Copyright Protection

- Digital collections are very easy to copy:
 - Music, videos, text...
 - Easy to protect digital copyrighted content
 - An active topic in this lecture.
- Should content be protected? (not our main topic)
 - Music is often shared for personal enjoyment.
 - It should not conflict with intellectual property doctrine.
- Can content be protected?
 - Persistent piracy is considered in copying.
 - Technology can potentially prevent small-scale copying:
 - Keeping honest people honest.

Method 1: Copyright Crawlers

- From here on all oys use music as an example.
- Suppose we had a ContentAware hash function:
 - $O : \text{music} \rightarrow \text{short strings}$
 - Satisfying:
 1. O_1 and O_2 are two clips (e.g. music files) that play the same song then $O_1 = O_2$.
 2. Given a clip O a pirate cannot create an acceptable clip O' such that $O = O'$.
- A hash function must resist all signal processing tricks.
- Do such hash functions exist?
 - Many do (some claim to have them).

Examples

- iGigarc Interlaced images.
- Digi: Digital images.
- Livakumar: Tampered.
 - crawl is the OIL (looking for academic plagiarism).
 - Several success stories.

Light improvement: Watermarking

- ContentAware hash functions are not effective.
- Idea: at the recording studio embed a hidden Watermark in the music file:
 - $\text{Wmark}(O) \rightarrow \text{watermarked version of music file}$
 - With information embedded in it.
 - Retrieve $\text{Wmark}(O)$ takes the watermarked music file and outputs the embedded Watermark $\text{Wmark}(O)$.

- Properties:
 - Watermark must be inaudible.
 - Watermark should be robust:
 - O, $\text{Wmark}(O)$
 - Given a clip O a pirate cannot create an acceptable O' such that $\text{Wmark}(O') = O'$.
 - Note: watermarked content must resist all signal processing tricks.
 - Resampling/cropping/label past (filtering).
Issues

- Copyright crawler uses Retrieve algorithm.

■ Benefits:
 - Copyright crawler does not need to maintain all copyrighted material.
 - Does not need to be hash.
 - Watermarking music seems to be an easier problem.

■ Same problems as before:
 - Does not defend against anonymous postings.
 - High overhead.

Robust Watermarks

- Object typically mined. Retrieve alg is kept secret.

- a robust watermarking system listed.
 - Known:

 - binark: general tool for removing image watermarks.
 - Obvious all watermarking scheme.

 - chaljngs:
 - Broken database all
 - Obje mark

Watermarking Images (>200 papers)

- DigiMarc: embeds creator's serial number.
 - Add or subtract small random quantities from each pixel. Embedded signal kept secret.

- Signafy (NEC).
 - Add small modifications to random frequencies of entire Fourier Spectrum.
 - Embedded signal kept secret.

- Caronni: Embed geometric shapes in background.

- Signum Tech. (SureSign).

Watermarking Music (>100 papers)

- Aris Tech (MusicCode):
 - Date: 2 bits/sec of music

- Solara (EDNA)
 - Used by Liquid Audio.

- Argent:
 - Embed full text information.
 - Frame based: info inserted at random areas of signal
 - Secret key determines random areas.

Method 2: policy watermark

- No copyright crawlers.
- Embed usage policy as watermark in music file.
- Every music player in the world works as follows:
 - Use Retrieve algorithm to check if watermark exists.
 - If so, play music only if policy is satisfied
 - (e.g. payment, authorized player, etc.).

- Big problems with this:
 - How to upgrade all music players? Why would consumers agree?
 - Retrieve algorithm is in the public domain.
 - Makes watermarking an even harder problem.
 - Open source players will ignore embedded policy.
- Seems to be the approach preferred by RIAA.

Method 3: Fingerprinting

- No copyright crawlers. No big brotherigail players.
- Completely passive.
- Basic idea:
 - embed a unique user into each sold copy.
 - If user posts copy to web or Napster, embedded user identifies user.
- Problem:
 - Need ability to create distinct and indistinguishable versions of object.
 - Pollution: two users can compare their objects to find parts of the fingerprint.
race Revoke schemes

Example: DSS

- DSS: Content Scrambling System
 - Used to protect DSS movies.
 - Each DSS player manufacturer i has key d_i, e.g., d_{sony}
 - Embed same key d_{sony} in all players from Sony.
 - Every DSS movie M is encrypted as follows:
 - $Enc_{key}(M) \times d_{sony}$, a random key.
 - $E_{key}(M) \times d_{sony}$
 - About DSS manufacturer keys.

Problems with DSS

- DSS: Extracted manufacturer key from DSSing software player.
 - Could then decrypt any DSS movie that could be played on the DSSing player.
 - M2AA revoked DSS key: disabled all DSS players.

- Bigger problem:
 - Encryption algorithm in DSS is based on DSSRS.
 - Very fast: video rate decryption on weak DSS player.
 - Very weak: one manuf. key can get all keys.

Better revocation technique

- Basic idea: embed a distinct key in every player.

Players:

- Every node v has an associated key d_v.
- Every player corresponds to leaf node.
- Key for player i: all keys on path from root to leaf i.

Revocation

- Initially: encrypt all content with key at root.
 - Any player can decrypt content.
 - When player i is revoked encrypt content-key so that all players can decrypt other than player i.
ow to tell which player to revoke?

- When pirate publishes single key on Internet, the pirate knows which key to revoke.
- Low can use AAA to tell which keys all added in player.
- Our system can interact with player and determine how to revoke that player.