Computing Derivatives
Part II Roadmap

• Part I – Linear Algebra (units 1-12) \(Ac = b \)
• Part II – Optimization (units 13-20)
 • (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima
 • (units 17-18) Computing/Avoiding Derivatives
 • (unit 19) Hack 1.0: “I give up” \(H = I \) and \(J \) is mostly 0 (descent methods)
 • (unit 20) Hack 2.0: “It’s an ODE!?" (adaptive learning rate and momentum)
Smoothness

• Discontinuous functions cannot be differentiated
 • Even methods that don’t require derivatives struggle when functions are discontinuous
• Continuous functions may have kinks (discontinuities in derivatives)
 • Discontinuous derivatives can cause methods that depend on derivatives to fail, since function behavior cannot be adequately predicted from one side of the kink to the other
• Typically, functions need to be “smooth enough”, which has varying meaning depending on the approach
• Specialty approaches for special classes of functions, e.g. linear algebra, linear programming, convex optimization, second order cone program (SOCP), etc.
 • Nonlinear Systems/Optimization are so difficult that they often receive less scrutiny/care, as best practices/techniques often do not exist
Biological Neurons (towards “real” AI)

• Aim to mimic human biological neural networks and learning

• Biological neurons are “all or none”, which motivates similar strategies in artificial neural networks
 • This leads to a discontinuous function with an identically zero derivative everywhere else
 • Disastrous for optimization!

• Biological neurons fire with increased frequency for stronger signals
 • This leads to a piecewise constant and discontinuous derivative
 • Problematic for optimization!

• Smoothing allows optimization to work, i.e. to minimize the loss to find the parameters/coefficients (e.g. for the network architecture)
Example: Binary Classification

- Training data \((x_i, y_i)\) where the \(y_i = \pm 1\) are binary class labels
- Find hyperplane \(n^T(x - x_o) = 0\) that separates the data between the two class labels (\(n\) is the unit normal and \(x_o\) is a point on the plane)
- The closest \(x_i\) on each side of this hyperplane are called the support vectors
- If the hyperplane is equidistant between the support vectors, then they lie on parallel planes: \(n^T(x - x_o) = \pm \varepsilon\) (where \(\varepsilon\) is the margin)
- Dividing by \(\varepsilon\) to normalize gives \(c^T(x - x_o) = \pm 1\) where \(c\) is in the normal direction (but not unit length), and then maximizing the margin \(\varepsilon\) is equivalent to minimizing \(\|c\|_2^2\)
- That is, minimize \(\hat{f}(c) = \frac{1}{2}c^Tc\) while still fitting the data
Example: Binary Classification

• Minimize $\hat{f}(c) = \frac{1}{2} c^T c$ subject to inequality constraints

• $c^T (x_i - x_o) \geq 1$ when $y_i = 1$ and $c^T (x_i - x_o) \leq -1$ when $y_i = -1$ can be combined into $y_i c^T (x_i - x_o) \geq 1$ for every data point

• Alternatively, $y_i (c^T x_i - b) \geq 1$ where the new scalar unknown is $b = c^T x_o$

• New data will be inferred/classified based on the sign of $c^T x_{new} - b$

• When approached via unconstrained optimization, the Heaviside function incorporates constraints into the cost function (and subsequently smoothing the Heaviside is called soft-margin)
(Inequality) Constrained Optimization

- Minimize \(f(c) \) subject to \(g(c) \geq 0 \) (or strictly \(g(c) > 0 \))
- Heaviside function can be used to create a penalty term \(-H(-\hat{g}_i(c))\hat{g}_i(c)\) which is only nonzero when \(\hat{g}_i(c) < 0 \)
 - This penalty term is minimized by forcing negative \(\hat{g}_i(c) \) towards zero (as desired)
- Given a diagonal matrix \(D \) of (positive) weights indicating the relative importance of various constraints, unconstrained optimization can be used to minimize
 \[
 \hat{f}(c) - \sum_i H \left(-\hat{e}_i^T D \hat{g}(c)\right) \hat{e}_i^T D \hat{g}(c)
 \]
 - However, this requires differentiating the non-smooth Heaviside function
 - Smoothing the Heaviside function makes the cost function differentiable
Heaviside Function

• \(H(x) = 1 \) for \(x \geq 0 \), and \(H(x) = 0 \) for \(x < 0 \)

• Motivated by biological neurons being “all or none”, but has a discontinuity at 0 and an identically zero derivative everywhere else
Sigmoid Function (an example)

- Any smoothed Heaviside function, e.g. $S(x) = \frac{1}{1+e^{-x}}$ (there are many options)
- Continuous and monotonically increasing, although the derivative is close to zero away from $x = 0$
Rectifier Functions (an example)

- $R(x) = \max(x, 0)$ or similar functions which are continuous and have increasing values
- Motivated by biological neurons firing with increased frequency for stronger signals
- Piecewise constant and discontinuous derivative causes issues with optimization
Softplus Function

- **Softplus function** $SP(x) = \log(1 + e^x)$ smooths the discontinuous derivative typical of rectifier functions.
Leaky Rectifier Function

• Modifies the negative part of a rectifier function to also have a positive slope instead of being set to zero
• Can be smoothed (as well)
Arg/Soft Max

- **Arg Max** returns 1 for the largest argument and 0 for the other arguments
- E.g. (.99,1) → (0,1), (1,.99) → (1,0), etc.
- Highly discontinuous!

- **Soft Max** is a smoothed out version, e.g. \((x_1, x_2) \rightarrow \left(\frac{e^{x_1}}{e^{x_1} + e^{x_2}}, \frac{e^{x_2}}{e^{x_1} + e^{x_2}} \right)\)
- This is a smooth function of the arguments, differentiable, etc.
- Variants/weightings exist to make it closer/further from Arg Max (while preserving differentiability)
Symbolic Differentiation

• When a function is known in closed form, it can be differentiated by hand
• Software packages such as Mathematica can aid in symbolic differentiation (and subsequent simplification)
• Some benefits of knowing the closed form derivative:
 • Provides a better understanding of the underlying problem
 • Enables well thought out smoothing/regularization
 • Allows one to implement more efficient code
 • Subsequently allows access to more accurate higher derivatives
 • Some of the aforementioned benefits enable the use of better solvers
 • Helps to write/maintain code with less bugs
 • Etc.
Symbolic Differentiation of Code

• Sometimes a function is not analytically known and/or merely represents the output of some source code

• But, parts of the code may have known derivatives, and those known derivatives can be utilized/leveraged via the mathematical rules for differentiation

• Moreover, when parts of the code are always used consecutively, they can be merged; subsequently, merged code with known derivatives in each part can often have the derivative treatment simplified for robustness/efficiency
Differentiate the Right Thing

• Consider an iterative solver (e.g. CG, Minres, etc.) that solves $Ac = b$ to find c given b
• Sometimes the code is enormous, complicated, confusing, a black box, etc. (basically impenetrable)
• It is tempting to consider some of the code bases that claim to differentiate such chunks of code
 • Sometimes these approaches work, and the answers are reasonable
 • But, it is often difficult to know whether or not computational inaccuracies (as discussed in this class) are having an adverse effect on such a black box approach
• Alternatively, when invertible, $c = A^{-1}b$ and $\frac{\partial c_k}{\partial b_i} = \tilde{a}_{ki}$ where \tilde{a}_{ki} is an entry in A^{-1}
 • A similar approach can be taken for A^+, which can be estimated robustly via PCA, the Power Method, etc.
• The derivative is independent of the iterative solver and the errors that might accumulate within the iterative solver due to poor conditioning
 • More recently, this sort of approach is being referred to as an implicit layer
Used Car Sales

• Beware of the claim that it is good to be able to use something without understanding it
• The claim is often true, and many of us enjoy driving our cars without understanding much of what is under the hood
• However, those who design cars, manufacture cars, repair cars, etc. benefit greatly from understanding as much as possible about them, and the rest of us benefit enormously from their expertise
• Though, admittedly, there are those in the car business, such as those who sell used cars, that legitimately don’t require any real knowledge/expertise
• The question is: what kind of computer scientist do you want to be?
Oversimplified Thinking

• Beware of claims that drastically oversimplify

• E.g., some say that code is very simple and merely consists of simple operations like add/subtract/multiply/divide that are easily differentiated

• However, in reality, even the simple $z = x + y$ has subtleties that can matter
 • E.g. the computer actually executes $z = \text{round}(x + y)$

• Too many claim that issues they have not carefully considered don’t matter in practice; meanwhile, many state-of-the-art practices in ML/DL are not well understood (leaving one to question this claim)
Finite Differences

• Derivatives can be approximated by various formulas, which (recall) is how the Secant method was derived from Newton’s method.

• Given a small perturbation h, Taylor expansions can be manipulated to write:

 - **Forward Difference**: $g'(t) = \frac{g(t+h)-g(t)}{h} + O(h)$, 1st order accurate
 - **Backward Difference**: $g'(t) = \frac{g(t)-g(t-h)}{h} + O(h)$, 1st order accurate
 - **Central Difference**: $g'(t) = \frac{g(t+h)-g(t-h)}{2h} + O(h^2)$, 2nd order accurate
 - **Second Derivative**: $g''(t) = \frac{g(t+h)-2g(t)+g(t-h)}{h^2} + O(h^2)$, 2nd order accurate

• These approximations can be evaluated even when $g(t)$ is not known precisely but merely represents the output of some code with input t.
Finite Differences (Drawbacks)

- Finite Differences only give an approximation to the derivative, and contain truncation errors related to the perturbation size h
- One has to reason about the effects that truncation error and the size of h have on other aspects of the code
- If the code is very long and complex, the overall effects of truncation errors may be unclear
- Still, finite difference methods have had a broad positive impact in computational science!
Automatic Differentiation

- In machine learning, this is often referred to as **Back Propagation**
- For every (potentially vector valued) function $F(c_{\text{input}})$ written into the code, an analytically correct companion function for the Jacobian matrix $\frac{\partial F}{\partial c}(c_{\text{input}})$ is also written
- Then when evaluating $F(c_{\text{input}})$, one can also evaluate $\frac{\partial F}{\partial c}(c_{\text{input}})$
 - Of course, $\frac{\partial F}{\partial c}(c_{\text{input}})$ contains **roundoff errors** based on machine precision (and conditioning, etc.)
 - But it does not contain the much larger truncation errors present in finite differencing
- Code chunks combine together various functions via arithmetic/compositional rules
- Analytic differentiation has its own set of rules (linearity, product rule, quotient rule, chain rule, etc.) that are used to assemble the derivative (evaluated at c_{input}) for the code chunk
 - Roundoff errors will accumulate, of course, and the resulting error has the potential to be catastrophic
 - Similar (potentially worse) sentiments hold for the much larger truncation errors
Second Derivatives

- If c_{input} is size n and $F(c_{input})$ is size m, the Jacobian matrix $\frac{\partial F}{\partial c}(c_{input})$ is size $m \times n$.
- The Hessian of second derivatives is a size $m \times n \times n$.
 - Recall: $m = 1$ for optimization, i.e. for $\hat{f}(c_{input})$.
- Writing automatic differentiation functions for all possible second derivatives can be difficult/tedious.
- Storing Hessians for all second derivatives can be unwieldy/intractable.
- Roundoff error accumulation is an even bigger problem for second derivatives, and the resulting errors are even more likely to lead to adverse effects.
- Additional smoothness is required for second derivatives.
- Some of these issues are problems for any method that considers second derivatives (not specific to automatic differentiation approaches).
Dropout

• One way to combat overfitting is to train several different network architectures on the same data, inference them all, and average the result
 • This is costly, especially if there are many networks
• Dropout is a “hacky” approach to achieving a network function averaged over multiple network architectures
 • Though Google did patent it
• The idea is to simply ignore parts of the code with some probability when training the network, mimicking a perturbed network architecture
• Although this can be seen as computing correct derivatives on perturbed functions/architectures, it can also equivalently be seen as adding uncertainty to the derivative computation
• That is, instead of regularization via model averaging, it can be seen as creating a network robust to errors in derivative estimation
Function Layers

- Many complex processes work in a pipeline with many function layers
- Each layer completes a task on its inputs X_j to create outputs X_{j+1}
- Each layer may depend on parameters C_j
- There may be a known/desired output X_{target} to compare the final result to

$$f(X_4) = \|X_4 - X_{target}\|$$
Function Layers (Example)

LAYER 1

- **Input**: animation controls
- **Function**: linear blend shapes, nonlinear skinning, quasistatic physics simulation, etc. to deform a face
- **Parameters**: lots of hand tuned or known parameters including shape libraries, etc.
- **Output**: 3D vertex positions of a triangle mesh
Function Layers (Example)

LAYER 2

• **Input**: 3D vertex positions of a triangle mesh
• **Function**: scanline renderer or ray tracer
• **Parameters**: lots of hand tuned or known parameters for material models, lighting and shading, textures, etc.
• **Output**: RGB colors for pixels (a 2D image)
Function Layers (Example)

LAYER 3
- **Input**: RGB colors for pixels (a 2D image)
- **Function**: facial landmark detector
- **Parameters**: parameters for the neural network architecture, determined by training the network to match hand labeled data
- **Output**: 2D locations of landmarks on the image
Function Layers (Example)

TARGET OUTPUT

• Run a landmark detector on a photograph of the individual to obtain 2D landmark locations
• The goal is to have the 2D landmarks output from the complex multi-layered function match the 2D landmarks on the photograph
Function Layers (Example)

- Modifying animation controls changes the triangulated surface which changes the rendered pixels in the image which changes the network’s determination of landmarks.
- When the two sets of landmarks agree, the animation controls give some indication of what the person in the photograph was doing.
Classical Optimization

• Find the input X_1 that minimizes $\hat{f}(X_4)$

• Chain rule:

$$\frac{\partial \hat{f}(X_4)}{\partial X_1} = \frac{\partial \hat{f}(X_4)}{\partial X_4} \frac{\partial X_4}{\partial X_3} \frac{\partial X_3}{\partial X_2} \frac{\partial X_2}{\partial X_1} = \frac{\partial \hat{f}(X_4)}{\partial X_4} \frac{\partial f_3(X_3, C_3)}{\partial X_3} \frac{\partial f_2(X_2, C_2)}{\partial X_2} \frac{\partial f_1(X_1, C_1)}{\partial X_1}$$

• Parameters are considered fixed/constant

\[\hat{f}(X_4) = \|X_4 - X_{target}\| \]
Network Training

- Train network f_2 by finding parameters C_2 that minimize $\hat{f}(X_4)$
- Chain rule:
 $$\frac{\partial \hat{f}(X_4)}{\partial C_2} = \frac{\partial \hat{f}(X_4)}{\partial X_4} \frac{\partial X_4}{\partial X_3} \frac{\partial X_3}{\partial C_2} = \frac{\partial \hat{f}(X_4)}{\partial X_4} \frac{\partial f_3(X_3, C_3)}{\partial X_3} \frac{\partial f_2(X_2, C_2)}{\partial C_2}$$

$$\hat{f}(X_4) = \|X_4 - X_{target}\|$$
Network Training

- Any preprocess to the network does not require differentiability.
- The network itself only requires differentiability in terms of its parameters.
- Any postprocess to the network requires input/output differentiability, but does not require differentiability in terms of its parameters.

\[f_1(X_1, C_1) \rightarrow X_2 \rightarrow f_2(X_2, C_2) \rightarrow X_3 \rightarrow f_3(X_3, C_3) \rightarrow X_4 \]

\[\hat{f}(X_4) = \|X_4 - X_{\text{target}}\| \]