
Iterative Solvers



Iterative vs. Direct Solvers

• Direct Solver/Method – closed form strategy, e.g. quadratic/Cardano formula, Gaussian 
Elimination for LU factorization, Cholesky factorization, etc.
• Iterative Solver/Method
• start with an initial guess 𝑐!
• use a recursive approach to improve that guess: 𝑐", 𝑐#, 𝑐$,	…
• terminate based on a stopping criterion, e.g. when error is small 𝑐% − 𝑐&'()* ≤ 𝜖

• A direct method can be used to obtain an initial guess
• Iterative methods are great for sparse matrices, as they often can ignore 0 entries
• E.g. by formulating the method via the matrix’s action (multiplication) on a vector

• Direct solvers are more commonly used on dense matrices
• Iterative solvers are used for training Neural Networks!



Issues with Direct Methods

• (Recall) Quadratic formula loses precision, and can fail, when −𝑏 ± 𝑏! − 4𝑎𝑐
has catastrophic cancellation
• The de-rationalized quadratic formula instead uses −𝑏 ∓ 𝑏! − 4𝑎𝑐
• Using one formula for each root avoids catastrophic cancellation

• Cardano’s formula for the roots of a cubic equation suffers from similar issues, 
but there is no straightforward fix
• The computed roots too often have unacceptably high error
• To highlight why one might need accurate cubic roots, consider collision 

detection…



Hit Box

• In order to detect interactions between objects in video games, objects were 
assigned a hit box
• Anything inside an object’s hit box can potentially interact with (i.e. hit) it



Better Hit Boxes

• These evolved over time to more complicated shapes in both 2D and 3D
• e.g. spheres, ellipsoids, capsules, etc. 

• Anything inside any of an object’s hit boxes can potentially interact with it



Accurate Collision Detection

• More complex objects are often modeled by a triangulated surface mesh
• The interior can be filled with tetrahedra, or approximated with other objects
• Anything inside any of an object’s interior structures can potentially interact with 

it



Objects Without Interiors

• Very thin objects, such as cloth/shells, do not have an interior region
• One cannot use the same concept of inside to detect potential interactions



Continuous Collision Detection (CCD)

• Model the time varying trajectories of surface triangle vertices to see if/when 
they collide with each other
• Doesn’t depend on the existence of an interior region
• There are two cases to consider: (1) Point-Face, (2) Edge-Edge



Continuous Collision Detection (CCD)

• In both cases, the 4 relevant points need to become coplanar in order to 
(potentially) collide
• Once deemed coplanar, a second check determines whether: the lone point is 

inside the triangle (for Point-Face) or the two edges intersect (for Edge-Edge)



Continuous Collision Detection (CCD)

• Consider time 𝑡" to time 𝑡# and assume that the points have constant velocities 
during that time interval: 𝑉$ 𝑡" for i = 1, 2, 3, 4
• The time evolving positions are: 𝑋$ 𝑡 = 𝑋$ 𝑡" + 𝑉$ 𝑡" 𝑡 − 𝑡" for 𝑡 ∈ [𝑡" , 𝑡#]
• Although their paths are (generally) curved, considering piecewise linear 

increments is sufficient for preventing self-intersecting states



Continuous Collision Detection (CCD)

• Coplanarity occurs when 𝑋% 𝑡 − 𝑋& 𝑡 , 𝑋' 𝑡 − 𝑋& 𝑡 , and 𝑋! 𝑡 − 𝑋& 𝑡 are 
not a basis for 𝑅', which can be checked by making them the columns of a 3x3 
matrix and setting the determinant to zero (obtaining a cubic equation in 𝑡)
• Find the first root of this cubic equation in the interval 𝑡" , 𝑡#
• Cubic equation solvers are so error prone that collisions are (very) often missed, 

and the cloth/shell ends up in a spurious self-intersecting state

• A very carefully devised/implemented iterative solver for cubic equations was 
able to detect all collisions:
• It requires double precision (and fails too often in single precision)
• See Bridson et al. “Robust Treatment of Collisions, Contact, and Friction for Cloth 

Animation” (2002)



Residual and Solution Error

• When solving 𝐴𝑐 = 𝑏, a current guess 𝑐( has residual 𝑟( = 𝑏 − 𝐴𝑐(

• The residual measures the errors in the equations, not the error in the solution
• The error in the solution 𝑒( = 𝑐( − 𝑐)*+,- relates to the residual via:

𝑟( = 𝑏 − 𝐴𝑐( = 𝐴𝑐)*+,- − 𝐴𝑐( = 𝐴 𝑐)*+,- − 𝑐( = −𝐴𝑒(

• That is, the residual is the solution error transformed into the space that 𝑏 lives in 
(the range of 𝐴)



1D example

• Consider a simple size 1𝑥1matrix, i.e. [𝑎]𝑐 = 𝑏 with exact solution 𝑐 = .
+

• Since 𝑟( = −𝑎𝑒( , smaller 𝑎 values lead to deceivingly small residuals even when 
the error is large



Diagonalizing the Residual/Error Equation 

• ”All matrices are diagonal matrices”
• And, diagonal matrices represent decoupled 1D scalar problems

• Using the SVD,  𝑟( = −𝐴𝑒( becomes (𝑈/𝑟() = −𝛴(𝑉/𝑒() which is a decoupled 
set of diagonal equations
• Each decoupled equation has the form 𝑟̂0

( = −𝜎0𝑒̂0
( (seen on the previous slide)

• Small 𝜎0 lead to deceivingly small residuals even when the error is large 

• A small residual indicates a small error for larger singular values, but not for 
smaller singular values



Line Search

• Choose a search direction 𝑠( and move some distance 𝛼( in that direction to 
update the current guess to the next guess: 𝑐(1& = 𝑐( + 𝛼(𝑠(
• There are various strategies for choosing 𝛼!, including the notion of safe sets that clamp its 

maximum magnitude
• Subtract 𝑐"#$%& from both sides of this recursion to get 𝑒!'( = 𝑒! + 𝛼!𝑠!
• Multiply through by −𝐴 to get 𝑟!'( = 𝑟! − 𝛼!𝐴𝑠!

• Optimally, one would follow 𝑠( until all the error in that direction was eliminated
• That is, until the remaining error is orthogonal to 𝑠!, i.e. 𝑒!'( ⋅ 𝑠! = 0
• However, the error is unknown (otherwise, the solution would be known) 

• Instead, follow 𝑠( until the residual is orthogonal to 𝑠(, i.e. 𝑟(1& ⋅ 𝑠( = 0
• Plugging in the recursion for 𝑟!'( gives	𝛼! = )!⋅+!

)!⋅,)!



Steepest Descent

• Steepest Descent chooses the steepest downhill direction as the search direction
• That turns out to be the residual, i.e. choose 𝑠! = 𝑟!

• Iterate: 𝑟( = 𝑏 − 𝐴𝑐(, 𝛼( = 2!⋅2!

2!⋅42!
, 𝑐(1& = 𝑐( + 𝛼(𝑟(, until 𝑟( is considered 

small enough
• Note: can replace 𝑟( = 𝑏 − 𝐴𝑐( with 𝑟( = 𝑟(5& − 𝛼(5&𝐴𝑟(5&
• Since 𝐴𝑟!-( had already been computed to find 𝛼!-(, this eliminates one of the (possibly 

expensive) multiplications by 𝐴

• Drawback: Steepest Descent repeatedly searches in overlapping (non-orthogonal) 
directions, especially for higher condition number matrices (more on this later)



Conjugate Gradients (CG)

• A very efficient and robust method for SPD systems
• Converges (theoretically) in at most 𝑛-steps for an 𝑛𝑥𝑛 matrix
• Theoretically, only need one step for each distinct eigenvalue
• Almost converged when taking one step for each eigenvalue cluster
• Thus, preconditioning makes a big difference (assuming it clusters eigenvalues)

• Motivation: choosing orthogonal search directions precludes repeatedly 
searching in overlapping directions (in contrast to Steepest Descent)
• But, it is difficult to implement this orthogonality

• Instead: choose A-orthogonal search directions
• Instead of < 𝑠!, 𝑠 .! >= 0, choose < 𝑠!, 𝑠 .! >, = 0 for 𝑞 ≠ 7𝑞



Error Analysis for CG

• In the A-orthogonal basis of search directions, the initial error is 𝑒& = ∑ 6(7&
8 𝛽 6(𝑠 6(; 

so, < 𝑠( , 𝑒& >4 = 𝛽( < 𝑠( , 𝑠( >4
• Error recursion gives 𝑒( = 𝑒& + ∑ 6(7&

(5&𝛼 6(𝑠 6( ; so, < 𝑠( , 𝑒( >4 =< 𝑠( , 𝑒& >4

• Progressing until 𝑟(1& ⋅ 𝑠( = 0 gives 𝛼( = 9!⋅2!

9!⋅49!
= − :9!,)!<"

:9!,9!<"
= −𝛽(

• Thus, 𝑒& = ∑ 6(7&
8 (−𝛼 6()𝑠 6( and 𝑒( = ∑ 6(7(

8 −𝛼 6( 𝑠 6(
• This proves that the error is indeed cancelled out in 𝑛 steps, i.e. 𝑒!'( = 0

• Aside: If I𝑞 < 𝑞,	then	𝑠 =( ⋅ 𝑟( =−< 𝑠 =( , 𝑒( >4= 0; so, the residual is orthogonal to 
all previous search directions (not just the previous one)



Gram-Schmidt

• Orthogonalizes a set of vectors
• For each new vector, subtract its (weighted) dot product overlap with all prior 

vectors, making it orthogonal to them
• A-orthogonal Gram-Schmidt simply uses an A-weighted dot/inner product
• Given vector ̅𝑆(, subtract out the A-overlap with 𝑠& to 𝑠(5& so that the resulting 

vector 𝑠( has < 𝑠( , 𝑠 6( >4 = 0 for R𝑞 ∈ 1,2,⋯ , 𝑞 − 1

• That is, 𝑠( = ̅𝑆( − ∑ 6(7&
(5& : ̅?!,9#!<"

:9#!,9#!<"
𝑠 6( where the two non-normalized 𝑠 6( both 

require division by their norm (and < 𝑠 6( , 𝑠 6( >4= 𝑠 6(
4
!

)

• Proof: < 𝑠( , 𝑠 =( >4= < ̅𝑆( , 𝑠 =( >4 −
: ̅?!,9$!<"
:9$! ,9$!<"

< 𝑠 =( , 𝑠 =( >4= 0



Gram-Schmidt for CG

• Choose candidate search directions ̅𝑆% = 𝑟%, and make A-orthogonal via Gram-Schmidt

• That is,  𝑠% = 𝑟% − ∑ +%,!
%-! ./!,1"!2#

.1"!,1"!2#
𝑠 +%

• Dot product with 𝑟 3% to get: 𝑠% ⋅ 𝑟 3% = 𝑟% ⋅ 𝑟 3% − ∑ +%,!
%-! ./!,1"!2#

.1"!,1"!2#
𝑠 +% ⋅ 𝑟 3%

• If	 $𝑞 > 𝑞,	then	0	=	𝑟$ ⋅ 𝑟 %$ + 0 implies	that	all	the	residuals	are	orthogonal
• If	 $𝑞 = 𝑞,	then	𝑠$ ⋅ 𝑟$ = 𝑟$ ⋅ 𝑟$ + 0 implies	𝛼$ = &!⋅&!

()!,)!+"

• Dot product 𝑟% = 𝑟%-! − 𝛼%-!𝐴𝑠%-! with 𝑟 3% to get
• 𝑟 %$ ⋅ 𝑟$ = 𝑟 %$ ⋅ 𝑟$,- − 𝛼$,- < 𝑟 %$ , 𝑠$,- >.
• If	 $𝑞 > 𝑞,	then	0 = 0 − 𝛼$,- < 𝑟 %$ , 𝑠$,- >. implies	that	only	the	last	term	in	the	sum	is	nonzero
• If	 $𝑞 = 𝑞,	then	𝑟$ ⋅ 𝑟$ = 0 − 𝛼$,- < 𝑟$ , 𝑠$,- >. for	the	last	term	in	the	sum

• Finally, 𝑠% = 𝑟% + /!⋅/!

5!/0.1!/0,1!/02#
𝑠%-! = 𝑟% + /!⋅/!

/!/0⋅/!/0
𝑠%-!



Conjugate Gradients Method

• Start with: 𝑠& = 𝑟& = 𝑏 − 𝐴𝑐&

• Iterate: 

• 𝛼( = 2!⋅2!

:9!,9!<"
• 𝑐(1& = 𝑐( + 𝛼(𝑠( and  𝑟(1& = 𝑟( − 𝛼(𝐴𝑠( (both	as	usual	for	line	search)
• 𝑠(1& = 𝑟(1& + 2!%&⋅2!%&

2!⋅2!
𝑠(

• Note: Gram-Schmidt drifts, making search directions less A-orthogonal over time; 
thus, occasionally throw out all search directions and start over with 𝑠& = 𝑟& =
𝑏 − 𝐴𝑐&



Non-Symmetric and/or Indefinite

• GMRES, MINRES, BiCGSTAB, etc…
• Generally speaking, iterative methods for non-symmetric and/or indefinite 

matrices are less stable, more error prone, and slower than CG on an SPD matrix


