
Local Approximations



Sampling

• Accurate approximation of a function is often limited by the amount of available data
• Given too few samples (left), one may ”hallucinate” an incorrect function
• Adding more data allows for better/proper feature resolution (right)
• Given “enough” sample points, a function tends to not vary too much in between them

under-resolved resolved better with more data



Taylor Expansion
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• Bounded derivatives would indicate that 𝑂 ℎ )!*+ → 0 as ℎ → 0
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• Truncated Taylor expansions become more valid approximations as ℎ → 0
• 𝑓 𝑥 + ℎ ≈ 𝑓 𝑥 + ℎ𝑓" 𝑥 + #!
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Well-Resolved Functions 

• The Taylor expansion approximates a function 𝑓 at a new location 𝑥 + ℎ based on 
known information at a nearby point 𝑥
• When the sample points are “closely” spaced, new locations are “close” to known 

sample points making ℎ “small” enough
• However, large derivatives can overwhelm even a small ℎ
• Thus, functions with more variation need higher sampling rates
• Similarly, smoother functions can utilize lower sampling rates

• Well-resolved functions have vanishing high order terms in their Taylor expansion 
making truncated Taylor expansions more valid



Well-Resolved Functions 

• Regions of a function with less/more variation require lower/higher sampling 
rates



Piecewise Approximation

• Piecewise approximation enables the use of simpler models to approximate 
(potentially disjoint) subsets of data
• In ML/DL, “sub-manifold” often refers to a coherent subset



Piecewise Constant Interpolation

• Use the first term in the Taylor expansion (only): 𝑓 𝑥 + ℎ ≈ 𝑓 𝑥
• Errors are 𝑂(ℎ), since 𝑓 𝑥 + ℎ = 𝑓 𝑥 + 𝑂(ℎ)
• Recall: nearest neighbor is piecewise constant 



Piecewise Linear Interpolation

• Use the first two terms in the Taylor expansion: 𝑓 𝑥 + ℎ ≈ 𝑓 𝑥 + ℎ𝑓! 𝑥
• Errors are 𝑂(ℎ"), since 𝑓 𝑥 + ℎ = 𝑓 𝑥 + ℎ𝑓! 𝑥 + 𝑂(ℎ")



Higher Order Piecewise Interpolation

• Piecewise quadratic interpolation uses the first three terms in the Taylor 
expansion and has 𝑂 ℎ# errors

• Piecewise cubic interpolation uses the first four terms in the Taylor expansion and 
has 𝑂 ℎ$ errors

• Recall: higher order interpolation becomes more oscillatory (i.e. overfitting)
• These oscillations are sometimes referred to as Gibbs phenomena



Piecewise Cubic Interpolation (B-Splines)

• Piecewise cubic splines are quite popular because of their ability to match 
derivatives across approximation boundaries
• B-splines – hierarchical family: 𝜙%

& is a piecewise polynomial of degree 𝑝
• Piecewise constant: 𝜙!" 𝑥 = 1 for 𝑥 ∈ [𝑥!, 𝑥!#$] and 0 otherwise
• A linear 𝑤!
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• Piecewise linear 𝜙!$, piecewise quadratic 𝜙!(, piecewise cubic 𝜙!), etc.



Image Segmentation

• Divide image pixels into separate regions, each representing separate objects or 
groups of objects
• Before neural networks: various methods relied on clustering in color and/or 

space, graph-cuts, edge detection, etc.

• Since humans do well on this problem, use neural networks to hopefully mimic 
human perception/semantics
• Training examples:
• Input: an image (all the pixel RGB values)
• Output: labels on all the pixels, indicating what group each pixel is in



Bool Output Labels

● Binary segmentation of an image
● E.g. true = dog, false = not dog

Input Output



Integer Output Labels

● Multi-object segmentation with an integer for each object
● E.g. 1=cat, 2=dog, 3=human, 4=mug, 5=couch, 6=everything else

Input Output



Real Number Output Labels

● Probabilistic segmentation with real number values in [0,1]
● E.g. 1=tree branch, .8=probably a branch, .2=probably not a branch, etc.

Input Output



Segmenting Botanical Trees

Difficult Problem:
• Trees are large-scale and geometrically-complex structures
• Branches severely occlude each other
• The images have limited pixel resolution of individual branches

• Even humans have a hard time ascertaining the correct topological structure 
from a single image/view

• Can we train a neural network to help?



Constructing Training Data

• Begin with a dataset of labels (tediously) created by hand
• Draw lines and thicknesses on top of branches; then, use this information to 

create a binary mask for the image



Constructing More Training Data

• Artificially increase the amount of training data by taking various image subsets
• This also helps to avoid down-sampling (networks use low-resolution images)

3840 pixels wide, 2160 pixels tall each image: 512 pixels wide, 512 pixels tall



Training the Neural Network

• Find function parameters 𝑐 such that the network function 𝑓'(𝑥) gives minimal 
error on the training data (i.e. minimize network “loss”)
• The network should predict the known target labels (or close to it) from the input 

images

Input 
images

Target 
labels

Network 
outputs

architecture



Network Inference/Prediction

• After training, use the resulting network function 𝑓'!"#$%&'(𝑥) to infer/predict 
labels for new images (not previously hand-labeled)



Local Approximations

• Roughly speaking, input images mostly seem to be of two different types: either 
(1) branches over grass or (2) clusters of branches



Train 2 Neural Networks

• Divide the training data into these two disparate groups
• Train a separate network on each group: separate architecture, separate trainable 

parameters, etc.

• k-means clustering on hue/saturation was used to divide the training images into 
2 separate clusters
• Then, each cluster was used to train a network



Combining Inference Outputs

• Given an input image, inference it (separately) on both networks
• Then combine the two predictions, using the network that makes the most sense 

locally in each part of the image (blending predictions when appropriate)

To inference each pixel:
• Compute hue/saturation values on a small patch around the pixel
• Find the distances from the patch hue/saturation values to the 2 cluster centers
• Interpolate the outputs from the 2 networks using those distances

• The closer a pixel is to a k-means cluster, the more weight is given to that cluster’s 
network inference/prediction



Example

Input Network 1 Network 2 Combine Final Result



Branch Estimation




