Curse of Dimensionality

Numerical Integration (Quadrature)

 Approximate f;LRf(x)dx numerically

* Break up [x;, xg] into subintervals, and consider each subinterval separately

 On each subinterval:
e Reconstruct the function
e Analytically find the area under the reconstructed curve

* These two steps can be combined in various ways (for efficiency)

* f is often not explicitly known
* |.e., often only have access to output values f(x;) given input values x;

* In addition, it could be “expensive” to evaluate f (x;), especially when it requires
running code

Newton-Cotes Quadrature

* On each subinterval, choose p equally spaced points and use p — 1 degree
polynomial interpolation to reconstruct the function and approximate the area
under the curve

* Obtains the exact solution when f is a degree p — 1 polynomial (as expected)

* When the number of points p is odd, symmetric cancellation gives the exact
solution on a degree p polynomial (1 degree higher than expected)

f(x)
A

over

under

Symmetric Cancellation

> X

* When p = 2 points, the 15t degree
piecewise linear approximation
integrates piecewise linear functions
exactly

* When p = 1 point, the 0t degree
plecewise constant approximation
(also) integrates piecewise linear
functions exactly

* Note the cancellation of under/over
approximations in the figure

Newton-Cotes Quadrature

e Consider a total of m subintervals

* Piecewise constant approximation (p = 1 point) uses m points to integrate
piecewise linear functions exactly

* Piecewise linear approximation (p = 2 points) uses m + 1 points to integrate
piecewise linear functions exactly

* points on the boundary between intervals are used for both intervals

* Piecewise quadratic approximation (p = 3 points) uses 2m + 1 points to
integrate piecewise cubic functions exactly

* Piecewise cubic approximation (p = 4 points) uses 3m + 1 points to integrate
piecewise cubic functions exactly

Local and Global Error

 Degree p polynomial reconstruction captures the Taylor expansion terms up to
: £ el :
and including ?f(p)(x), with O (hP*1) errors

* This O(hP*1) error in the height of the function multiplied times the O (h) width
of the interval gives a per interval area error (local error) of O(hP*?)

. L S 1 :
* The total number of intervals is 2—L = ((E)’ so the total error (global error) is

0(h)
0 (3) 0(hP*?) = 0 (hP*)

. ; o . 1\Pt1
* Doubling the number of intervals halves their size leading to (E) as much

error, which is denoted by an order of accuracy of p + 1

Newton-Cotes Quadrature (Examples)

» Midpoint Rule: ¥; h; f (x™%)

* 1 point, piecewise constant, exact for piecewise linear, 2"d order accurate, O(hz) error

left Tight
* Trapezoidal Rule: Y; h; /i)J;f(xl)

* 2 points, piecewise linear, exact for piecewise linear, 2"9 order accurate, O(hz) error

f(left)+4f(mld) +f(rlght)

6
* 3 points, piecewise quadratic, exact for piecewise cubic, 4t order accurate, O (h*) error

* Simpson’s Rule: };; h;

Gaussian Quadrature

* Use p optimally chosen points to obtain a method that is exact on degree
2p — 1 polynomials, and thus has an order of accuracy of 2p

(=g (Tl

2

* 2 points, piecewise cubic, exact for piecewise cubic, 4t order accurate, 0(h4)
error

* For example:).; h;

e Same accuracy as the 3 point Simpson’s Rule
* Simpson has 1 point on shared boundaries, so only 2m + 1 total points are required
e That is, Gaussian quadrature only saves 1 point in total (2m total points)

Two Dimensions

- ffA f(x,y)dA where sub-regions dA of area A are considered separately

* When A is rectangular, it can be broken into sub-rectangles and addressed
dimension-by-dimension using 1D techniques

* When A is more interesting, triangle sub-regions can be used to approximate it

* The difference between A and its approximation leads to a new source of error
not seen in 1D (where the interval boundaries were merely points)

Domain Approximation Errors

* The difference between A and its approximation (via triangles here) leads to a
new source of error in the integral (missing/extra area)

y

A

Integrating over Sub-regions

* Each triangle sub-region utilizes optimally chosen Gaussian quadrature points to
compute sub-volumes

f(x.y)

Three Dimensions

* Jff, f(x,y,2z)dV where tetrahedral sub-regions dV of volume V are each
considered separately (with Gaussian quadrature points)

Curse of Dimensionality

e Consider a 1%t order accurate method

* 1D: doubling the number of intervals cuts the error in half (2x work = % error)

 2D: halving interval size requires 4 times the rectangles/triangles (4x work = % error)
* 3D: halving interval size requires 8 times the cubes/boxes/tets (8x work = % error)

e 4D: 16x work = % error, 5D: 32x work = % error, etc.

e Cutting error by a factor of 4 in 5D takes 322=1024x work

e Cutting error by a factor of 8 in 5D takes 323=32,768x work

* |f the original code took 1 sec to run in 5D, cutting error by a factor of 8 takes 9 hours
* And cutting error by a factor of 16 takes 12 days

* And cutting the error by a factor of 32 takes over a year.... Yep, you’re cursed

Curse of Dimensionality

e Consider a 2"9 order accurate method
* In 1D/2D/3D/4D/5D/etc. halving the interval size gives 4 times less error
e Cutting error by a factor of 4 in 5D takes 32x work

* If the original code took 1 sec to run in 5D, cutting error by a factor of 16 takes
only 17 min (much faster than the 12 days for the 15t order accurate method)

 Cutting error by a factor of 1024 (3 decimal places more accuracy) takes over a
year...

* In 10D, cutting error by a factor of 4 takes 1024x work
e Second order is better than first, but still intractable in higher dimensions

* Moreover, it’s difficult (or impossible) to construct higher order methods in
higher dimensions (and overfitting is a concern too)

Conclusion

* Newton-Cotes style approaches are only practical for 1D/2D/3D
e or 1D/2D/3D + time

* Sometimes they can work ok in 4D

A Simple Example

e Consider approximating m = 3.1415926535 ...
* Use a compass to construct a circle with radius =1

e Since A = mr?, the area of this unit circle is

* Integrate f(x,y) = 1 over the unit circle to obtain [f, f(x,y)dA=m

Area =1

Newton-Cotes Approach

* Inscribe triangles inside the circle
e Sum the area of all the triangles (no need to trivially multiply by the height = 1)

* The difference between the area A and its approximation with triangles leads to errors

iz T =~ 2.8284

Monte Carlo Approach

* Construct a square with side length 4 containing the circle

 Randomly generate N points in the square (color points inside the circle blue)

. Aci T : N
e Since —&rete — —, Can approximate 7 ~ 16 (N bfruz\f;)
blue red

Apox

Monte Carlo Methods

* Typically used in higher dimensions (5D or more)

 Random (pseudo-random) numbers generate sample points that are multiplied
by “element size” (e.g. length, area, volume, etc.)

1

* Error decreases like T where N is the number of samples (only %2 order accurate)

e E.g. 100 times more sample points are needed to gain one more digit of accuracy

* VVery slow convergence, but independent of the number of dimensions!

* Not competitive for lower dimensional problems (i.e., 1D, 2D, 3D), but the only
tractable approach for high dimensional problems

Machine Learning Implications

* Consider y = f(x) where x € R™ with large n

* Newton-Cotes style approaches would first do polynomial interpolation, and then
analytically integrate the result

* An enormous number of points (and control volumes) is required to construct
polynomial functions in higher dimensions (curse of dimensionality)

* The same is true when constructing y = f (x) for function interpolation (in order
to inference), i.e. a high dimensional x is intractable

 Thus, Monte Carlo approaches are far more efficient!

* This is a major reason for the close collaborations between ML/DL and Statistics
departments

e as compared to classical engineering, which operates in a lower dimensional 3D model of
the physical world (and thus has closer ties to Applied Mathematics)

