Linear Systems

Motivation

* “Matrices are bad, vector spaces are good”
* Don’t think of matrices as a collection of numbers
* Instead, think of the columns as vectors in a high dimensional space

« We don’t have great intuition going from R! to R? to R3 to R™ (for large n)

* Thinking about vectors in high dimensional spaces is a good way of gaining
intuition about what’s going on

* Linear algebra contains a lot of machinery for dealing with, discussing, and
gaining intuition about vectors in high dimensional spaces

* We will cover linear algebra from the viewpoint of understanding higher
dimensional spaces

System of Linear Equations

* System of equations: 3¢; + 2¢, = 6and —4¢; + ¢, =7

* Matrix form: (_34 i) (2) = (?) orAc = b

* Given A and b, determine ¢
* Theoretically, there is a unique solution, no solution, or infinite solutions

* |deally, software would determine whether there was a unique solution, no
solution, or infinite solutions; in the last case, it would list a parameterized family
of solutions. Unfortunately, this is quite difficult to accomplish.

e Note: in this class, x is used for data, and c is used for unknowns (such as for the
unknown parameters of a neural network)

“Zero”

* On the computer, defining “zero” is not straightforward

 When dealing with large numbers (e.g. Avogadro’s number: 6.022e23) zero can
be quite large
* E.g. 6.022e23 — 1e7 = 6.022e23 in double precision, making 1e7 behave like
“zero”
* When dealing with small numbers (e.g. 1e — 23), “zero” is much smaller
* In this case, on the order of 1e — 39 in double precision

* Mixing big and small numbers often wreaks havoc on algorithms

* So, we typically non-dimensionalize and normalize to make equations O(1) as
opposed to O(“big”) or O(“small”)

Row/Column Scaling

* Consider: (128_64 26010) (2) : (58610)

* Row Scaling - divide first row by 1e10 to obtain:
b e

* Column Scaling - define a new variable c; = (1e — 4)c; to obtain:

Bk

* The final matrix is much easier to treat with finite precision arithmetic

* Solve for c¢3 and c,; then, ¢; = (1e4)c,

Some Definitions...

* Elements of a matrix are often referred to by their row and column

* For example, a;, is the element of matrix A in row i and column k

* Transpose swaps the row and column of every entry

« AT moves element a;, to row k column i (and vice versa)

123)

TEYNTE
* Non-square matrices change size:{ 2 5 =(4 £

3 6

Symmetric Matrices have AT = A meaning that a;; = ay; forall i and k

Square Matrices

* A size mxn matrix has m rows and n columns
* For now, let’s just consider square nxn matrices

* We will consider non-square (rectangular) matrices with m # n a bit later

Solvability

 Singular — A is singular when it is not invertible (does not have an inverse)

 Various ways of showing this:
* At least one column is linearly dependent on others (as discussed in Unit 1)
* The determinant is zero: detA = 0
* A has a nonempty null space, i.e. 3¢ # 0 with Ac = 0

e Rank - maximum number of linearly independent columns

 Singular matrices have rank < n (the # of columns), i.e. they are rank-deficient
e So, they have either no solution or infinite solutions

 Nonsingular square matrices are invertible: AA™! = A71A =1
* So, Ac = b can be solved for c viac = A™1b

* Note: we typically do not compute the inverse, but instead have a solution algorithm
that exploits its existence

Matrices as Vectors (an example)

* Recall Ac =)}, cya, where the a;, are the columns of A

* Consider Ac = 0or), crar =0
* |f one column is a linear combination of others, then the linear combination
weights can be used to obtain Ac = 0 with ¢ nonzero
* This nonzero c is in the null space of 4, and A is singular
e Conversely: If the only solution to Ac = 0 is c identically 0, then no column is
linearly dependent on the others
* Thus, A is nonsingular

Diagonal Matrices

 All off-diagonal entries are 0

* Equations are decoupled, and easy to solve
C
* E.g. ((5) g) (c;) - (i(i) has 5¢; = 10 and 2¢, = —1;s0,¢; =2andc¢c, = —.5
* A zero on the diagonal indicates a singular system
* Either no solution (e.g. 0c; = 10) or infinite solutions (e.g. 0c; = 0)

* The determinant of a diagonal matrix is obtained by multiplying all the diagonal
elements together

* Thus, a 0 on the diagonal implies a zero determinant and a singular matrix

Upper Triangular Matrices

* All entries below the diagonal are O

* Nonsingular when the diagonal elements are all nonzero
* Determinant is obtained by multiplying all the diagonal elements together

e Solve via back substitution

A8 1 G Rl & €1 0
* E.g. consider (0 1 —1) <C2> = (10)
040855 €3 10

* Start at the bottom: 5¢3 = 10; so, c3 = 2
* Move uponerow:cy, —c3 = 10;s0,c, —2 =10and ¢, = 12
* Move up one row: 2¢; + 3¢, +¢3 =0;s0,2¢c4 +36+2 =0and¢c; = —19

Lower Triangular Matrices

* All entries above the diagonal are O

* Nonsingular when the diagonal elements are all nonzero
* Determinant is obtained by multiplying all the diagonal elements together

e Solve via forward substitution

5l R 6 AN (L0 10
* E.g. consider (—1 1 0){¢]=|10
15 T R T £ (e 0

e Start at the top: 5¢; = 10, so, ¢; = 2
* Move down onerow: —cq + ¢, = 10;s0,—2 4+ ¢, = 10and ¢, = 12
* Move down onerow: ¢q + 3¢c; + 2¢3 = 0;s0,2+ 36 + 2c3 = 0and c3 = —19

Elimination Matrix

bap i o

aivik | define m;;, = TR B

i) Vo

* Then, the size mxm elimination matrix M, = Ly,m — mikéiT subtracts multiples of row i from
rows > [in order to create zeroes in column k

A

* Gijven a column

 Standard basis vector é; = has a 1linthe i-th row

O

\o/

°Letak=<
1
> Mlk:<0
0
1
E MZk:(O
0

o SESES
|

{

Elimination Matrix

0 1 O
4)(1 0 0)= (—2 1
—8 4 0

0

1

) and M,,a; = (

0 2
O) and M, a;, = (0

2
4
0

0

)

)

Elimination Matrix Inverse

* Inverse of an elimination matrixis L;, = M;il e mikéiT

* L is a size mxm elimination matrix that adds multiples of row i to rows > i in
order to reverse the effect of M,

1§ w500
il = Mol =i D] S0

g i) il

JiE =0z 40
il = Mshs =t QS

Gl wvsl

Combining Elimination Matrices

il 2201 AT -S4y
< Mi1k1Mi2k2 il mi k,€i,

et sl g e O i)
MMy, =l -2 1 0),butMy;M;,=1-2 1 0

Aiie 271 ()15 Sl

AT :] : :
m;,k,€;, when i; < i, (butnotwheni; > i,)

= AT AT) : : :
*Li g, Lijk, =1+myy & +my;,é wheni; <i, (butnotwheni; >i,)

1 0 O 1 0 O
LigLox =1 2 1 O0]),butl, L =1 2 L 1550

=g kel =0l

2 4 e
Consider(4 9 -3
= = 3

== 050
M11A - _2 1 O
s n(AN

12ne- Qi)
M22M11A — O 1 0
0 =201

2
Then, solve the upper triangular (0
0

I

2
4

Gaussian Elimination

C1
Co
C3

4
9
—

2 4
o 1
Oz

2
(s
10

|

=2 2 4
)= (o 1
7 (lpeast

peitA

1
5

o o

)-|

—2
1
4

C1
)
C3

=7 7
1>andM11b=<4‘>
5 12

)=(

2 4 -2 2
O 1 1 >and M22M11b — (4)

0 0 4

2
4
8

8

) via back substitution

LU Factorization

* Gaussian Elimination gives an upper triangular U = My, _q 1 - My, M1, A
* Usinginverses, A = Ly1Lyp Ly 1 n-1Mn—1n-1 " M2a2M11A = L11L3p =" Ly 101U

‘ gif: AT AT : ! i !
. Sl-nce LijiLiyi, =1+my € +my,; e wheniy <iy L =0LyqLyp " Ly_1pn-1islower
triangularand A = LU

i) SR Ol () i) -t O
e Here L = L11L22 == 2 1 0 0 1 0] = 2 1 0
et B i i SR et ¢ =151 =1

2 4= 2 L0 0N f2: .4 =2
A=<4 9 —3>=<2 1 O)(O 1 1>=LU
e B e ilessl e TN e—e (s o

LU Factorization

* Factoring A = LU helps to solve Ac = b

* In order to solve LUc = b, define an auxiliary variable ¢ = Uc
e First, solve L¢ = b for ¢ via forward substitution
e Second, solve Uc = ¢ for c via back substitution

* Note: the LU factorization is only computed once, and then can be used
afterwards on many right hand side vectors (on many b vectors)

Pivoting
e A = (2 g) requires division by zero in order to create M,

e (Partial) Pivoting - swap rows to use the largest (magnitude) element in the
column under consideration

* Don’t forget to swap the right hand side b too

 Full Pivoting swap rows and columns to use the largest possible element
* Don’t forget to change the order of the unknowns ¢

* When considering column k, can only swap with rows/columns = k

Permutation Matrix

e Constructed by switching the 2 rows of I that one wants swapped

0 0 1
*E.g. P13 = (O 1 O) and P;3A4 swaps the first and third rows of A

=0
* Permutation matrices are their own inverses (swapping again restores the rows)

* Switching rows i; and i, moves a 1 from a; ; toa; ; aswellasfroma,; ;, to

a;,;,, Preserving symmetry (i.e. P/, = P; ;)

* To swap the first and third unknowns: Ac = AP;;P;35¢ = (AP;3)(P;3¢) where
P; ;¢ swaps the unknowns and AP;; swaps the columns (to see this, consider

(AP;3)™ = (P;3AT)T which swaps the rows of AT)

Full Pivoting

* Let P, be the permutation matrix that (potentially) switches row i with a row > i
* Let P, be the permutation matrix that (potentially) switches column k with a col > k

* Then full pivoting can be written as:
(Mn—l,n—lprn_l M22Pr2M11Pr1AP61Pc2 Pcn_l)(Pcn_l Pczpclc)

* Once known, B. = B, - B. P and B, = F.__ - F P canbe used to do all the
permutations ahead of time (the resulting matrix doesn’t require pivoting)

« Ac = b becomes (P.API)(P.c) = P.b or Apcp = bp; then, Ap = LpUp can be
computed without pivoting

* Subsequently, given any right hand side b, solve LpUpcp = B.b to find cp using
forward/back substitution; then, ¢ = PCTcp

Permuting before Elimination

* Assume i > j,

B M;iP., = Ipem — B8 B, = Ly — ;6] = M;

P..M;;=P.MP. B, = MP,.

* Thus, for some suitable definition of the hat notation (there are multiple premutation
operators to consider for each M;;, except M;,_, ,_»):

Mn—l,n—lprn_l M22Pr2M11Pr1A = My_1n-1"" M22M11Pr14

* This shows that you can permute first and do elimination afterwards

Sparsity

Most large matrices (of interest) operate on variables that only interact with a sparse set of
other variables

This makes the matrix sparse (as opposed to dense), with most entries identically O

However, the inverse of a sparse matrix can contain an unwieldy amount of non-zero entries

E.g. the 3D Poisson equation on a relatively small 1003 Cartesian grid has an unknown for each
of the 10° grid points

For each unknown, the discretized Poisson equation depends on the unknown itself and its 6
immediate Cartesian grid neighbors

Thus, the size 10x10° matrix has only 7x10° nonzero entries

But, the inverse can have 10'% nonzero entries!

Computing the Inverse

* When 4 is relatively small (and dense), computing A~ tis fine
e Since AA~1 = I, the solution ¢, to Ac, = & is the k-th column of A~

* First, compute Ap = LpUp as usual
* Then, solve Ac;,, = é;, once for each column (n times)

