CS206 --- Electronic Commerce
Dan Boneh
Yoav Shoham
Jeff Ullman
others . . .

High-Level Overview
◆ Discovering buyers and sellers
 • Buyers finding sellers
 • Search engines
 • Sellers finding buyers
 • Data mining
◆ Making a deal
 • Auctions
◆ Executing the deal
 • Payments, security

About the Course
◆ Minimal prerequisites:
 • CS106, CS107
 • Mathematical and algorithmic “sophistication”
◆ Emphasis on technology, not “what you need to know to start your very own dot-com.”

Issue: B2B Versus B2C
◆ Businesses buy/sell on-line.
 • Specialized transactions: RFP, reserve, query inventory, etc.
 • Catalogs support purchases, design.
 • Integration of supplier catalogs.
◆ High-value auctions.
 • e.g., bandwidth for wireless.

Typical Buyer: Dell

Technical Problems
◆ Transport standards, e.g. HTTP, RPC.
◆ Standards for interpreting messages, e.g., SOAP.
 • What is requested? What is offered? Terms?
◆ Lexicons or “ontologies.”
 • Is 60G the same number of bytes always?
Technical Problems 2

◆ Integration, wrappers, middleware.
 • Different suppliers have different back-end systems. How do they talk to the hub?
◆ Security, authorization.
 • Who is allowed to see what?
 • Who is allowed to make decisions?
 • How do you keep out intruders?

B2C

◆ Many more participants.
◆ Payment an integral part of the process.
 • Identification, secure transfer.
◆ Sellers succeed by helping the buyer search.
◆ Massive auction site(s).

Typical Seller: Amazon

Technical Problems

◆ Balancing DB/Web/App servers, distributing load.
◆ Wise use of (Web-page) real estate.
 • Pick a few good things to pitch to the known customer.
 • Requires complex data-mining.
 • Example: Amazon figured out I like Vivaldi and similar composers. End in “?” Italian renaissance? Composers bought by others who buy Vivaldi CD’s?

Technical Problems 2

◆ Exchange of sensitive information, e.g., credit-card numbers.
◆ Keeping stored, personal data secret.
◆ Managing auctions.
 • Example: 10 matching placemats for sale.
 • A: $4/each for <= 4,
 • B: $3/each for exactly 7.
 • C: $2/each for <= 6.

Finding Sellers

◆ A major use of search engines is finding pages that offer an item for sale.
◆ How do search engines find the right pages?
◆ We’ll study:
 • Google’s PageRank technique and other “tricks”
 • “Hubs and authorities.”
Page Rank

◆ Intuition: solve the recursive equation: “a page is important if important pages link to it.”
◆ In high-falutin’ terms: compute the principal eigenvector of the stochastic matrix of the Web.
 • A few fixups needed.

Stochastic Matrix of the Web

◆ Enumerate pages.
◆ Page i corresponds to row and column i.
◆ \(M[i, j] = 1/n \) if page j links to n pages, including page i; 0 if j does not link to i.
 • Seems backwards, but allows multiplication by \(M \) on the left to represent “follow a link.”

Example

Suppose page j links to 3 pages, including i

\[
\begin{array}{ccc}
 & i & \text{1/3} \\
 j & & \\
 & j & \\
\end{array}
\]

Random Walks on the Web

◆ Suppose \(\nu \) is a vector whose \(i \)th component is the probability that we are at page \(i \) at a certain time.
◆ If we follow a link from \(i \) at random, the probability distribution of the page we are then at is given by the vector \(M\nu \).

Random Walks 2

◆ Starting from any vector \(\nu \), the limit \(M(M(...M(\nu)...) \) is the distribution of page visits during a random walk.
◆ Intuition: pages are important in proportion to how often a random walker would visit them.
◆ The math: limiting distribution = principal eigenvector of \(M \) = PageRank.

Example: The Web in 1839

\[
\begin{array}{c|c|c|c}
 y & a & m \\
 \hline
 y & 1/2 & 1/2 & 0 \\
 a & 1/2 & 0 & 1 \\
 m & 0 & 1/2 & 0 \\
\end{array}
\]
Simulating a Random Walk

◆ Start with the vector \(\mathbf{v} = [1, 1, \ldots, 1] \) representing the idea that each Web page is given one unit of "importance."
◆ Repeatedly apply the matrix \(M \) to \(\mathbf{v} \), allowing the importance to flow like a random walk.
◆ Limit exists, but about 50 iterations is sufficient to estimate final distribution.

Example

◆ Equations \(\mathbf{v} = M \mathbf{v} \):
 * \(y = y/2 + a/2 \)
 * \(a = a/2 + m \)
 * \(m = a/2 \)

\[
\begin{array}{cccccc}
 y & a & m \\
 1 & 1 & 5/4 & 9/8 & 6/5 \\
 1/2 & 1/2 & 1 & 11/8 & \ldots & 6/5 \\
 1/2 & 1/4 & 1/2 & 3/4 & 3/5 \\
\end{array}
\]

Solving The Equations

◆ Because there are no constant terms, these 3 equations in 3 unknowns do not have a unique solution.
◆ Add in the fact that \(y + a + m = 3 \) to solve.
◆ In Web-sized examples, we cannot solve by Gaussian elimination; we need to use relaxation (= iterative solution).

Real-World Problems

◆ Some pages are "dead ends" (have no links out).
 * Such a page causes importance to leak out.
◆ Other (groups of) pages are spider traps (all out-links are within the group).
 * Eventually spider traps absorb all importance.

Microsoft Becomes Dead End

\[
\begin{array}{cccccc}
 y & a & m \\
 1/2 & 1/2 & 0 \\
 1/2 & 0 & 0 \\
 0 & 1/2 & 0 \\
\end{array}
\]

Example

◆ Equations \(\mathbf{v} = M \mathbf{v} \):
 * \(y = y/2 + a/2 \)
 * \(a = y/2 \)
 * \(m = a/2 \)

\[
\begin{array}{cccccc}
 y & a & m \\
 1 & 1 & 3/4 & 5/8 & 0 \\
 1/2 & 1/2 & 3/8 & \ldots & 0 \\
 1/2 & 1/4 & 1/4 & 1/4 & 0 \\
\end{array}
\]
M’soft Becomes Spider Trap

Example

Example $\nu = \nu v$

- $y = y/2 + a/2$
- $a = y/2$
- $m = a/2 + m$

Google Solution to Traps, Etc.

General Case

Solving the Equations

- Because there are constant terms, we can expect to solve small examples by Gaussian elimination.
- Web-sized examples still need to be solved by relaxation.

Ex: Previous with 20% Tax

Equations $\nu = 0.8(\nu v) + 0.2$:

- $y = 0.8(y/2 + a/2) + 0.2$
- $a = 0.8(y/2) + 0.2$
- $m = 0.8(a/2 + m) + 0.2$

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1</td>
<td>1</td>
<td>3/4</td>
<td>5/8</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>1/2</td>
<td>1/2</td>
<td>3/8</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>m</td>
<td>1/2</td>
<td>1/2</td>
<td>7/4</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Tax each page a fixed percentage at each iteration.

Add the same constant to all pages.

Models a random walk in which surfer has a fixed probability of abandoning search and going to a random page next.

In this example, because there are no dead-ends, the total importance remains at 3.

In examples with dead-ends, some importance leaks out, but total remains finite.
Search-Engine Architecture

◆ All search engines, including Google, select pages that have the words of your query.
◆ Give more weight to the word appearing in the title, header, etc.
◆ Inverted indexes speed the discovery of pages with given words.

Google Anti-Spam Devices

◆ Early search engines relied on the words on a page to tell what it is about.
 ◆ Led to "tricks" in which pages attracted attention by placing false words in the background color on their page.
◆ Google trusts the words in anchor text
 ◆ Relies on others telling the truth about your page, rather than relying on you.

Use of Page Rank

◆ Pages are ordered by many criteria, including the PageRank and the appearance of query words.
 ◆ "Important" pages more likely to be what you want.
◆ PageRank is also an antispam device.
 ◆ Creating bogus links to yourself doesn't help if you are not an important page.

Hubs and Authorities

Distinguishing Two Roles for Pages

Hubs and Authorities

◆ Mutually recursive definition:
 ◆ A hub links to many authorities;
 ◆ An authority is linked to by many hubs.
◆ Authorities turn out to be places where information can be found.
 ◆ Example: CS206 class-notes files.
◆ Hubs tell who the authorities are.
 ◆ Example: CS206 resources page.

Transition Matrix A

◆ H&A uses a matrix $A[i,j] = 1$ if page i links to page j, 0 if not.
◆ A^T, the transpose of A, is similar to the PageRank matrix M, but A^T has 1's where M has fractions.
Example

Using Matrix A for H&A

- Powers of A and A^T diverge in size, so we need scale factors.
- Let \mathbf{h} and \mathbf{a} be vectors measuring the "hubbiness" and authority of each page.
- Equations: $\mathbf{h} = \mathcal{Y}\mathbf{A}\mathbf{a}$; $\mathbf{a} = \mathcal{D}A^T\mathbf{h}$.
 - Hubbiness = scaled sum of authorities of linked pages.
 - Authority = scaled sum of hubbiness of linked predecessors.

Consequences of Basic Equations

- From $\mathbf{h} = \mathcal{Y}\mathbf{a}$; $\mathbf{a} = \mathcal{D}A^T\mathbf{h}$ we can derive:
 - $\mathbf{h} = \mathcal{Y}\mathcal{D}A^T\mathbf{h}$
 - $\mathbf{a} = \mathcal{Y}\mathcal{D}A\mathbf{a}$
- Compute \mathbf{h} and \mathbf{a} by iteration, assuming initially each page has one unit of hubbiness and one unit of authority.
 - Pick an appropriate value of \mathcal{Y}.

Solving the Equations

- Solution of even small examples is tricky, because the value of \mathcal{Y} is one of the unknowns.
 - Each equation like $y = \mathcal{Y}(3+y+2a+m)$ lets us solve for \mathcal{Y} in terms of y, a, m.
 - Equate each expression for \mathcal{Y}.
- As for PageRank, we need to solve big examples by relaxation.