists of simple operations like add/subtract/multiply/divide that are easily differentiated

• However, in reality, even the simple $z = x + y$ has subtleties that can matter
 • E.g. the computer actually executes $z = \text{round}(x + y)$

• Too many claim that issues they have not carefully considered don’t matter in practice; meanwhile, many state-of-the-art practices in ML/DL are not well understood (leaving one to question this claim)
Finite Differences

- Derivatives can be approximated by various formulas, similar to how the Secant method was derived from Newton’s method.
- Given a small perturbation $h > 0$, Taylor expansions can be manipulated to write:
 - **Forward Difference**: $g'(t) = \frac{g(t+h)-g(t)}{h} + O(h), 1^{\text{st}}$ order accurate
 - **Backward Difference**: $g'(t) = \frac{g(t)-g(t-h)}{h} + O(h), 1^{\text{st}}$ order accurate
 - **Central Difference**: $g'(t) = \frac{g(t+h)-g(t-h)}{2h} + O(h^2), 2^{\text{nd}}$ order accurate
 - **Second Derivative**: $g''(t) = \frac{g(t+h)-2g(t)+g(t-h)}{h^2} + O(h^2), 2^{\text{nd}}$ order accurate
- These approximations can be evaluated even when $g(t)$ is not known precisely, but merely represents the output of some code with input t.
Finite Differences (Drawbacks)

- Finite Differences only give an approximation to the derivative, and contain truncation errors related to the perturbation size h
- One has to reason about the effects that truncation error (and the size of h) have on other aspects of the code
- If the code is very long and complex, the overall effects of truncation errors may be unclear
- Still, finite difference methods have had a broad positive impact in computational science!
Automatic Differentiation

• In machine learning, this is often referred to as **Back Propagation**

• For every (potentially vector valued) function \(F(c_{\text{input}}) \) written into the code, an analytically correct companion function for the Jacobian matrix \(\frac{\partial F}{\partial c}(c_{\text{input}}) \) is also written

• Then when evaluating \(F(c_{\text{input}}) \), one can also evaluate \(\frac{\partial F}{\partial c}(c_{\text{input}}) \)
 • Of course, \(\frac{\partial F}{\partial c}(c_{\text{input}}) \) contains **roundoff errors** based on machine precision (and conditioning, etc.)
 • But it does not contain the much larger truncation errors present in finite differencing

• Code can be considered in chunks, which combine together various functions via arithmetic/compositional rules
 • Analytic differentiation has its own set of rules (linearity, product rule, quotient rule, chain rule, etc.) that can be used to assemble the derivative (evaluated at \(c_{\text{input}} \)) for the code chunk
 • Roundoff errors will accumulate, of course, and the resulting error has the potential to be catastrophic (this is typically even worse for the much larger truncation errors)
Second Derivatives

• If c_{input} is size n and $F(c_{\text{input}})$ is size m, the Jacobian matrix $\frac{\partial F}{\partial c}(c_{\text{input}})$ is size mxn

• The Hessian of second derivatives is size $mxnxn$
 • Recall: $m = 1$ for optimization, i.e. for $\hat{f}(c_{\text{input}})$

• Writing automatic differentiation functions for all possible second derivatives can be difficult/tedious

• Storing Hessians for all second derivatives can be unwieldy/intractable

• Roundoff error accumulation can be an even bigger problem for second derivatives, and the resulting errors are typically even more likely to lead to adverse effects

• Additional smoothness is required for second derivatives

• Some of these issues are problems for any method that considers second derivatives (not specific to an automatic differentiation approach)
Dropout

• One way to combat overfitting is to train several different network architectures on the same data, inference them all, and average the result
 • This is costly, especially if there are many networks
• Dropout is a “hacky” approach to achieving a network function averaged over multiple network architectures
 • Though Google did patent it
• The idea is to simply ignore parts of the code with some probability when training the network, mimicking a perturbed network architecture
• Although this can be seen as computing correct derivatives on perturbed functions/architectures, it can also equivalently be seen as adding uncertainty to the derivative computation
• That is, instead of regularization via model averaging, it can be seen as creating a network robust to errors in derivative estimation
Function Layers

- Many complex processes work in a pipeline with many function layers
- Each layer completes a task on its inputs X_j to create outputs X_{j+1}
- Each layer may depend on parameters C_j
- There may be a known/desired output X_{target} to compare the final result to

$$\hat{f}(X_4) = \|X_4 - X_{target}\|$$
Function Layers (Example)

LAYER 1
- **Input**: animation controls
- **Function**: linear blend shapes, nonlinear skinning, quasistatic physics simulation, etc. to deform a face
- **Parameters**: lots of hand tuned or known parameters including shape libraries, etc.
- **Output**: 3D vertex positions of a triangle mesh
Function Layers (Example)

LAYER 2

- **Input**: 3D vertex positions of a triangle mesh
- **Function**: scanline renderer or ray tracer
- **Parameters**: lots of hand tuned or known parameters for material models, lighting and shading, textures, etc.
- **Output**: RGB colors for pixels (a 2D image)
Function Layers (Example)

LAYER 3

- **Input**: RGB colors for pixels (a 2D image)
- **Function**: facial landmark detector
- **Parameters**: parameters for the neural network architecture, determined by training the network to match hand labeled data
- **Output**: 2D locations of landmarks on the image
Function Layers (Example)

TARGET OUTPUT

- Run a landmark detector on a photograph of the individual to obtain 2D landmark locations
- The goal is to have the 2D landmarks output from the complex multi-layered function match the 2D landmarks on the photograph
Function Layers (Example)

- Modifying animation controls changes the triangulated surface which changes the rendered pixels in the image which changes the network’s determination of landmarks.

- When the two sets of landmarks agree, the animation controls give some indication of what the person in the photograph was doing.
Classical Optimization

- Find the input X_1 that minimizes $\hat{f}(X_4)$
- Chain rule:
 $$\frac{\partial \hat{f}(X_4)}{\partial x_1} = \frac{\partial \hat{f}(X_4)}{\partial x_4} \frac{\partial x_4}{\partial x_3} \frac{\partial x_3}{\partial x_2} \frac{\partial x_2}{\partial x_1} = \frac{\partial f(x_4)}{\partial x_4} \frac{\partial f_3(x_3, c_3)}{\partial x_3} \frac{\partial f_2(x_2, c_2)}{\partial x_2} \frac{\partial f_1(x_1, c_1)}{\partial x_1}$$
- Parameters are considered fixed/constant

\[
\hat{f}(X_4) = \|X_4 - X_{\text{target}}\|
\]
Network Training

- Train network f_2 by finding parameters C_2 that minimize $\hat{f}(X_4)$

- Chain rule:

$$
\frac{\partial \hat{f}(X_4)}{\partial C_2} = \frac{\partial \hat{f}(X_4)}{\partial X_4} \frac{\partial X_4}{\partial X_3} \frac{\partial X_3}{\partial C_2} = \frac{\partial \hat{f}(X_4)}{\partial X_4} \frac{\partial f_3(X_3, C_3)}{\partial X_3} \frac{\partial f_2(X_2, C_2)}{\partial C_2}
$$

$X_1 \xrightarrow{\text{in}} f_1(X_1, C_1) \xrightarrow{\text{out}} X_2 \xrightarrow{\text{in}} f_2(X_2, C_2) \xrightarrow{\text{out}} X_3 \xrightarrow{\text{in}} f_3(X_3, C_3) \xrightarrow{\text{out}} X_4$

$$
\hat{f}(X_4) = \| X_4 - X_{target} \|
$$
Network Training

- Any preprocess to the network does **not** require differentiability.
- The network itself **only** requires differentiability with respect to its parameters.
- Any postprocess to the network requires input/output differentiability, but does not require differentiability with respect to its parameters.

\[
\begin{align*}
X_1 & \xrightarrow{\text{in}} f_1(X_1, C_1) \xrightarrow{\text{out}} X_2 \\
X_3 & \xrightarrow{\text{in}} f_2(X_2, C_2) \xrightarrow{\text{out}} X_3 \\
X_4 & \xrightarrow{\text{in}} f_3(X_3, C_3) \xrightarrow{\text{out}} \hat{X}_4
\end{align*}
\]

\[
\hat{f}(X_4) = \|X_4 - X_{\text{target}}\|
\]