
Least Squares



Recall: Polynomial Interpolation (Unit 1)

• Given 𝑚 data points, one can (at best) draw a unique 𝑚 − 1 degree polynomial 
that goes through all of them
• As long as they are not degenerate, like 3 points on a line



Recall: Basis Functions (Unit 1)

• Given basis functions 𝜙 and unknows 𝑐:    𝑦 = 𝑐!𝜙! + 𝑐"𝜙" +⋯+ 𝑐#𝜙#

• Monomial basis: 𝜙$ 𝑥 = 𝑥$%!

• Lagrange basis: 𝜙$ 𝑥 = ∏!"# '%'!
∏!"# '#%'!

• Newton basis: 𝜙$ 𝑥 = ∏()!
$%! 𝑥 − 𝑥(

• Write a (linear) equation for each point, and put into matrix form: 𝐴𝑐 = 𝑦
• Monomial/Lagrange/Newton basis all give the same polynomial, but different matrices



Recall: Overfitting (Unit 1)

• Given a new input $𝑥, the interpolating polynomial infers/predicts an output $𝑦
that may be far from what one may expect

• Interpolating polynomials are smooth (continuous 
function and derivatives)

• Thus, they wiggle/overshoot in between data points 
(so that they can smoothly turn back and hit the 
next point)

• Overly forcing polynomials to exactly hit every data 
point is called overfitting (overly fitting to the data)

• It results in inference/predictions that can vary 
wildly from the training data 



Recall: Regularization (Unit 1)

• Using a lower order polynomial that doesn’t (can’t) exactly fit the data points 
provides some degree of regularization

• A regularized interpolant contains intentional errors 
in the interpolation, missing some/all of the data 
points 

• However, this hopefully makes the function more 
predictable/smooth in between the data points 

• The data points themselves may contain 
noise/error, so it is not clear whether they should 
be interpolated exactly anyways 



Recall: Regularization (Unit 1)

• Given $𝑥, the regularized interpolant infers/predicts a more reasonable $𝑦

• There is a trade-off between sacrificing accuracy 
on fitting the original input data, and obtaining 
better accuracy on inference/prediction for new 
inputs



Eliminating Basis Functions

• Consider 𝐴𝑐 = 𝑦:
• Each row of 𝐴 evaluates all 𝑛 basis functions 𝜙! on a single data point 𝑥"
• Each column of 𝐴 evaluates all 𝑚 points 𝑥" on a single basis function 𝜙!

• Regularize by reducing the number of basis functions (and thus the degree of the 
polynomial)
• Then, write an equation for each point, and put into matrix form 𝐴𝑐 = 𝑦 (as usual)

• When there are more points than basis functions, there are more rows than 
columns (and the matrix is tall/rectangular)
• This tall matrix has full (column) rank when the basis functions are linearly 

independent (and the data isn’t degenerate)



Recall: Underfitting (Unit 1)

• Using too low of an order polynomial causes one to miss the data by too much

• A linear function doesn’t capture the essence of 
this data as well as a quadratic function does 

• Choosing too simple of a model function or 
regularizing too much prevents one from properly 
representing the data



Tall (Full Rank) Matrices 

• Let 𝐴 be a size 𝑚𝑥𝑛 tall (i.e. 𝑚 > 𝑛) matrix with full (column) rank (i.e. rank 𝑛)
• Since there are 𝑛 entries in each row, the rows span at most an 𝑛 dimensional 

space; thus, at least 𝑚 − 𝑛 rows are linear combinations of others
• That is, 𝐴 contains (at least) 𝑚 − 𝑛 extra unnecessary equations (that are linear 

combinations of others)
• Thus, 𝐴 could be reduced to 𝑛 equations (and size 𝑛𝑥𝑛) without losing any 

information
• The SVD (𝐴 = 𝑈Σ𝑉#) illustrates this: the last 𝑚 − 𝑛 rows of Σ are all zeros
• The last 𝑚 − 𝑛 columns in 𝑈 are hit by these zeros, and thus not in the range of 𝐴



Recall: Example (Unit 3)

𝐴 =
1 2 3
4
7

5
8

6
9

10 11 12
=

.141 .825 −.420 −.351

.344

.547
.426
.028

.298 .782
.644 −.509

.750 −.371 −.542 .079

25.5 0 0
0
0

1.29
0

0
0

0 0 0

.504 .574 .644
−.761 −.057 .646
.408 −.816 .408

• Singular values are 25.5, 1.29, and 0
• Singular value of 0 indicates that the matrix is rank deficient
• The rank of a matrix is equal to its number of nonzero singular values



Recall: Extra Dimensions (Unit 3)

𝐴 =
1 2 3
4
7

5
8

6
9

10 11 12
=

.141 .825 −.420 −.351

.344

.547
.426
.028

.298 .782
.644 −.509

.750 −.371 −.542 .079

25.5 0 0
0
0

1.29
0

0
0

0 0 0

.504 .574 .644
−.761 −.057 .646
.408 −.816 .408

• The 3D space of vector inputs can only span a 3D subspace of 𝑅*
• The last (green) column of 𝑈 represents the unreachable dimension, orthogonal to the 

range of 𝐴, and is always multiplied by 0 
• One can delete this column and the associated portion of Σ (and still obtain a valid 

factorization)



Solving Tall (Full Rank) Linear Systems

• 𝐴𝑐 = 𝑏 becomes 𝑈𝛴𝑉#𝑐 = 𝑏 or 𝛴(𝑉#𝑐) = (𝑈#𝑏) or 𝛴𝑐̂ = 5𝑏
• Solve 𝛴𝑐̂ = 5𝑏 by dividing the entries of 5𝑏 by the singular values 𝜎!, then 𝑐 = 𝑉𝑐̂

• The last 𝑚 − 𝑛 equations are identically zero on the left, and need to be
identically zero on the right as well in order for a solution to exist

• E.g. 
𝜎! 0
0 𝜎"
0 0

𝑐̂!
𝑐̂"

=
(𝑏!
(𝑏"
(𝑏#

requies (𝑏# = 0 in order to have a solution

• The last 𝑚 − 𝑛 columns in 𝑈 are not in the range of 𝐴, so 𝑏 must be in the span 
of the first 𝑛 columns of 𝑈 in order for a solution to exist



False Statements

• Reasoning with a false statement leads to infinitely more false statements:

𝑎 = 𝑏
𝑎$ = 𝑎𝑏

𝑎$ − 𝑏$ = 𝑎𝑏 − 𝑏$
𝑎 + 𝑏 𝑎 − 𝑏 = 𝑏 𝑎 − 𝑏

𝑎 + 𝑏 = 𝑏
𝑏 + 𝑏 = 𝑏

𝑏 1 + 1 = 𝑏(1)
2 = 1

• Don’t make false statements!



False Statements

• Reasoning with a false statement leads to infinitely more false statements:

𝐴𝑐 = 𝑏
𝐴#𝐴𝑐 = 𝐴#𝑏

𝑐 = 𝐴#𝐴 %&(𝐴#𝑏)

• Don’t make false statements!

• A mix of false/true statements makes it difficult to keep track of what is and what 
is not true

Is it? Is it really? 



False Statements

• Consider a very simple 𝐴𝑐 = 𝑏 given by:  11 𝑐 = 3
4

• This contains the equations 𝑐 = 3 and 𝑐 = 4, and as such is a false statement

• Solve via 1 1 1
1 𝑐 = 1 1 3

4 , so 2𝑐 = 7 or 𝑐 = 3.5

• Row scale the first equation by 10 to obtain:  101 𝑐 = 30
4

• Solve via 10 1 10
1 𝑐 = 10 1 30

4 , so 101𝑐 = 304 or 𝑐 = 3 &
&'&

• Perfectly valid row scaling leads to a different answer



False Statements

• Again, starting with the same:  11 𝑐 = 3
4

• Subtract 2*(row 1) from row 2 to obtain 1
−1 𝑐 = 3

−2
• Solve via 1 −1 1

−1 𝑐 = 1 −1 3
−2 , so 2𝑐 = 5 or 𝑐 = 2.5

• A perfectly valid row operation again leads to a different answer
• Note that 2.5 ∉ 3,4 either!

• Problem: 34 is not in the range of 11 , so 11 𝑐 ≠ 3
4 for ∀𝑐 ∈ ℛ



False Statements

• Consider 𝑦 = 𝑐&𝜙& with monomial 𝜙& = 1, and data points (1,3) and (2,4)

• This leads to the same 11 𝑐& = 3
4



True Statements

• Consider 𝑦 = 𝑐&𝜙& with monomial 𝜙& = 1, and data points (1,3) and (2,3)

• This leads instead to 11 𝑐& = 3
3 which is valid and has solution 𝑐& = 3



True Statements

• When 𝑏 is in the range of 𝐴, then 𝐴𝑐 = 𝑏 is a true statement
• There exists at least one 𝑐 (by definition) constrained by this statement

• When 𝑏 is in not the range of 𝐴, then 𝐴𝑐 ≠ 𝑏 is the true statement
• In this case, 𝐴𝑐 ≠ 𝑏 is true for all 𝑐

• The equation for the residual 𝑟 = 𝑏 − 𝐴𝑐 is always true (it’s a definition)
• When 𝑏 is in the range of 𝐴, there exists a 𝑐 with 𝐴𝑐 = 𝑏 and 𝑟 = 0
• When 𝑏 is not in the range of 𝐴, then 𝐴𝑐 ≠ 𝑏 and 𝑟 ≠ 0 for all 𝑐

• The goal in both cases is to minimize the residual 𝑟 = 𝑏 − 𝐴𝑐



Norm Matters

• Consider 𝑦 = 𝑐&𝜙& where 𝜙& = 1 along with data points 1,3 , (2,3), and (3,4)

• This leads to 𝑟 =
3
3
4

−
1
1
1

𝑐&

• Setting 𝑐& = 3.5 minimizes 𝑟 ( with 𝑟 =
−.5
−.5
.5

, 𝑟 ( = .5, 𝑟 $ =
)
$

• Setting 𝑐& = 3 &
)

minimizes 𝑟 $ with 𝑟 =
−1/3
−1/3
2/3

, 𝑟 ( = $
)
, 𝑟 $ =

*
)



Row Operations Matter

• Given a set of equations, they can be manipulated in various ways
• These manipulations often change the answer

• Thus, one should carefully choose the residual they want minimized

• Equivalent sets of equations lead to different answers when minimizing the 
corresponding residuals



Weighted Minimization

• Given 𝑟 = 𝑏 − 𝐴𝑐, some equations may be deemed more important than others
• Scaling entries in the residual (before taking the norm) changes the relative 

importance of various equations
• This is accomplished by minimizing 𝐷𝑟 for a diagonal matrix 𝐷 with non-zero 

diagonal entries
• This is equivalent to row scaling: 𝐷𝑟 = 𝐷𝑏 − 𝐷𝐴𝑐

• Column scaling doesn’t effect the residual, e.g. 𝐷𝑟 = 𝐷𝑏 − 𝐷𝐴I𝐷%&(I𝐷𝑐)
• So, it can be used to preserve symmetry: 𝐷𝑟 = 𝐷𝑏 − (𝐷𝐴𝐷#)(𝐷%#𝑐)
• when 𝐴 is square and symmetric



Least Squares

• Minimizing 𝑟 $ is referred to as least squares, and the resulting solution is 
referred to as the least squares solution (it’s really a least squares solution)
• A least squares solution is the unique solution when 𝑟 $ = 0

• Minimizing 𝐷𝑟 $ is referred to as weighted least squares

• 𝑟 $ is minimized when 𝑟 $
$ is minimized

• And 𝑟 $
$ = 𝑟 ⋅ 𝑟 = 𝑏 − 𝐴𝑐 ⋅ 𝑏 − 𝐴𝑐 = 𝑐#𝐴#𝐴𝑐 − 2𝑏#𝐴𝑐 + 𝑏#𝑏 is minimized 

when 𝑐#𝐴#𝐴𝑐 − 2𝑏#𝐴𝑐 is minimized
• Thus, minimize 𝑐#𝐴#𝐴𝑐 − 2𝑏#𝐴𝑐
• For weighted least squares, minimize 𝑐#𝐴#𝐷$𝐴𝑐 − 2𝑏#𝐷$𝐴𝑐


