Iterative Solvers

Iterative vs. Direct Solvers

* Direct Solver/Method — closed form strategy, e.g. quadratic/Cardano formula, Gaussian
Elimination for LU factorization, Cholesky factorization, etc.
* |terative Solver/Method
e start with an initial guess ¢
e use a recursive approach to improve that guess: c?, c3, c*, ...
e terminate based on a stopping criterion, e.g. when error is small |[|[c? — c®¥%¢t|| < €

1

* A direct method can be used to obtain an initial guess

* |terative methods are great for sparse matrices, as they often can ignore 0 entries
e E.g. by formulating the method via the matrix’s action (multiplication) on a vector

* Direct solvers are more commonly used on dense matrices
* |terative solvers are used for training Neural Networks!

Issues with Direct Methods

* (Recall) Quadratic formula loses precision, and can fail, when —b + Vb2 — 4ac
has catastrophic cancellation

e The de-rationalized quadratic formula instead uses —b F Vb2 — 4ac
e Using one formula for each root avoids catastrophic cancellation

e Cardano’s formula for the roots of a cubic equation suffers from similar issues,
but there is no straightforward fix

 The computed roots too often have unacceptably high error

* To highlight why one might need accurate cubic roots, consider collision
detection...

Hit Box

* In order to detect interactions between objects in video games, objects were
assigned a hit box

* Anything inside an object’s hit box can potentially interact with (i.e. hit) it

Better Hit Boxes

* These evolved over time to more complicated shapes in both 2D and 3D
* e.g. spheres, ellipsoids, capsules, etc.

* Anything inside any of an object’s hit boxes can potentially interact with it

Accurate Collision Detection

* More complex objects are often modeled by a triangulated surface mesh
* The interior can be filled with tetrahedra, or approximated with other objects

* Anything inside any of an object’s interior structures can potentially interact with
it

Objects Without Interiors

* Very thin objects, such as cloth/shells, do not have an interior region
* One cannot use the same concept of inside to detect potential interactions

Continuous Collision Detection (CCD)

* Model the time varying trajectories of surface triangle vertices to see if/when
they collide with each other

* Doesn’t depend on the existence of an interior region

* There are two cases to consider: (1) Point-Face, (2) Edge-Edge

N —~
e X w---"""" T
& o

Continuous Collision Detection (CCD)

* In both cases, the 4 relevant points need to become coplanar in order to
(potentially) collide

* Once deemed coplanar, a second check determines whether: the lone point is
inside the triangle (for Point-Face) or the two edges intersect (for Edge-Edge)

Continuous Collision Detection (CCD)

* Consider time t,, to time t; and assume that the points have constant velocities
during that time interval: V;(t,) fori =1, 2, 3,4

* The time evolving positions are: X;(t) = X;(t,) + V;(t,)(t — t,) fort € [t,, tf]

e Although their paths are (generally) curved, considering piecewise linear
increments is sufficient for preventing self-intersecting states

/R ‘[1r)qtz
S ANV . Vp——

collision to {3

Continuous Collision Detection (CCD)

* Coplanarity occurs when X, (t) — X, (t), X3(t) — X,(t), and X, (t) — X, (t) are
not a basis for R3, which can be checked by making them the columns of a 3x3
matrix and setting the determinant to zero (obtaining a cubic equation in t)

* Find the first root of this cubic equation in the interval [to, tf]

* Cubic equation solvers are so error prone that collisions are (very) often missed,
and the cloth/shell ends up in a spurious self-intersecting state

* A very carefully devised/implemented iterative solver for cubic equations was
able to detect all collisions:
* It requires double precision (and fails too often in single precision)

* See Bridson et al. “Robust Treatment of Collisions, Contact, and Friction for Cloth
Animation” (2002)

Residual and Solution Error

* When solving Ac = b, a current guess ¢4 has residual rY1 = b — Ac4

* The residual measures the errors in the equations, not the error in the solution

exact

* The error in the solution e = ¢4 — ¢ relates to the residual via:

=t e = e e e P (e e T et = e

* That is, the residual is the solution error transformed into the space that b lives in
(the range of A)

1D example

: : : e : : b
* Consider a simple size 1x1 matrix, i.e. [a]c = b with exact solution ¢ = 5

e Sincer? = —ae?, smaller a values lead to deceivingly small residuals even when
the error is large

ac

ac
P o] S 2C

residual

ac’

residual
1
cﬂ

|
1
1 | .
: exact q
Cexact C q ¢ C : C

L CITor
eIror

Diagonalizing the Residual/Error Equation

* "All matrices are diagonal matrices”
* And, diagonal matrices represent decoupled 1D scalar problems

e Using the SVD, 179 = —Ae? becomes (UTr?) = =X (V'e?) which is a decoupled
set of diagonal equations

e Each decoupled equation has the form 7} = —aké,f (seen on the previous slide)

* Small gy, lead to deceivingly small residuals even when the error is large

* A small residual indicates a small error for larger singular values, but not for
smaller singular values

Line Search

* Choose a search direction s9 and move some distance a9 in that direction to
update the current guess to the next guess: c4™! = ¢4 + ¢95s4

* There are various strategies for choosing a4, including the notion of safe sets that clamp its
maximum maghnitude

e Subtract c®*¢t from both sides of this recursion to get e9™! = 9 4 954
 Multiply through by —A to get r9t! = r4 — @944

* Optimally, one would follow s until all the error in that direction was eliminated
e That is, until the remaining error is orthogonal to s4, i.e. e4™' - 59 = ()
 However, the error is unknown (otherwise, the solution would be known)

* Instead, follow s? until the residual is orthogonal to s4, i.e. r9t1 .59 = (
SCI.'r'q

sq-As4

e Plugging in the recursion for r9*?! gives o =

Steepest Descent

 Steepest Descent chooses the steepest downhill direction as the search direction

e That turns out to be the residual, i.e. choose s = r4
+4.7-9

rd-Ar4’

* [terate: 79 = b — Ac?, a9 = cdtl = cq 4+ 99, until r4 is considered

small enough
* Note: can replacer? = b — Ac? withr? = r971 — q971Ara-1

* Since Ar9~! had already been computed to find @971, this eliminates one of the (possibly
expensive) multiplications by A

* Drawback: Steepest Descent repeatedly searches in overlapping (non-orthogonal)
directions, especially for higher condition number matrices (more on this later)

Conjugate Gradients (CG)

* A very efficient and robust method for SPD systems

* Converges (theoretically) in at most n-steps for an nxn matrix
* Theoretically, only need one step for each distinct eigenvalue
* Almost converged when taking one step for each eigenvalue cluster
* Thus, preconditioning makes a big difference (assuming it clusters eigenvalues)

* Motivation: choosing orthogonal search directions precludes repeatedly
searching in overlapping directions (in contrast to Steepest Descent)

e But, it is difficult to implement this orthogonality

* Instead: choose A-orthogonal search directions
e Instead of < 59,59 > = 0, choose < 59,54 >, =0forq # §

Error Analysis for CG

* In the A-orthogonal basis of search directions, the initial erroris e! = Zg=1 ,867567;
SO, = 1 < 59,59 >,

; : -1 A A
* Error recursion gives e? = el + Zg=1 als? ; so,

. . q+1 q . q Sq'T‘q q
S Propresciicuntilpd sl S e a e e e]
. s
* Thus, e’ = ¥72_ (—a?)s?ande? = 32_ (—a?)s1

e This proves that the error is indeed cancelled out in n steps, i.e. et = 0

* Aside: If § < g, thens? -r? =—< s4,e% >,= 0; so, the residual is orthogonal to
all previous search directions (not just the previous one)

Gram-Schmidt

e Orthogonalizes a set of vectors

* For each new vector, subtract its (weighted) dot product overlap with all prior
vectors, making it orthogonal to them

* A-orthogonal Gram-Schmidt simply uses an A-weighted dot/inner product

* Given vector S, subtract out the A-overlap with s to s27! so that the resulting
vector s? has < s, s4 >,=0 forg €{1,2,--,q — 1}

g-1 <S%59> 4

=1 <59 s> 4

require division by their norm (and < s4,s9 >,= ||SqH

e Thatis, s = S9 — Y- s where the two non-normalized s? both

<§4959> 4

* Proof: < 59,59 >,=< 89,59 >, — .
) A

< Sq,Sq >A: 0

Gram-Schmidt for CG

e Choose candidate search directions S9 = r49, and make A-orthogonal via Gram-Schmidt

. : q — 9 Y4 e q
That stz o) iy Y

s q ¢q £ LETL Y
4=1 <s4,s9> 4

* If§ > g,then 0 =79 - r9 + 0 implies that all the residuals are orthogonal
'r'CI.T'q

e Dot product withr? toget:s4 - 14 =19 .v4 -y

o Ifd = qd.r9 = 44 . 44 Fon IO dpL:
Ifg = q,thens? -r r4.-r9 4 0 implies « T iy

e Dot product 79 = r971 — @97 145971 with r4 to get
° 'rq . 'rq — rq 2 T'q_l - aq_l < rq’Sq_l >A
e If§>q,then0=0 — a9 ! <79,s971 >, implies that only the last term in the sum is nonzero

e Ifj=gq,thenr?-79=0— 97! for the last term in the sum

T'q'rq rq.rq

q-1 _— ,-q q-1
aq_1<sq‘1,sq‘1>AS [T - >

* Finally, s =r4 +

Conjugate Gradients Method

e Start with: s =r1 =b — Ac?

* Iterate:

4.4

i aq Al { Bt 3
<s4,s9> 4
e c9tl =9 4 @959 and r9t! = r9 — ¢94s9 (both as usual for line search)
q+1..q+1
§ Sq+1 <5 TCI+1 + g4
rd.rd

* Note: Gram-Schmidt drifts, making search directions less A-orthogonal over time;

thus, occasionally throw out all search directions and start over with s = r! =
b — Ac?

Non-Symmetric and/or Indefinite

* GMRES, MINRES, BICGSTAB, etc...

* Generally speaking, iterative methods for non-symmetric and/or indefinite
matrices are less stable, more error prone, and slower than CG on an SPD matrix

