
Avoiding Derivatives



Part II Roadmap

• Part I – Linear Algebra (units 1-12) 𝐴𝑐 = 𝑏

• Part II – Optimization (units 13-20)
• (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima 
• (units 17-18) Computing/Avoiding Derivatives
• (unit 19) Hack 1.0: “I give up” 𝐻 = 𝐼 and 𝐽 is mostly 0 (descent methods)
• (unit 20) Hack 2.0: ”It’s an ODE!?” (adaptive learning rate and momentum)

linearize
line search

Theory

Methods



1D Root Finding (see Unit 15)

• Newton’s method requires 𝑔′, as do mixed methods using Newton
• Secant method replaces 𝑔′ with a secant line though two prior iterates
• Finite differencing (unit 17) may be used to approximate this derivative as well, 

although one needs to determine the size of the perturbation ℎ
• Automatic differentiation (unit 17) may be used to find the value of 𝑔′ at a 

particular point, if/when “backprop” code exists, even when 𝑔 and 𝑔′ are not 
known in closed form
• Convergence is only guaranteed under certain conditions, emphasizing the 

importance of safe set methods (such as mixed methods with bisection)
• Safe set methods (such as mixed methods with bisection) also help to guard 

against errors in derivative approximations



1D Optimization (see Unit 16)

• Root finding approaches search for critical points as the roots of 𝑔′
• All root finding methods use the function itself (𝑔′ here)
• Newton (and mixed methods using Newton) require the derivative of the 

function (𝑔′′ here)
• Can use secant lines for 𝑔′ and interpolating parabolas for 𝑔′′, using either prior 

iterates (unit 16) or finite differences (unit 17)
• Automatic differentiation (unit 17) may be leveraged as well
• Although, not (typically) for approaches that require 𝑔′′ 

• Safe set methods (such as mixed methods with bisection or golden section 
search) help to guard against errors in the approximation of various derivatives



Nonlinear Systems (see Unit 14)

• 𝐽! 𝑐" Δ𝑐" = (𝛽 − 1)𝐹 𝑐"  is solved to find the search direction Δ𝑐"
• Then, line search utilizes various 1D approaches (unit 15/16)

• The Jacobian matrix of first derivatives 𝐽! 𝑐" 	needs to be evaluated (given 𝑐")

• Each entry #!!
#$"

(𝑐") can be approximated via finite differences (unit 17) or 
automatic differentiation (unit 17)
• Making various approximations to the Jacobian 𝐽! 𝑐"  perturbs the search 

direction, so robust/safe set approaches to the 1D line search are important for 
making “progress” towards solutions



Quasi-Newton Methods

• 𝐽! 𝑐" Δ𝑐" = 𝛽 − 1 𝐹 𝑐"  is solved to find the search direction Δ𝑐"

• The Jacobian matrix of first derivatives 𝐽! 𝑐" 	needs to be evaluated (given 𝑐")
• Quasi-Newton approaches make various aggressive approximations to the 

Jacobian 𝐽! 𝑐"

• Quasi-Newton can wildly perturb the search direction
• So, robust/safe set approaches to the 1D line search become quite important for making 

“progress” towards solutions



Broyden’s Method

• An initial guess for the Jacobian is repeatedly corrected with rank one updates, 
similar in spirit to a secant approach
• Let 𝐽% = 𝐼
• Solve 𝐽"Δ𝑐" = −𝐹 𝑐"  to find search direction Δ𝑐"
• Use 1D line search to find 𝑐!"# and thus 𝐹 𝑐!"# ; then, update  Δ𝑐! = 𝑐!"# − 𝑐!

• Update 𝐽"&' = 𝐽" + '
($# $($#

𝐹 𝑐"&' − 𝐹 𝑐" − 𝐽"Δ𝑐" Δ𝑐" )

• Note: 𝐽"&'(c"&'−𝑐") = 𝐹 𝑐"&' − 𝐹 𝑐"

• That is, 𝐽"&' satisfies a secant type equation 𝐽Δ𝑐 = Δ𝐹

overwrite Δ𝑐!  



Optimization (see Unit 13)

• Scalar cost function 4𝑓(𝑐) has critical points where 𝐽 *+
) 𝑐 = 0	(unit	13)

• 𝐻 *+
)(𝑐")Δ𝑐" = (𝛽 − 1)𝐽 *+

)(𝑐") is solved to find a search direction Δ𝑐"  (unit 14) 

• Then, line search utilizes various 1D approaches (unit 15/16)
• The Hessian matrix of second derivatives 𝐻 *+

)(𝑐") and the Jacobian vector of first 
derivatives 𝐽 *+

)(𝑐") both need to be evaluated (given 𝑐")

• The various entries can be evaluated via finite differences (unit 17) or automatic 
differentiation (unit 17)
• These approaches can struggle on the Hessian matrix of second partial 

derivatives



Quasi-Newton Methods (for optimization)

• 𝐻 *+
)(𝑐")Δ𝑐" = (𝛽 − 1)𝐽 *+

)(𝑐") is solved to find a search direction Δ𝑐"

• The Hessian matrix of second derivatives 𝐻 *+
)(𝑐") and the Jacobian vector of first 

derivatives 𝐽 *+
)(𝑐") both need to be evaluated (given 𝑐")

• Second derivatives pose even more issues than first derivatives
• This makes Quasi-Newton approaches quite popular for optimization
• When 𝑐 is large, the 𝑂(𝑛,) Hessian 𝐻 *+

)  is unwieldy/intractable, so some 
approaches instead approximate the action of 𝐻 *+

-)on a vector
• i.e. the action of 𝐻 &'

() on the right hand side



Broyden’s Method (for Optimization)

• Same formulation as for nonlinear systems (3 slides prior) 

• Solve for the search direction, and use 1D line search to find 𝑐"&'	and 𝐽 *+
) 𝑐"&'

• Overwrite Δ𝑐" = 𝑐"&' − 𝑐"  and compute Δ𝐽 *+
) = 𝐽 *+

) 𝑐"&' − 𝐽 *+
) 𝑐" 	

• Update (𝐻 *+
))"&'= (𝐻 *+

))"+ '
($# $($#

Δ𝐽 *+
) − (𝐻 *+

))"Δ𝑐" Δ𝑐" )

• So that (𝐻 *+
))"&'Δ𝑐" = Δ𝐽 *+

)  is satisfied (a secant type equation)



Broyden’s Method (for Optimization)

• For the inverse, using Δ𝑐" = 𝑐"&' − 𝑐"  and Δ𝐽 *+
) = 𝐽 *+

) 𝑐"&' − 𝐽 *+
) 𝑐" 	

• Update (𝐻 *+
-))"&'= (𝐻 *+

-))"+
($#- .%&

'$ #
(/%&

$ ($# $ .%&
'$ #

($# $(.%&
'$)#(/%&

$

• So that (𝐻 *+
-))"&'Δ𝐽 *+

) = Δ𝑐"

• Solving 𝐻 *+
) 𝑐"&' Δ𝑐"&' = −𝐽 *+

) 𝑐"&'  is replaced with defining the search 
direction by Δ𝑐"&' = −(𝐻 *+

-))"&'𝐽 *+
) 𝑐"&'



SR1 (Symmetric Rank 1)

• For the inverse, using Δ𝑐" = 𝑐"&' − 𝑐"  and Δ𝐽 *+
) = 𝐽 *+

) 𝑐"&' − 𝐽 *+
) 𝑐" 	

• Update (𝐻 *+
-))"&'= (𝐻 *+

-))"+
($#- .%&

'$ #
(/%&

$ ($#- .%&
'$ #

(/%&
$

$

($#- .%&
'$ #

(/%&
$

(
(/%&

$

• So that (𝐻 *+
-))"&'Δ𝐽 *+

) = Δ𝑐"

• Solving 𝐻 *+
) 𝑐"&' Δ𝑐"&' = −𝐽 *+

) 𝑐"&'  is replaced with defining the search 
direction by Δ𝑐"&' = −(𝐻 *+

-))"&'𝐽 *+
) 𝑐"&'



DFP (Davidon-Fletcher-Powell)

• For the inverse, using Δ𝑐" = 𝑐"&' − 𝑐"  and Δ𝐽 *+
) = 𝐽 *+

) 𝑐"&' − 𝐽 *+
) 𝑐" 	

• Update (𝐻 *+
-))"&'= (𝐻 *+

-))"−
.%&
'$ #

(/%&
$(/%& .%&

'$ #

(/%& .%&
'$ #

(/%&
$

+ ($# ($# $

($# $(/%&
$

• So that (𝐻 *+
-))"&'Δ𝐽 *+

) = Δ𝑐"

• Solving 𝐻 *+
) 𝑐"&' Δ𝑐"&' = −𝐽 *+

) 𝑐"&'  is replaced with defining the search 
direction by Δ𝑐"&' = −(𝐻 *+

-))"&'𝐽 *+
) 𝑐"&'



BFGS (Broyden-Fletcher-Goldfarb-Shanno)

• For the inverse, using Δ𝑐" = 𝑐"&' − 𝑐"  and Δ𝐽 *+
) = 𝐽 *+

) 𝑐"&' − 𝐽 *+
) 𝑐" 	

• Update (𝐻 *+
-))"&'= 𝐼 −

($#(/%&
($# $(/%&

$ 𝐻 *+
-) "

𝐼 −
(/%&

$ ($# $

($# $(/%&
$ + ($# ($# $

($# $(/%&
$

• So that (𝐻 *+
-))"&'Δ𝐽 *+

) = Δ𝑐"

• Solving 𝐻 *+
) 𝑐"&' Δ𝑐"&' = −𝐽 *+

) 𝑐"&'  is replaced with defining the search 
direction by Δ𝑐"&' = −(𝐻 *+

-))"&'𝐽 *+
) 𝑐"&'



L-BFGS (Limited Memory BFGS)

• Storing an 𝑛𝑥𝑛 approximation to the inverse Hessian can become unwieldy for 
large problems
• More efficient to instead store the vectors that describe the outer products; 

however, the number of vectors grows with 𝑞
• L-BFGS estimates the inverse Hessian using only a few of the prior vectors 
• often less than 10 vectors (vectors, vector spaces, not matrices)

• This makes it quite popular for machine learning

On optimization methods for deep learning, Andrew Ng et al., ICML 2011
• “we show that more sophisticated off-the-shelf optimization methods such as Limited memory BFGS (L-BFGS) and Conjugate 

gradient (CG) with line search can significantly simplify and speed up the process of pretraining deep algorithms”



Gradient/Steepest Descent

• Approximate 𝐻 *+
)  very crudely with the identity matrix

• which is the first step of all the aforementioned methods 

• That is, 𝐻 *+
)(𝑐")Δ𝑐" = −𝐽 *+

)(𝑐") becomes 𝐼𝛥𝑐" = −𝐽 *+
) 𝑐"

• So, the search direction is 𝛥𝑐" = −𝐽 *+
) 𝑐" = −∇ 4𝑓(𝑐")

• This is the steepest descent direction

• See unit 19



Coordinate Descent

• Coordinate Descent ignores 𝐻 *+
)(𝑐")Δ𝑐" = −𝐽 *+

)(𝑐") completely

• Instead, Δ𝑐"  is set to the various coordinate directions 𝑒̂2



Nonlinear Least Squares

• Recall from Unit 13: 
• Determine parameters 𝑐 that make 𝑓 𝑥, 𝑦, 𝑐 = 0 best fit the training data, i.e. that make 
𝑓 𝑥*, 𝑦*, 𝑐 +

+ = 𝑓 𝑥*, 𝑦*, 𝑐 )𝑓 𝑥*, 𝑦*, 𝑐  close to zero for all 𝑖
• Combining all 𝑥*, 𝑦* , minimize 0𝑓 𝑐 = #

+
∑* 𝑓 𝑥*, 𝑦*, 𝑐 )𝑓 𝑥*, 𝑦*, 𝑐

• Let 𝑚 be the number of data points and F𝑚 be the output size of 𝑓 𝑥, 𝑦, 𝑐 	
• Define I𝑓 𝑐  by stacking the F𝑚 outputs of 𝑓 𝑥, 𝑦, 𝑐  consecutively 𝑚 times, so 

that the vector valued output of I𝑓 𝑐  is length 𝑚 ∗ F𝑚

• Then, 4𝑓 𝑐 = '
,
∑3 𝑓 𝑥3 , 𝑦3 , 𝑐 )𝑓 𝑥3 , 𝑦3 , 𝑐 = '

,
I𝑓) 𝑐 I𝑓 𝑐



Nonlinear Least Squares

• Minimize 4𝑓 𝑐 = '
,
I𝑓) 𝑐 I𝑓 𝑐

• Jacobian matrix of I𝑓 is 𝐽 4+ 𝑐 = # 4+
#$)

𝑐 # 4+
#$*

𝑐 ⋯ # 4+
#$+

𝑐

• Critical points of 4𝑓 𝑐  have 𝐽 *+
) 𝑐 =

I𝑓) 𝑐 # 4+
#$)

𝑐

I𝑓) 𝑐 # 4+
#$*

𝑐
⋮

I𝑓) 𝑐 # 4+
#$+

𝑐

= 𝐽 4+
) 𝑐 I𝑓 𝑐 = 0



Gauss Newton

• 𝐽 4+
) 𝑐 I𝑓 𝑐 = 0 becomes  𝐽 4+

) 𝑐 I𝑓 𝑐" + 𝐽 4+ 𝑐" 𝛥𝑐" +⋯ = 0
• Using the Taylor series: I𝑓 𝑐 = I𝑓 𝑐" + 𝐽 4+ 𝑐" 𝛥𝑐" +⋯

• Eliminating high order terms: 𝐽 4+
) 𝑐 I𝑓 𝑐" + 𝐽 4+ 𝑐" 𝛥𝑐" ≈ 0

• Evaluating 𝐽 4+
)  at 𝑐"  gives 𝐽 4+

) 𝑐" 𝐽 4+ 𝑐" 𝛥𝑐" ≈ −𝐽 4+
) 𝑐" I𝑓 𝑐"

• Compare to 𝐻 *+
)(𝑐")Δ𝑐" = −𝐽 *+

)(𝑐") and note that 𝐽 *+
) 𝑐 = 𝐽 4+

) 𝑐 I𝑓 𝑐

• Thus, Gauss Newton uses the estimate: 𝐻 *+
) 𝑐" ≈ 𝐽 4+

) 𝑐" 𝐽 4+ 𝑐"

• Removes the second derivatives!



Gauss Newton (QR approach)

• Gauss Newton equations 𝐽 4+
) 𝑐" 𝐽 4+ 𝑐" 𝛥𝑐" = −𝐽 4+

) 𝑐" I𝑓 𝑐"  are the normal 
equations for 𝐽 4+ 𝑐" 𝛥𝑐" = − I𝑓 𝑐"

• So, (instead) solve 𝐽 4+ 𝑐" 𝛥𝑐" = − I𝑓 𝑐"  via any least squares (QR) and minimum 
norm approach

• Note: setting the second factor in 𝐽 4+
) 𝑐 I𝑓 𝑐" + 𝐽 4+ 𝑐" 𝛥𝑐" ≈ 0 to zero also 

leads to 𝐽 4+ 𝑐" 𝛥𝑐" = − I𝑓 𝑐"

• This is a linearization of the nonlinear system I𝑓 𝑐 = 0, aiming to minimize 
4𝑓 𝑐 = '

,
I𝑓) 𝑐 I𝑓 𝑐



Weighted Gauss Newton

• Given a diagonal matrix 𝐷 indicating the importance of various equations:
𝐷𝐽 4+ 𝑐" 𝛥𝑐" = −𝐷 I𝑓 𝑐"  

𝐽 4+
) 𝑐" 𝐷,𝐽 4+ 𝑐" 𝛥𝑐" = −𝐽 4+

) 𝑐" 𝐷, I𝑓 𝑐"

• Recall: Row scaling changes the importance of the equations
• It also changes the (unique) least squares solution for any overdetermined degrees of 

freedom



Regularized Gauss Newton

• When concerned about small singular values in 𝐽 4+ 𝑐" 𝛥𝑐" = − I𝑓 𝑐" , one can 
add 𝜖𝐼 = 0 as extra equations (unit 12 regularization)

• This results in 𝐽 4+
) 𝑐" 𝐽 4+ 𝑐" + 𝜖,𝐼 𝛥𝑐" = −𝐽 4+

) 𝑐" I𝑓 𝑐" 	

• This is often called Levenberg-Marquardt or Damped (Nonlinear) Least Squares


