1 Problem 1

The protocol differs from that presented in class in that the user’s identity is divided into \(n+1 \) pieces rather than 2 pieces, and the spending and deposit protocols are modified accordingly:

\[
ID = ID_1 \oplus ID_2 \oplus \cdots \oplus ID_{n+1}
\]

As long as the user doesn’t overspend, her anonymity is obviously preserved. If she spends the coins \(n+1 \) times (or more), her identity should be exposed with probability \(1 - \epsilon \). The main difficulty was to determine the number of times \(k \) that the user’s identity should be split into \(n+1 \) pieces to ensure that probability of \(1 - \epsilon \). In the original scheme, \(k \) was fixed: \(k = 100 \). Now, we want to determine \(k \) as a function of \(n \) and \(\epsilon \).

If the user spends the coin \(n+1 \) times, the bank knows \(n+1 \) values chosen uniformly independently at random from the set \(\{ID_j\} \). The probability that these \(n+1 \) values are all distinct is:

\[
p = \frac{\text{choices of (n+1) distinct values}}{\text{all choices of (n+1) values}} = \frac{(n+1)!}{(n+1)^{n+1}}
\]

If we repeat this \(k \) times, the probability that the \(n+1 \) values are never distinct is \(\epsilon = (1 - p)^k \) and thus

\[
k = \frac{\log \epsilon}{\log(1 - p)}
\]

If we replace the value for \(p \) in this equation and simplify with Stirling’s formula for approximating factorials, we get:

\[
k \approx -e^{n+1} \log \epsilon
\]

This shows that \(k \) grows exponentially with \(n \). While our solution works well for small values of \(n \), it is not very scalable.

2 Problem 2

Part a:
The equation says that after revoking \(t \) pirated CD players, every player that was not revoked has at least one key not known to the revoked players. This key can be used to encrypt future content.
Part b:
Start with a set of n keys and give each player a different subset of these keys of size $n/2$ (assume n even). It is easy to verify that this family of subsets satisfies the condition of 2a for $t = 1$. Indeed, a subset of $n/2$ keys can never be fully contained within a different subset of the same size. The number of players we can support is:

$$m = \binom{n}{n/2} = \frac{n!}{(n/2)!/(n/2)!}$$

Stirling’s approximation for factorials gives:

$$n! \approx \sqrt{2\pi n}(n/e)^n$$

This allows us to simplify the formula for m:

$$m \approx 2^n \sqrt{\frac{2}{\pi n}}$$

And thus $\log m \approx n - 1/2 \log n$ which shows $n = O(\log m)$.

Part c:
Start with a set of n^2 keys indexed by (i, j) for $1 \leq i, j \leq n$. Pick for each player a different subset S of the integers in the range $[1:n]$ such that the subset S is of size $n/2$. Give each player all the keys (i, j) for which $i \in S$ and $j \in S$.

It is easy to convince yourself that the family of sets thus defined satisfies the condition of 2a for $t = 2$. Suppose users A and B have been revoked. Consider user C. Since $S_A \neq S_C$, there is at least an index i which belongs to S_C but not to S_A. Similarly, there exists an index j which belongs to S_C but not to S_B. The key (i, j) is known to C, but not to A or B.

The number of players supported by this scheme is as in 2b. Therefore $n = O(\log m)$ and the total number of keys is $n^2 = O(\log^2 m)$.