
Eric Roberts Handout #10
CS 208E October 18, 2016

Stored Program Machines

!"#$%&'($#)$*+',*-./0%1'

2$/-'3#4%$"1'
5!'6782'

9-"#4%$':8;'67:<'

=.%'>#0'?%@+*00'A$-./"%-"@$%'
B� 90%' #C' ".%' C#@0&*"/#0*D' /&%*1' #C'

+#&%$0' -#+E@"/0)F"$*&/"/#0*DDG'
*""$/4@"%&' "#' H#.0' >#0' ?%@+*00'
*D".#@).' #".%$1' -*0' +*I%' >*D/&'
-D*/+1'"#'".%'/&%*F/1'".*"'-#&%'/1'
1"#$%&' /0' ".%' 1*+%' +%+#$G' *1'
&*"*J' ' =./1' -#0-%E"' /1' -*DD%&' ".%'
stored programming modelJ'

B� =.%'0%K"'C%L'1D/&%1' /0"$#&@-%' ".%'
,*0-.%1"%$' M*4G;' L./-.' L*1' ".%'
C/$1"'1"#$%&NE$#)$*+'-#+E@"%$J' 'O0'
".%' $%1"' #C' "#&*GP1' -D*11;' O' L/DD'
&%1-$/4%'".%'#E%$*"/#0'#C'*'1D/)."DG'
+#$%' E#L%$C@D' +*-./0%' ".*"' OP>%'
0/-I0*+%&'=#&&D%$J''

!"#$%&"$%'()*+$$%+$,%!-%."/(01%233($#(4*(0�

=.%',*0-.%1"%$'M*4G' !"$@-"@$%'#C'".%'=#&&D%$',*-./0% '

!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�

!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�

!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�

!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�

!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�

!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�

!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�

!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�

!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�

!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�
!�!�!�"�

! x " x #x $x %x &x ' x (x) x * x

!
"

$
%
&
'
(
)
*

!�!�!�"�
+,

!�!�
-, ./

!�!�!�"�

Console�

=.%'=#&&D%$'O01"$@-"/#0'!%"'

! xx" #$%&" xx" Q#*&1'".%'>*D@%'C$#+'*&&$%11'xx'/0"#'".%'A5"

' xx" ()$*+" xx" !"#$%1'".%'>*D@%'C$#+'A5'/0"#'*&&$%11'xx"

, xx" %&&"xx" A&&1'".%'>*D@%'*"'*&&$%11'xx'"#'".%'A5"

- xx" (./" xx" !@4"$*-"1'".%'>*D@%'*"'*&&$%11'xx'C$#+'A5"

0xx" 123.)" xx" 3%*&1'*'>*D@%'/0"#'*&&$%11'xx"

4xx" $.)3.)" xx" ($/0"1'".%'>*D@%'/0'*&&$%11'xx"

566" 7%#)" R*D"1'".%'+*-./0%"

5xx" 8.93" xx" =*I%1'".%'0%K"'/01"$@-"/#0'C$#+'*&&$%11'xx"
: xx' 8.93;" xx" H@+E1'"#'xx'/C'".%'A5'/1'S%$#"

<xx' 8.932" xx" H@+E1'"#'xx'/C'".%'A5'/1'0%)*"/>%"

=.%'A&&N=L#N?@+4%$1'($#)$*+'

"#$! � %&'()*$! �+!,-�
"#$, � %&'()*$, �+!.-�
",$! � /012*$! �+!3-�
"3$, � 122*$, �+!4-�
".$. � 5)067*$. �+!$-�
"8$. � 0()'()*$. �+!9-�
"$!! � :1/) �+!;-�

Ð 2 Ð

The Instruction Cycle
1. Fetch the current instruction. In this phase, Toddler

finds the word from the memory address specified by the
PC and copies its value into the IR.

2. Increment the program counter. Once the current
instruction has been copied into the IR, Toddler adds one
to the PC so that it points to the next instruction.

3. Decode the instruction in the instruction register. The
value copied into the IR is a three-digit integer. To use it
as an instruction, Toddler must divide the instruction
word into its opcode and address components.

4. Execute the instruction. Once the operation code and
address field have been identified, the Toddler processor
must carry out the steps necessary to perform the
indicated action.

The Countdown Program

+111� start: LOAD ten (01)�
+212� STORE i (02)�
+709� loop: JUMPN done (03)�
+912� OUTPUT i (04)�
+112� LOAD i (05)�
+410� SUB one (06)�
+212� STORE i (07)�
+503� JUMP loop (08)�
+500� done: HALT (09)�
+001� one: 1 (10)�
+010� ten: 10 (11)�
+000� i: 0 (12)�

assembly language

Representing Constants
•� Just as was true for the Analytical Engine, constants in the

Toddler machine need to be stored in one of the memory
addresses, as illustrated by the following lines from the
assembly language version of Countdown.td:

one: 1
ten: 10

•� The instruction LOAD ten then refers to a memory address that
contains the value 10.

LOAD #10

•� Toddler also allows you to write

which finds space for the constant 10 at the end of the
program and then fills in the LOAD instruction with the
address of that constant.

Exercise: Multiply Two Numbers
•� How would you write a Toddler program to multiply two

nonnegative numbers, even though the machine has no
multiply instruction?

Console�
 ?
 ?
42
 7
 6

