Least Squares



Recall: Polynomial Interpolation (Unit 1)

e Given m data points, one can (at best) draw a unique m — 1 degree polynomial
that goes through all of them

* As long as they are not degenerate, like 3 points on a line
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Recall: Basis Functions (Unit 1)

* Given basis functions ¢ and unknowsc: y =c¢i¢p1 + 2P, + -+ ¢, P,

* Monomial basis: ¢, (x) = x*71

= [lizr x—x
* Lagrange basis: ¢, (x) = —Zk— 1
grang G ST
* Newton basis: ¢ (x) = [ x — x;

* Write a (linear) equation for each point, and put into matrix form: Ac =y
 Monomial/Lagrange/Newton basis all give the same polynomial, but different matrices



Recall: Overfitting (Unit 1)

* Given a new input X, the interpolating polynomial infers/predicts an output y
that may be far from what one may expect
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Interpolating polynomials are smooth (continuous
function and derivatives)

Thus, they wiggle/overshoot in between data points
(so that they can smoothly turn back and hit the
next point)

Overly forcing polynomials to exactly hit every data
point is called overfitting (overly fitting to the data)
It results in inference/predictions that can vary
wildly from the training data



Recall: Regularization (Unit 1)

* Using a lower order polynomial that doesn’t (can’t) exactly fit the data points
provides some degree of regularization

y * Aregularized interpolant contains intentional errors
in the interpolation, missing some/all of the data
points
s  However, this hopefully makes the function more

¢ predictable/smooth in between the data points
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* The data points themselves may contain
noise/error, so it is not clear whether they should
. be interpolated exactly anyways




Recall: Regularization (Unit 1)

* Given X, the regularized interpolant infers/predicts a more reasonable y

y * Thereis a trade-off between sacrificing accuracy
on fitting the original input data, and obtaining

better accuracy on inference/prediction for new
N . inputs
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Eliminating Basis Functions

* Consider Ac = vy:
* Each row of A evaluates all n basis functions ¢, on a single data point x;
* Each column of A evaluates all m points x; on a single basis function ¢,

e Regularize by reducing the number of basis functions (and thus the degree of the
polynomial)
* Then, write an equation for each point, and put into matrix form Ac = y (as usual)

* When there are more points than basis functions, there are more rows than
columns (and the matrix is tall/rectangular)

* This tall matrix has full (column) rank when the basis functions are linearly
independent (and the data isn’t degenerate)



Recall: Underfitting (Unit 1)

* Using too low of an order polynomial causes one to miss the data by too much

y * Alinear function doesn’t capture the essence of
this data as well as a quadratic function does
* Choosing too simple of a model function or
p . regularizing too much prevents one from properly
¢ representing the data
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Tall (Full Rank) Matrices

e Let A be a size mxn tall (i.e. m > n) matrix with full (column) rank (i.e. rank n)

* Since there are n entries in each row, the rows span at most an n dimensional
space; thus, at least m — n rows are linear combinations of others

e That is, A contains (at least) m — n extra unnecessary equations (that are linear
combinations of others)

* Thus, A could be reduced to n equations (and size nxn) without losing any
information

e The SVD (A4 = UZVT) illustrates this: the last m — n rows of X are all zeros

* The last m — n columns in U are hit by these zeros, and thus not in the range of A



Recall: Example (Unit 3)
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 Singular values are 25.5, 1.29, and
 Singular value of O indicates that the matrix is rank deficient
* The rank of a matrix is equal to its number of nonzero singular values



Recall: Extra Dimensions (Unit 3)
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* The 3D space of vector inputs can only span a 3D subspace of R*

* The last (greery column of U represents the unreachable dimension, orthogonal to the
range of A, and is always multiplied by O

* One can delete this column and the associated portion of X (and still obtain a valid
factorization)



Solving Tall (Full Rank) Linear Systems

» Ac = b becomes UXVTc =borEZ(VTc) = (UTh) or 2¢ = b

*Solve Xé =) by dividing the entries of b by the singular values oy, thenc = V¢

* The last m — n equations are identically zero on the left, and need to be
identically zero on the right as well in order for a solution to exist

01 0 ¢ bl i
sEgcl 0 o S requies b3 = 0 in order to have a solution
74 2
=07 &4 b

* The last m — n columns in U are not in the range of 4, so b must be in the span
of the first n columns of U in order for a solution to exist




False Statements

* Reasoning with a false statement leads to infinitely more false statements:

a=>
a’ = ab
a’ — b? = ab — b?
(a+b)(a—b) =b(a—-D>b)
a+b=>b
b+b=5>b
b(1+ 1) =b(1)
2501

* Don’t make false statements!



False Statements

* Reasoning with a false statement leads to infinitely more false statements:

AGR=D
AT Ac :A;b\ Is it? Is it really?

e (ATA)‘l(ATb)
* Don’t make false statements!

* A mix of false/true statements makes it difficult to keep track of what is and what
IS not true



False Statements

: : G Lo il =3
Consider a very simple Ac = b given by: (1) (el = (4)
* This contains the equations ¢ = 3 and ¢ = 4, and as such is a false statement

e Solvevia (1 1) G) (e =it (i), so2c=7o0rc=3.5

* Row scale the first equation by 10 to obtain: (110) (c) = (340)

* Solve via (10 1) (110) (c)=(10 1) (340), so 101c = 304 orc = 3%1

* Perfectly valid row scaling leads to a different answer



False Statements

* Again, starting with the same: (D (&) = (i)
* Subtract 2*(row 1) from row 2 to obtain (_11) (c) = (_32)

e Solvevia (1 —1) (_11) c)=01 -1) (_32), so2c=5o0orc =25

* A perfectly valid row operation again leads to a different answer
* Note that 2.5 & [3,4] either!

* Problem: (i) is not in the range of (D, SO (D (¢c) # (?L) forVc € R



False Statements

* Consider y = ¢; ¢, with monomial ¢; = 1, and data points (1,3) and (2,4)
. 1 R
This leads to the same (1) (i )= (4)
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True Statements

* Consider y = ¢y ¢, with monomial ¢; = 1, and data points (1,3) and (2,3)
* This leads instead to G) (cilis= (g) which is valid and has solution ¢; = 3
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True Statements

* When b is in the range of 4, then Ac = b is a true statement
* There exists at least one ¢ (by definition) constrained by this statement

* When b is in not the range of A, then Ac # b is the true statement
* In this case, Ac # b is true for all c

* The equation for the residual r = b — Ac is always true (it’s a definition)
* When b is in the range of 4, there exists a c with Ac = bandr =0
 When b is not in the range of 4, then Ac #+ bandr # 0 forall c

* The goal in both cases is to minimize the residual r = b — Ac




Norm Matters

* Consider y = c;¢; where ¢p; = 1 along with data points (1,3), (2,3), and (3,4)

3 1
 This leads to r = (3) = (1) (c1)
4 1
—.5

* Setting ¢; = 3.5 minimizes ||7{| with 7 = (—.5), Il = .5, lI7llz =
5

e
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» Setting ¢; = 3§minimizes l7]|, with r = <—1/3>, ITlleo = gl Irll; = \/?g
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Row Operations Matter

* Given a set of equations, they can be manipulated in various ways
* These manipulations often change the answer

* Thus, one should carefully choose the residual they want minimized

* Equivalent sets of equations lead to different answers when minimizing the
corresponding residuals



Weighted Minimization

* Givenr = b — Ac, some equations may be deemed more important than others

* Scaling entries in the residual (before taking the norm) changes the relative
importance of various equations

* This is accomplished by minimizing ||Dr|| for a diagonal matrix D with non-zero
diagonal entries

* This is equivalent to row scaling: Dr = Db — DAc

* Column scaling doesn’t effect the residual, e.g. Dr = Db — DAD*(Dc)

e So, it can be used to preserve symmetry: Dr = Db — (DAD")(D~T¢)
* when A is square and symmetric



Least Squares

* Minimizing ||7||, is referred to as least squares, and the resulting solution is
referred to as the least squares solution (it’s really a least squares solution)

* A least squares solution is the unique solution when ||r||, = 0

e Minimizing ||Dr||, is referred to as weighted least squares

e ||7|l5 is minimized when [|7||5 is minimized

cAnd ||Ir|l5=7-7=(b—Ac) - (b — Ac) = c"ATAc — 2bT Ac + b" b is minimized
when cTAT Ac — 2bT Ac is minimized

* Thus, minimize cT AT Ac — 2b" Ac

* For weighted least squares, minimize ¢’ A" D?Ac — 2b"D? Ac



