
Momentum Methods



Part II Roadmap

• Part I – Linear Algebra (units 1-12) 𝐴𝑐 = 𝑏

• Part II – Optimization (units 13-20)
• (units 13-16) Optimization -> Nonlinear Equations -> 1D roots/minima 
• (units 17-18) Computing/Avoiding Derivatives
• (unit 19) Hack 1.0: “I give up” 𝐻 = 𝐼 and 𝐽 is mostly 0 (descent methods)
• (unit 20) Hack 2.0: ”It’s an ODE!?” (adaptive learning rate and momentum)

linearize
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Path through Parameter Space

• Optimization solvers iteratively update the state variable 𝑐 at each iteration
• For difficult problems (such as neural network training), this is typically done via a 

1D line search at each iteration
• The union of all such line searches can be thought of as a path through 

parameter space



Continuous Path vs Discrete Path

• Each iteration is a discrete jump from one point to another, and connecting them 
with a 1D line segment is merely a visualization
• In the limit as the size of the segments goes to zero (and the number of iterations 

goes to infinity), one obtains a continuous path

• Can parameterize this path/curve with a scalar 𝑡 (typically called time)
• Then 𝑐(𝑡) is a continuous path in parameter space (𝑐(𝑡) is a position)
• Changing the value of 𝑡 moves the position 𝑐(𝑡) along the path

• Differentiating the continuous path gives a time varying velocity: !"
!#

𝑡  or 𝑐′(𝑡)



Ordinary Differential Equations (ODEs)

• ODEs are equations that describe rates of change 
• For example, !"!# 𝑡 = 𝑓 𝑡, 𝑐(𝑡)  states that the parameter space velocity is 𝑓 𝑡, 𝑐(𝑡)

• “Solving” an ODE means finding a function with rates of change described by the 
ODE
• Given the velocity along the curve !"!# 𝑡 = 𝑓 𝑡, 𝑐(𝑡) , find the curve 𝑐(𝑡) itself

• Consider a (greedy) steepest decent path which always follows the steepest 
downhill direction for a cost function )𝑓 𝑐
• A suitable velocity is any (positive) scalar multiple of −∇ .𝑓 𝑐(𝑡)
• This leads to an ODE: !"

!#
(𝑡) = −∇ .𝑓 𝑐(𝑡)



Gradient Flow

• The ODE for gradient flow is: !"
!#

𝑡 = −∇ %𝑓 𝑐 𝑡  

• Or (in more detail): 

!"!
!#
(𝑡)

!""
!#
(𝑡)
⋮

!"#
!#
(𝑡)

=

− $ %&
$"!

𝑐 𝑡

− $ %&
$""

𝑐 𝑡
⋮

− $ %&
$"#

𝑐 𝑡

• 𝑐(𝑡) is a function of time 𝑡 that evolves/changes based on the local gradient of the cost 
function, −∇ %𝑓 𝑐 𝑡
• This path follows the direction of steepest descent



Families of Solutions

• ODEs are initial value problems: the solution depends on the initial (starting) 
condition

• E.g. 𝑐$ = 𝑐 or !"
!#
= 𝑐 or !"

"
= 𝑑𝑡

• ∫"!
" %
"
𝑑𝑐 = ∫#!

# 𝑑𝑡 or ln 𝑐 − ln 𝑐& = 𝑡 − 𝑡&
•  ln "

"!
= 𝑡 − 𝑡& or "

"!
= 𝑒#'#!  or 𝑐 = 𝑐&𝑒#'#!

• Solution 𝑐(𝑡) = 𝑐&𝑒#'#! 	depends on the initial 
condition 𝑐 𝑡& = 𝑐&
• The figure shows solutions for various values of 
𝑐& at 𝑡& = 0



Gradient Flow

• Ansatz: following the solution trajectory in gradient flow leads to a preferred 
minimum of )𝑓 𝑐

• Numerical errors cause perturbations away from this desired trajectory, and on to 
nearby trajectories (perhaps in the same family of solutions)
• Hopefully, the perturbed trajectories stay close to the desired trajectory
• Hopefully, the perturbed trajectories lead to the same minima

• Sometimes, there are bifurcations of solution trajectories
• In such regions, perturbations can lead to very different (presumably less 

preferred) minima



Posedness

• Consider 𝑐$ = 𝜆𝑐 with solution family 𝑐(𝑡) = 𝑐&𝑒((#'#!)

• 𝜆 > 0, exponential growth, ill-posed
• Small changes in initial conditions 

(and small solver errors) result in 
large changes to the trajectory

• 𝜆 < 0, exponential decay, well-posed
• Small changes in initial conditions 

(and small solver errors) are damped 
by converging trajectories

• 𝜆 = 0, constant solution, linearly 
stable, mildly ill-posed

• Small changes in initial conditions 
(and small solver errors) result in 
(slow, but cumulative) trajectory drift



Posedness for Systems

• A system of ODEs 𝑐$ = 𝐹(𝑡, 𝑐) has a Jacobian matrix 𝐽+(𝑡, 𝑐) =
,+
,"
(𝑡, 𝑐)

• Since 𝑐 𝑡  is time varying, so is 𝐽+(𝑡, 𝑐(𝑡))
• Whenever an eigenvalue of 𝐽+ 𝑡, 𝑐(𝑡)  is positive, the associated part of the 

solution becomes ill-posed and trajectories can (wildly) diverge
• This typically pollutes the entire solution vector

• Thus, all eigenvalues of 𝐽+ 𝑡, 𝑐(𝑡)  must be non-positive for all	𝑡 under 
consideration for the problem to be considered well-posed
• Moreover, eigenvalues close to zero may be suspect due to numerical errors

• Ill-posedness can rapidly lead to solution family bifurcation and thus minima far 
from what one might otherwise expect



Stability and Accuracy

• For a well-posed ODE, a numerical approach is considered stable if it does not 
overflow and produce NaNs (i.e. shoot off to an ∞ in parameter space)
• Stability is typically guaranteed via restrictions on the size of the time step Δ𝑡
• Larger time steps lead to the method going unstable

• For a well posed ODE, a stable numerical approach can be analyzed for accuracy 
to see how well it matches known solutions

• Hopefully, stability and reasonable accuracy keep the numerical solution of the 
ODE close to an ideal trajectory (leading to the preferred minimum)  



Forward Euler Method

• Approximate 𝑐' = 𝑓(𝑡, 𝑐) with "
$%!("$

)#
= 𝑓(𝑡* , 𝑐*) 

• Recursively:  𝑐*+, = 𝑐* + Δ𝑡𝑓(𝑡* , 𝑐*) 

• Recall: Taylor series 𝑐*+, = 𝑐* + Δ𝑡𝑓 𝑡* , 𝑐* + 𝑂 Δ𝑡-

• So, there is an 𝑂(Δ𝑡-) local truncation error each time step (i.e., each iteration)

• Since 
#&(#'
.#

= 𝑂 ,
.#

 time steps are taken, the total error or global truncation error is 
𝑂 Δ𝑡- 𝑂 ,

.#
= 𝑂(Δ𝑡)

• Thus, the method is 1st order accurate
• Recall comments on accuracy and Newton-Cotes approaches in Unit 7 Curse of Dimensionality



Runge-Kutta (RK) Methods

• Taylor series can be used to (similarly) construct more accurate method:

• 1st order: "
"#$'""

-#
= 𝑓(𝑡. , 𝑐.) which is the forward Euler method

• 2nd order: "
"#$'""

-#
= %

/
𝑘% +

%
/
𝑘/ where 𝑘% = 𝑓 𝑡. , 𝑐.  is used in a forward Euler 

(predictor) update in order to compute 𝑘/ = 𝑓 𝑡.0%, 𝑐. + Δ𝑡𝑘%
• 4th order: "

"#$'""

-#
= %

1
𝑘% +

%
2
𝑘/ +

%
2
𝑘2 +

%
1
𝑘3 where 𝑘% = 𝑓 𝑡. , 𝑐. , 𝑘/ =

𝑓 𝑡.0
$
%, 𝑐. + 4#

/
𝑘% , 𝑘2 = 𝑓 𝑡.0

$
%, 𝑐. + 4#

/
𝑘/ , 𝑘3 = 𝑓 𝑡.0%, 𝑐. + Δ𝑡𝑘2

• Again, each term builds on the prior in a predictor style fashion



TVD Runge-Kutta Methods

• Combinations of forward Euler and averaging (since both are well-behaved)
• 1st order: same as standard RK1 and forward Euler
• 2nd order: same as standard RK2 (also called the midpoint rule, the modified 

Euler method, and Heun’s predictor-corrector method)
• Take two forward Euler steps:  "̂

!"#+"!

,#
= 𝑓(𝑡-, 𝑐-) and "̂

!"$+"̂!"#

,#
= 𝑓(𝑡-./, 𝑐̂-./)

• Then, average the initial and final state: 𝑐-./ = /
0 𝑐

- + /
0 𝑐̂

-.0 

• 3rd order: different from the standard RK3
• Take two Euler steps, but average differently: 𝑐̂-.

#
$ = 1

2 𝑐
- + /

2 𝑐̂
-.0 

• Then, take another forward Euler step: "̂
!"%$+"̂!"

#
$

,# = 𝑓 𝑡-.
#
$, 𝑐̂-.

#
$

• Finally, average again: 𝑐-./ = /
1 𝑐

- + 0
1 𝑐̂

-.%$



Stability Analysis

• Consider the model equation 𝑐$ = 𝜆𝑐 with a well-posed 𝜆 < 0
• This model equation is meant to illustrate how an eigenvalue 𝜆 of a Jacobian matrix might 

behave

• Forward Euler gives 𝑐.0% = 𝑐. + Δ𝑡𝜆𝑐. = 1 + Δ𝑡𝜆 𝑐. = 1 + Δ𝑡𝜆 .0%𝑐&

• The error shrinks and the solutions decays (as it should for 𝜆 < 0) as long as 
1 + Δ𝑡𝜆 < 1

• This leads to −1 < 1 + Δ𝑡𝜆 < 1 or −2 < Δ𝑡𝜆 < 0 or − /
(
> Δ𝑡 > 0

• Since 𝜆 < 0 and Δ𝑡 > 0, one needs Δ𝑡 < /
	'(	

for stability

• This is called a time step restriction



Stability (an Example)

• Consider 𝑐$ = −𝑐 with 𝑐 0 = 1, where 𝜆 = −1 implies Δ𝑡 < 2 for stability 

• Here, Δ𝑡 = .5 is stable
• Iterates (dots) track the solution (curve)

• Here, Δ𝑡 = 3 is unstable
• Iterates (dots) grow exponentially
• The actual solution (curve) is shown decaying



Gradient Flow

• Using forward Euler on the gradient flow ODE gives: 𝑐.0% = 𝑐. − Δ𝑡∇ )𝑓 𝑐.

• This is the exact same formula utilized for 1D line search 𝑐.0% = 𝑐. + Δ𝑡𝛥𝑐. 	
when using the steepest descent search direction 𝛥𝑐. = −𝛻 )𝑓 𝑐.

• Given this search direction, line search uses a 1D root/minimization approach to 
determine the next iterate
• This forward Euler interpretation suggests that one may instead choose Δ𝑡 

according to various ODE (or other similar) considerations



Adaptive Time Stepping

• ODEs utilize either a fixed size Δ𝑡 or time varying Δ𝑡.
• The latter case is referred to as adaptive time stepping

• The ML community refer to Δ𝑡 as the learning rate, and time steps as epochs

• When sub-iterations use only partially valid approximations of −𝛻 )𝑓 𝑐. , e.g. 
mini-batch or SGD (unit 19), an epoch refers to one pass through the entire set of 
training data
• i.e. each epoch allows the −𝛻 )𝑓 𝑐.  estimates to see all the data



Adaptive Learning Rates

• Adagrad maintains a separate adaptive learning rate for each parameter, and 
modifies them based on past gradients computed for that parameter
• Moving more/less in certain directions (because of per-parameter learning rates) changes 

the search direction

• Since the learning rates are based on a time history, the method is less localized 
and hopefully more robust (better behaved)

• Unfortunately, the learning rates monotonically decrease and often go to zero 
(stalling out the algorithm)
• Adadelta and RMSprop decrease the effect of prior gradients (similar in spirit to 

L-BFGS) so that the learning rate is not monotonically driven to zero



Implicit Methods

• Used to take larger time steps (compared to forward Euler and RK methods)
• Implicit methods have either no time step restriction or a very generous one

• However, one typically requires a nonlinear solver to advance each time step
• Sometimes, the nonlinear solver requires more computational effort than all the 

smaller (and simpler) time steps of forward Euler and/or RK combined (making it 
less efficient)

• The large time steps often lead to overly damped solutions (or unwanted 
oscillations)



Backward (Implicit) Euler

• "
"#$'""

-#
= 𝑓(𝑡.0%, 𝑐.0%) is 1st order accurate with 𝑂(Δ𝑡) error

• Stability:  "
"#$'""

-#
= 𝜆𝑐.0% implies 𝑐.0% = %

%'4#(
𝑐.  where 0 < %

%'4#(
< 1

• Thus, unconditionally stable since the inequality holds for all Δ𝑡 (assuming 𝜆 < 0)

• Typically need to solve a nonlinear equation to find 𝑐.0% (can be expensive)
• As 𝛥𝑡 → ∞, the method asymptotes to 𝑓 𝑡.0%, 𝑐.0% = 0, which is the correct 

steady state solution
• But, overly damping makes one get there too fast, which is especially undesirable when the 

higher frequencies are important

• Great for stiff problems where high frequencies don’t contribute much to the 
solution (and thus overly damping them is fine)



Implicit Stochastic Gradient Descent (ISGD) 

• Used in Nonlinear Least Squares to overcome instabilities caused by using large 
time steps with forward Euler

• Forward Euler: 𝑐.0% = 𝑐. − Δ𝑡∇ )𝑓 𝑐.

• Backward (implicit) Euler: 𝑐.0% = 𝑐. − Δ𝑡∇ )𝑓 𝑐.0%

• Since SGD only evaluates the gradient for one piece of data at a time, evaluating 
the gradient implicitly is a bit less unwieldy (as compared to doing so using all the 
data at the same time)



Trapezoidal Rule

• ""#$'""

-#
= 6 #","" 06 #"#$,""#$

/
 is 2nd order accurate with 𝑂(Δ𝑡/) error

• Averages forward Euler and backward Euler

• Stability:  "
"#$'""

-#
= (""0(""#$

/
 implies 𝑐.0% =

%0&'(%
%'&'(%

𝑐.  where 0 <
%0&'(%
%'&'(%

< 1

• Thus, unconditionally stable since the inequality holds for all Δ𝑡 (assuming 𝜆 < 0)
• Typically need to solve a nonlinear equation to find 𝑐.0% (can be expensive)
• As 𝛥𝑡 → ∞, the method asymptotes to 𝑓 𝑡.0%, 𝑐.0% = −𝑓 𝑡. , 𝑐.  which can 

cause unwanted oscillations 
• E.g., when 𝑐8 = 𝜆𝑐, this is 𝑐-./ = −𝑐- which is oscillatory
• More generally for 𝑐8 = 𝑓(𝑡, 𝑐), this is (𝑐8)-./= −(𝑐8)- estimating the derivative as 

changing sign every iteration (causing oscillations)



Momentum

• Optimization methods often struggle when they are too local
• Adaptive learning rates based on time history (as discussed above) help to 

address this
• Momentum methods also aim to address this

• Momentum methods derive their motivation from Newton’s Second Law
• Physical objects carry a time history of past interactions via their momentum
• The forces currently being applied to an object are combined with all previous 

forces to obtain the current trajectory/velocity



Newton’s Second Law

• Kinematics describe position 𝑋 𝑡 , velocity 𝑉(𝑡), acceleration 𝐴 𝑡  as functions 
of time 𝑡 via !8

!#
𝑡 = 𝑉(𝑡) and !9

!#
𝑡 = 𝐴(𝑡)

• Gradient flow !"
!#
(𝑡) = −∇ .𝑓 𝑐(𝑡)  is a kinematic equation

• Dynamics describe responses to external forces
• Newton’s second law 𝐹(𝑡) = 𝑀𝐴(𝑡) is a dynamics equation

• 𝑉′(𝑡) = 𝐴 𝑡 = 9 #
:   or  !

$;
!#$ 𝑡 = 𝑋88 𝑡 = 9 #

:

• Combining kinematics and dynamics gives: 
𝑋′(𝑡)
𝑉′(𝑡) =

𝑉(𝑡)
+ #,8 # ,9(#)

:



Aside: First Order Systems

• Higher order ODEs are often reduced to first order systems
• E.g. consider: 𝑐$$$$ = 𝑓(𝑡, 𝑐, 𝑐$, 𝑐$$, 𝑐$$$) 
• Define new variables: 𝑐% = 𝑐, 𝑐/ = 𝑐′, 𝑐2 = 𝑐′′, and 𝑐3 = 𝑐$$$

• Then 

𝑐%′
𝑐/′
𝑐2′
𝑐3′

=

𝑐/
𝑐2
𝑐3

𝑓(𝑡, 𝑐%, 𝑐/, 𝑐2, 𝑐3)
 is an equivalent first order system

• Newton’s second law 𝐹 = 𝑀𝑋′′ can be written as 𝑋′
𝑉′

= 𝑉
𝐹/𝑀



Momentum Methods

• Newton’s second law: 
𝑋′(𝑡)
𝑀𝑉′(𝑡) =

𝑉(𝑡)
𝐹 𝑡, 𝑋 𝑡 , 𝑉(𝑡)  

• The second equation augments the momentum with the current forces
• That momentum is used in the first equation (after dividing by mass to get a 

velocity)

• Interpreting this from an optimization standpoint:
• Instead of always using the current search direction, one should still be 

incorporating the effects of prior search directions
• This makes the optimization method less localized, and hopefully 

more robust (better behaved)



(Momentum-Style) Gradient Flow

• Split the forward Euler discretization 𝑐.0% = 𝑐. − Δ𝑡∇ )𝑓 𝑐.  into two parts:
𝑐.0% = 𝑐. + Δ𝑡𝑣.       and     𝑣. = −∇ )𝑓 𝑐.  

• Here, 𝑣.  is a velocity in parameter space

• Instead of setting the velocity equal to the (negative) gradient, treat gradients as 
forces that affect the velocity:

𝑣.0% = 𝑣. − Δ𝑡∇ )𝑓 𝑐.

• This results in a forward Euler discretization of 
𝑐′(𝑡)
𝑣′(𝑡) =

𝑣(𝑡)
−∇ )𝑓 𝑐.



“The” ML Momentum Method

• The original momentum method is backward Euler on 𝑐 and forward Euler on 𝑣, 
i.e. 𝑐.0% = 𝑐. + Δ𝑡𝑣.0%	and	𝑣.0% = 𝑣. − Δ𝑡∇ )𝑓 𝑐.
• Since the second equation can be updated first, the first equation doesn’t require a special 

solver

• Combining these into a single equation: 𝑐.0% = 𝑐. + Δ𝑡𝑣. − Δ𝑡/∇ )𝑓 𝑐.

• Taking liberties to treat Δ𝑡 and Δ𝑡/ as two separate independent parameters 
leads to: 𝑐.0% = 𝑐. + 𝛼𝑣. − 𝛽∇ )𝑓 𝑐.

• Setting 𝛽 = Δ𝑡 recovers the original discretization of gradient flow augmented 
with a new history dependent velocity term: 𝑐.0% = 𝑐. + 𝛼𝑣. − Δ𝑡∇ )𝑓 𝑐.
• Writing this final equation as 𝑐-./ = 𝑐- + Δ𝑡𝑣-./	illustrates	an	inconsistent	velocity 

update of 𝑣-./ = <
=# 𝑣

- − ∇ .𝑓 𝑐-



Nesterov Momentum

• Uses a predictor-corrector approach similar to 2nd order Runge- Kutta
• First, a forward Euler predictor step is taken 𝑐̂.0% = 𝑐. + Δ𝑡 O𝑣.0% using a velocity 

of  O𝑣.0% = ;
4#
𝑣.  (instead of 𝑣.0% = ;

4#
𝑣. − ∇ )𝑓 𝑐.  from the last slide)

• The current gradient information is ignored in the predictor step
• Simplifying, the predictor step is 𝑐̂-./ = 𝑐- + 𝛼𝑣-	

• Then, the gradient is evaluated at this new location 𝑐̂.0% and used in “The” ML 
Momentum method: 𝑐.0% = 𝑐. + Δ𝑡𝑣.0%	and	𝑣.0% = ;

4#
𝑣. − ∇ )𝑓 𝑐̂.0%

• As a single equation: 𝑐-./ = 𝑐- + 𝛼𝑣- − Δ𝑡∇ .𝑓 𝑐̂-./

• Once again, there is an inconsistent velocity update 𝑣-./ = <
=#
𝑣- − ∇ .𝑓 𝑐̂-./



Physics/ODE Consistency

• Numerical	ODE	theory	dictates	(via	consistency	with	the	Taylor	expansion)	
that	the	correct	solution/path	should	be	obtained	as	Δ𝑡 → 0
• 𝑐-./ = 𝑐- + Δ𝑡𝑣-./	properly	resolves	𝑐8 = 𝑣
• But,	𝑣-./ = <

=# 𝑣
- − ∇ .𝑓 𝑐̃  (with 𝑐̃ either 𝑐- or 𝑐̂-./) is problematic

• Revert to where we took liberties with 𝑐.0% = 𝑐. + 𝛼𝑣. − 𝛽∇ )𝑓 𝑐̃  
• Choose 𝛽 = )𝛽Δ𝑡/ (instead of 𝛽 = Δ𝑡) to obtain 𝑣.0% = ;

4#
𝑣. − Δ𝑡 )𝛽∇ )𝑓 𝑐̃

• Setting 𝛼 = Δ𝑡 leads to a consistent 𝑣.0% = 𝑣. − Δ𝑡 )𝛽∇ )𝑓 𝑐̃  where )𝛽 > 0 
determines the strength of the steepest descent force
• Forces (in physical systems) should be independent of Δ𝑡, and should accumulate to the 

same 𝑂(1) net effect in 𝑂(1)	time (regardless of Δ𝑡)



Adam

• Mixes ideas from adaptive learning rates and momentum methods:
• Adaptive learning rate for each parameter (uses squared gradients to scale the learning 

rate, like RMSprop)
• Uses a moving average of the gradient, like momentum methods 

• AdaMax variant uses the 𝐿> norm instead of the 𝐿0 norm
• Nadam variant uses Nesterov momentum for the moving averages

• The original Adam paper had impressive results, which were duplicated by others, and the 
method has been quite popular
• Some recent work states that Adam might converge quicker than SGD w/momentum, but 

sometimes quicker to a worse solution (and so some practitioners are going back to SGD)
• Still a lot to do!





Constant Acceleration Equations

• Taylor expansion: 𝑋.0% = 𝑋. + Δ𝑡𝑉. + 4#%

/
𝐴. + 𝑂 Δ𝑡2

• In order to determine 𝑋.0% with 𝑂 Δ𝑡2  accuracy, one only needs 𝑉.  with 
𝑂(Δ𝑡/) accuracy and 𝐴.  with 𝑂(Δ𝑡) accuracy
• In the system of equations for Newtons second law, 𝑉$ = 𝐹/𝑀 requires 𝑂(Δ𝑡) 

less accuracy than 𝑋$ = 𝑉 requires
• The standard kinematic formulas in basic physics use:
• piecewise constant accelerations 𝐴.
• piecewise linear velocities 𝑉.0% = 𝑉. + Δ𝑡𝐴.

• piecewise quadratic positions 𝑋.0% = 𝑋. + Δ𝑡𝑉. + 4#%

/
𝐴.



Newmark Methods

• 𝑋.0% = 𝑋. + Δ𝑡𝑉. + 4#%

/
(1 − 2𝛽)𝐴.+2𝛽𝐴.0%

• 𝑉.0% = 𝑉. + Δ𝑡 (1 − 𝛾)𝐴.+𝛾𝐴.0%

• 𝛽 = 𝛾 = 0 constant acceleration equations (on the last slide)

• Second order accurate if and only if 𝛾 = %
/
, i.e. 𝑉.0% = 𝑉. + Δ𝑡 <

"0<"#$

/
	

• 𝛾 = %
/
, 𝛽 = %

3
 is Trapezoidal Rule (on both 𝑋 and 𝑉)

• 𝑋-./ = 𝑋- + Δ𝑡𝑉- + =#$

2 𝐴- + 𝐴-./  becomes 𝑋-./ = 𝑋- + Δ𝑡𝑉- + =#
0 (𝑉

-./ − 𝑉-) or 

𝑋-./ = 𝑋- + Δ𝑡 ?
!.?!"#

0  

• 𝛾 = %
/
, 𝛽 = 0  is Central Differencing:  𝑋.0% = 𝑋. + Δ𝑡𝑉. + 4#%

/
𝐴.



Central Differencing

• 𝑋.0% = 𝑋. + Δ𝑡𝑉. + 4#%

/
𝐴. 	and	𝑉.0% = 𝑉. + Δ𝑡 <

"0<"#$

/

• Adding 𝑋.0/ = 𝑋.0% + Δ𝑡𝑉.0% + 4#%

/
𝐴.0% to 𝑋.0% = 𝑋. + Δ𝑡𝑉. + 4#%

/
𝐴.  gives 

𝑋.0/ − 𝑋. = Δ𝑡 𝑉. + 𝑉.0% + 4#%

/
𝐴. + 𝐴.0% = Δ𝑡 𝑉. + 𝑉.0% +

Δ𝑡 𝑉.0% − 𝑉. = 2Δ𝑡𝑉.0%	

• So 𝑉.0% = 8"#%'8"

/4#
 (a second order accurate central difference)

• Subtracting (same equations) gives 𝑋.0/ − 2𝑋.0% + 𝑋. = Δ𝑡(𝑉.0%−𝑉.) +
4#%

/
(𝐴.0% − 𝐴.) = 4#%

/
(𝐴.+𝐴.0%) + 4#%

/
𝐴.0% − 𝐴. = Δt/A.0%

• So 𝐴.0% = 8"#%'/8"#$08"

4#%
 (a second order accurate central difference)



Staggered Position and Velocity

• Update position with a staggered velocity 𝑋.0% = 𝑋. + Δ𝑡𝑉.0
$
%

• Using averaging 𝑉.0% = 9"#
$
%09"#

)
%

/
 which	still	equals	8

"#%'8"

/4#
 as desired

• 𝐴.0% = (8"#%'8"#$)'(8"#$'8")
4#%

= 9"#
)
%'9"#

$
%

4#

• This last term is equal to both  9
"#$'9"#

$
%

(4#//)
 and 9

"#)%'9"#$

(4#//)

• So 𝑉.0% = 𝑉.0
$
% + 4#

/
𝐴.0% and 𝑉.0

)
% = 𝑉.0% + 4#

/
𝐴.0%

• The second equation shifted one index is 𝑉.0
$
% = 𝑉. + 4#

/
𝐴.



Staggered Central Differencing

• 𝑉*+
!
" = 𝑉* + .#

-
𝐴 𝑋* , 𝑉* 	and	𝑋*+, = 𝑋* + Δ𝑡𝑉*+

!
" are explicit

• 𝑉*+, = 𝑉*+
!
" + .#

-
𝐴(𝑋*+,, 𝑉*+,) is explicit in 𝑋 but implicit in 𝑉

• Position based forces (e.g. elasticity) are typically nonlinear making them hard to invert 
(good that we don’t have to), whereas velocity based forces (e.g. damping) are typically 
linear making them easier to invert (which we need to)
• Position based forces are often important for material behavior (good we don’t 

overdamp them), whereas velocity based damping doesn’t suffer much from increased 
damping (which we do if we switch from trapezoidal rule to backward Euler in the last 
step, i.e. 𝑉*+, = 𝑉* + Δ𝑡𝐴(𝑋*+,, 𝑉*+,) )
• Position based forces don’t require too stringent a time step restriction (good, because 

we need one), whereas velocity based forces typically require a very small time step 
restriction (which we can ignore with an implicit solve)


