Avoiding Derivatives



Part [| Roadmap

e Part | — Linear Algebra (units 1-12) Ac = b

_ ; line search
inearize

|
* Part Il — Optimization (units 13-20) /

* (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima -«
* (units 17-18) Computing/Avoiding Derivatives

* (unit 19) Hack 1.0: “I give up” H = I and J is mostly 0 (descent methods)

e (unit 20) Hack 2.0: ”It’s an ODE!?” (adaptive learning rate and momentum)



1D Root Finding (see Unit 15)

* Newton’s method requires g, as do mixed methods using Newton
* Secant method replaces g’ with a secant line though two prior iterates

* Finite differencing (unit 17) may be used to approximate this derivative as well,
although one needs to determine the size of the perturbation h

 Automatic differentiation (unit 17) may be used to find the value of g’ at a
particular point, if/when “backprop” code exists, even when g and g’ are not
known in closed form

* Convergence is only guaranteed under certain conditions, emphasizing the
importance of safe set methods (such as mixed methods with bisection)

 Safe set methods (such as mixed methods with bisection) also help to guard
against errors in derivative approximations



1D Optimization (see Unit 16)

* Root finding approaches search for critical points as the roots of g’
* All root finding methods use the function itself (g’ here)
* Newton (and mixed methods using Newton) require the derivative of the
function (g"’ here)

* Can use secant lines for g’ and interpolating parabolas for g"’, using either prior
iterates (unit 16) or finite differences (unit 17)

* Automatic differentiation (unit 17) may be leveraged as well
* Although, not (typically) for approaches that require g"

 Safe set methods (such as mixed methods with bisection or golden section
search) help to guard against errors in the approximation of various derivatives



Nonlinear Systems (see Unit 14)

* J[:(c?)Ac? = (B — 1)F(c?) is solved to find the search direction Ac?

* Then, line search utilizes various 1D approaches (unit 15/16)

* The Jacobian matrix of first derivatives /r(c?) needs to be evaluated (given c?)

aFl

* Each entry (cq) can be approximated via finite differences (unit 17) or

automatic dlfferentlatlon (unit 17)

* Making various approximations to the Jacobian Jz(c?) perturbs the search
direction, so robust/safe set approaches to the 1D line search are important for
making “progress” towards solutions



Quasi-Newton Methods

* J[.(c?)Ac? = (B — 1)F(c?) is solved to find the search direction Ac?
* The Jacobian matrix of first derivatives Jr(c?) needs to be evaluated (given c?)

* Quasi-Newton approaches make various aggressive approximations to the
Jacobian Jz(c?)

* Quasi-Newton can wildly perturb the search direction

* So, robust/safe set approaches to the 1D line search become quite important for making
“progress” towards solutions




Broyden’s Method

* An initial guess for the Jacobian is repeatedly corrected with rank one updates,
similar in spirit to a secant approach

eletJO =1
* Solve J9Ac? = —F(c?) to find search direction Ac? Ay B
e Use 1D line search to find c?*! and thus F(c?*1); then, update@z Cq-l_l)
: gl - gt Ly S5y a\T
Update J + ATTA (F(c?9) — F(c%) )(Ac?)

e Note: J9t1(c9t1—c?) = F(c9*1) — F(c?)
 That is, /971 satisfies a secant type equation JAc = AF



Optimization (see Unit 13)

» Scalar cost function f(c) has critical points where ];(c) = 0 (unit 13)
. HfT(cq)Acq — (b= 1)];(661) is solved to find a search direction Ac? (unit 14)
* Then, line search utilizes various 1D approaches (unit 15/16)

* The Hessian matrix of second derivatives HfT(cq) and the Jacobian vector of first
derivatives ]; (c?) both need to be evaluated (given c9)

* The various entries can be evaluated via finite differences (unit 17) or automatic
differentiation (unit 17)

* These approaches can struggle on the Hessian matrix of second partial
derivatives




Quasi-Newton Methods (for optimization)

. HfT(cq)Acq = - 1)];(661) is solved to find a search direction Ac4
* The Hessian matrix of second derivatives HfT(cq) and the Jacobian vector of first
derivatives ]; (c?) both need to be evaluated (given c9)

e Second derivatives pose even more issues than first derivatives

* This makes Quasi-Newton approaches quite popular for optimization

* When c is large, the 0(n?) Hessian HfT is unwieldy/intractable, so some
approaches instead approximate the action of Hf_Ton a vector

* j.e. the action of Hf_T on the right hand side



Broyden’s Method (for Optimization)

e Same formulation as for nonlinear systems (3 slides prior)

* Solve for the search direction, and use 1D line search to find c?*! and ];(cq“)

 Overwrite Ac? = ¢9t1 — ¢4 and compute A]; — ];(cq“) —];(cq)

o TVq+1— 1 T Q)T
Update (H; ) + AT Ack (A]f ) (Ac?)

* So that (HfT)q“Acq = A]; is satisfied (a secant type equation)




Broyden’s Method (for Optimization)

* For the inverse, using Ac? = ¢9*t! — ¢9 and A]; =]}(cq“) —];(Cq)

Acd (AcDT (H:T)q
. ~Tya+1_— ( ) f
Update (Hf ) i (Acq)T(H]A:T)qA]]Z
* So that (Hz ")1*1AJz = Acf
* Solving HfT(cq“)Acq+1 = —]}(cq“) is replaced with defining the search

direction by Ac?%! = —(H]?T)q“];(cq“)



SR1 (Symmetric Rank 1)

* For the inverse, using Ac? = ¢9*t! — ¢9 and A]; =]}(cq“) —];(Cq)

(Acq )(Acq—(HfT)qA]%)T

(ACCI—(H];T)qA ]% )TAJ%

* Update (H]ZT)"“: +

* So that (Hz ")1*1AJz = Acf

* Solving HfT(cq“)Acq+1 = —];(cq“) is replaced with defining the search
direction by Ac?*! = —(H]ZT)C’“];(CQH)



DFP (Davidon-Fletcher-Powell)

* For the inverse, using Ac? = ¢9*t! — ¢9 and A]; =]}(cq“) —];(Cq)

Aj7(H7 B aeyT

T o g AcDTAJT
A]f(Hf)A]f (AcDTAJ

e Update (H]ZT)C’“:

* Sothat (H; ")7*1AJz = Acf

* Solving HfT(cq“)Acq+1 = —]}(cq“) is replaced with defining the search
direction by Ac?*! = —(H;T)q“];(cq“)



BFGS (Broyden-Fletcher-Goldfarb-Shanno)

* For the inverse, using Ac? = ¢9*t! — ¢9 and A]; =]}(cq“) —];(Cq)

(AcDHT Acd(AcDT
2 A—T q+1: C (AC )
Update (Hf ) ( (Acq)TA]]l:> i (Acq)TA]]l:
* So that (H; ")7*1AJz = Acf
* Solving HfT(cq“)Acq+1 = —]}(cq“) is replaced with defining the search

direction by Ac?*! = —(Hf_T)q“];(Cq“)



L-BFGS (Limited Memory BFGS)

 Storing an nxn approximation to the inverse Hessian can become unwieldy for
large problems

* More efficient to instead store the vectors that describe the outer products;
however, the number of vectors grows with q

* L-BFGS estimates the inverse Hessian using only a few of the prior vectors
 often less than 10 vectors (vectors, vector spaces, not matrices)

* This makes it quite popular for machine learning

On optimization methods for deep learning, Andrew Ng et al., ICML 2011

* “we show that more sophisticated off-the-shelf optimization methods such as Limited memory BFGS (L-BFGS) and Conjugate
gradient (CG) with line search can significantly simplify and speed up the process of pretraining deep algorithms”



Gradient/Steepest Descent

* Approximate HfT very crudely with the identity matrix

* which is the first step of all the aforementioned methods
* That is, HfT(cq)Acq = —];(cq) becomes [Ac? = —]]Z(cq)
* So, the search direction is Ac9 = —];(cq) = —Vf(c?)

* This is the steepest descent direction

* See unit 19



Coordinate Descent

* Coordinate Descent ignores HfT(cq)Acq = —];(cq) completely

* Instead, Ac? is set to the various coordinate directions é,



Nonlinear Least Squares

e Recall from Unit 13:

« Determine parameters c that make f(x, y,c) = 0 best fit the training data, i.e. that make
I f i, vi, M5 = f(xi, i, )T f(x;, v, ¢) close to zero for all i

» Combining all (x;,y;), minimize f(c) = %Zif(xi,yi, ) f(x;,y;€)

* Let m be the number of data points and 7 be the output size of f(x, y, c)

» Define f(c) by stacking the m outputs of f(x,y, c) consecutively m times, so
that the vector valued output of f(c) is length m * m

 Then, f(c) = 2% f (%0, ¥, )T f (61, 31,€) =5 FT()f ()



Nonlinear Least Squares
+ Minimize () = =7 (c)f (c)

@ L@ - L)

dCn

» Jacobian matrix of f is]f(c) = (

dcq acz

(FT@©3L(©)

G
« Critical points of f(c) have ];(c) = fT(C)c'a_cf2 (©) | = ];(c)f(c) =0

(o2 L))



Gauss Newton

°]}(c)f(c) = 0 becomes ];(c)(f(cq) + J(c?)AcT + ) =0
« Using the Taylor series: f(c) = f(c?) +]f(cq)Acq + .o

* Eliminating high order terms:];(c)(f(cq) +]f(cq)Acq) ~ (0
. Evaluating]; at c? gives];(cq)]f(cq)zlcq = —]}(cq)f(cq)

* Compare to HfT(cq)Acq = —];(cq) and note that];(c) =];(c)f(c)
* Thus, Gauss Newton uses the estimate: HfT(cq) z]};(cq)]f(cq)

e Removes the second derivatives!



Gauss Newton (QR approach)

» Gauss Newton equations ]}(cq)]f(cq)Acq = —];(cq)f(cq) are the normal
equations for Jz(c9)4c = —f(c?)

* So, (instead) solve /7 (c9)Ac? = —f(c?) via any least squares (QR) and minimum
norm approach

* Note: setting the second factor in ]]E(c) (f(cq) +]f(cq)Acq) ~ ( to zero also
leads to J#(c?)Ac? = —f(c?)

* This is a linearization of the nonlinear system f(c) = 0, aiming to minimize

fe) = fT(Of ()



Weighted Gauss Newton

e Given a diagonal matrix D indicating the importance of various equations:
DJ#(cD)Ac? = —Df (c?)
J#(cDD?J(c)Ac? = —]z(cT)D?*f(c?)

* Recall: Row scaling changes the importance of the equations

* |t also changes the (unique) least squares solution for any overdetermined degrees of
freedom



Regularized Gauss Newton

* When concerned about small singular values in Jz(c?)4c? = —f(c?), one can
add el = 0 as extra equations (unit 12 regularization)

* This results in (];(cq)]f(cq) + EZI)Acq = —];(cq)f(cq)

* This is often called Levenberg-Marquardt or Damped (Nonlinear) Least Squares




