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We’ve learned a lot in the previous two lectures. These are the key concepts from the previous 
two lectures. If you’re unsure about any of these, you should go back to the previous two 
lectures to make sure. 
 
Graphs and sessions 
 
TF Ops: constants, variables, functions 
 
TensorBoard! 
 
Lazy loading 
 
We’ve already covered the fundamentals of TensorFlow. Yes, we’re that fast! Let’s put them all 
together to see what we could do. 
 
1. Linear Regression in TensorFlow 
 
Let’s start with a simple linear regression example. I hope you all are already familiar with linear 
regression. If not, you can read about it on ​Wikipedia​.  
 
Problem​: We often hear insurance companies using factors such as number of fire and theft in 
a neighborhood to calculate how dangerous the neighborhood is. My question is: is it 
redundant? Is there a relationship between the number of fire and theft in a neighborhood, and if 
there is, can we find it?  
 
In other words, can we find a function f so that if X is the number of fires and Y is the number of 
thefts, then: Y = f(X)? 
 
Given the relationship, if we have the number of fires in a particular area, can we predict the 
number of thefts in that area. 
 
We have the dataset collected by the U.S. Commission on Civil Rights, courtesy of ​Cengage 
Learning​. 
 
Dataset Description: 
Name: Fire and Theft in Chicago 
X = fires per 1000 housing units 

mailto:huyenn@stanford.edu
https://en.wikipedia.org/wiki/Linear_regression
http://college.cengage.com/mathematics/brase/understandable_statistics/7e/students/datasets/slr/frames/slr05.html
http://college.cengage.com/mathematics/brase/understandable_statistics/7e/students/datasets/slr/frames/slr05.html


Y = thefts per 1000 population 
within the same Zip code in the Chicago metro area 
Total number of Zip code areas: 42 
 
Solution​:  
First, assume that the relationship between the number of fires and thefts are linear:  
Y = wX + b  
 
We need to find the scalar parameters w and b, using mean squared error as the loss function. 
Let’s write the program. 
 

import numpy as np 
import matplotlib.pyplot as plt 
import tensorflow as tf 
import xlrd 
 
DATA_FILE ​=​ ​"data/fire_theft.xls" 
 
# Step 1: read in data from the .xls file 
book ​=​ xlrd​.​open_workbook​(​DATA_FILE​,​ encoding_override​=​"utf-8") 
sheet ​=​ book​.​sheet_by_index​(​0) 
data ​=​ np​.​asarray​([​sheet​.​row_values​(​i​)​ ​for​ i ​in​ range​(​1​,​ sheet​.​nrows​)]) 
n_samples ​=​ sheet​.​nrows ​-​ 1 
 
# Step 2: create placeholders for input X (number of fire) and label Y (number of 
theft) 
X ​=​ tf​.​placeholder​(​tf​.​float32​,​ name​=​"X") 
Y ​=​ tf​.​placeholder​(​tf​.​float32​,​ name​=​"Y") 
 
# Step 3: create weight and bias, initialized to 0 
w ​=​ tf​.​Variable​(​0.0​,​ name​=​"weights") 
b ​=​ tf​.​Variable​(​0.0​,​ name​=​"bias") 
 
# Step 4: construct model to predict Y (number of theft) from the number of fire 
Y_predicted ​=​ X ​*​ w ​+​ b  
 
# Step 5: use the square error as the loss function 
loss ​=​ tf​.​square​(​Y ​-​ Y_predicted​,​ name​=​"loss") 
 
# Step 6: using gradient descent with learning rate of 0.01 to minimize loss 
optimizer ​=​ tf​.​train​.​GradientDescentOptimizer​(​learning_rate​=​0.001​).​minimize​(​loss) 
  
with​ tf​.​Session​()​ ​as​ sess: 

# Step 7: initialize the necessary variables, in this case, w and b 
sess​.​run​(​tf​.​global_variables_initializer​())  
 
# Step 8: train the model 
for​ i ​in​ range​(​100​):​ ​# run 100 epochs 

for​ x​,​ y ​in​ data: 
# Session runs train_op to minimize loss 



sess​.​run​(​optimizer​,​ feed_dict​={​X​:​ x​,​ Y​:​y​})  
 
# Step 9: output the values of w and b 
w_value​,​ b_value ​=​ sess​.​run​([​w​,​ b​])  

 
After training for 100 epochs, we got the average square loss to be 1372.77701716 with w = 
1.62071, b = 16.9162. The loss is quite large. 

It doesn’t quite fit. Can we do better with quadratic function Y = wXX + uX + b? 
Let’s try. We only have to add another variable b and change the formula for Y_predicted. 
 

# Step 3: create variables: weights_1, weights_2, bias. All are initialized to 0 
w ​=​ tf​.​Variable​(​0.0​,​ name​=​"weights_1") 
u ​=​ tf​.​Variable​(​0.0​,​ name​=​"weights_2") 
b ​=​ tf​.​Variable​(​0.0​,​ name​=​"bias") 
 
# Step 4: predict Y (number of theft) from the number of fire 
Y_predicted ​=​ X ​*​ X ​*​ w ​+​ X ​*​ u ​+​ b  
 
# Step 5: Profit! 

 
After 10 epochs, we got the average square loss to be 797.335975976 with w, u, b = [0.071343 
0.010234 0.00143057] 
 



 
 
This takes less time to converge than the linear function, but still completely off due to the 
several outliers on the right. It probably does better with ​Huber loss  instead of MSE or a 3rd 1

degree polynomial as the function f. You can try at home. 
 
Using Huber loss for quadratic model, I got something that’s slightly better at ignoring the 
outliers: 

1 The Huber loss is basically a compromise between absolute loss and squared loss. Huber loss function is 
quadratic for residuals smaller than a certain value, and linear for residuals larger than that certain value.  

https://en.wikipedia.org/wiki/Huber_loss


 
 
How do we know that our model is correct? 
Use correlation coefficient R-squared 
In case you don’t know what R-squared is, Minitab has a great blog post explaining it ​here​. 
Below is the gist of it: 
“R-squared is a statistical measure of how close the data are to the fitted regression line.  
 
It is also known as the coefficient of determination, or the coefficient of multiple determination 
for multiple regression.  
 
The definition of R-squared is fairly straight-forward; it is the percentage of the response 
variable variation that is explained by a linear model.  
R-squared = Explained variation / Total variation” 
 
Run on a test set 
 
We’ve learned in machine learning class that it all comes down to validation and testing. So the 
first method is obviously to test our model on a test set. 
 

http://blog.minitab.com/blog/adventures-in-statistics-2/regression-analysis-how-do-i-interpret-r-squared-and-assess-the-goodness-of-fit


Having separate datasets for training, validating, and testing are great, but this means that we 
will have less data for training. There is a lot of literature that helps us get around the cases 
where we don’t have a lot of data to spare, such as k-fold cross validation.  
 
Test our model with dummy data 
 
Another way we can test our model is test it on dummy data. For example, in this case, we can 
create some dummy data whose linear relation we already know to test our model. In this case, 
let’s create 100 data points (X, Y) such that Y ~ 3 * X, and see if our model output w = 3, b = 0. 
 
Generating dummy data: 
 

# each value y is approximately linear but with some random noise 
 
X_input ​=​ np​.​linspace​(-​1​,​ ​1​,​ ​100) 
Y_input ​=​ X_input ​*​ ​3​ ​+​ np​.​random​.​randn​(​X_input​.​shape​[​0​])​ ​*​ ​0.5 

 
We use numpy array for X_input and Y_input to support iteration later (when we feed in inputs 
to placeholders X and Y). 
 



 
It fits beautifully! 
 
Moral of the story​: dummy data is a lot easier to handle than real world data, because dummy 
data was generated to match the assumptions of our model. Real world is tough! 
 
Analyze the code 
 
The code in our model is pretty straightforward, except for two lines: 
 

optimizer ​=​ tf​.​train​.​GradientDescentOptimizer​(​learning_rate​=​0.01​).​minimize​(​loss) 
sess​.​run​(​optimizer​,​ feed_dict​={​X​:​ x​,​ Y​:​y​})  

 
I remember the first time I ran into code similar to these, I was very confused. Two questions: 
1. Why is train_op in the fetches list of tf.Session.run()? 
2. How does TensorFlow know what variables to update? 
 



We can actually pass any TensorFlow ops as fetches in tf.Session.run(). TensorFlow will 
execute the part of the graph that those ops depend on. In this case, we see that train_op has 
the purpose of minimize loss, and loss depends on variables w and b.  
 

 
 
From the graph, you can see that the giant node GrandientDescentOptimizer depends on 3 
nodes: weights, bias, and gradients (which is automatically taken care of for us). 
 
Optimizers 
 
GradientDescentOptimizer means that our update rule is gradient descent. TensorFlow does 
auto differentiation for us, then update the values of w and b to minimize the loss. Autodiff is 
amazing! 
 
By default, the optimizer trains all the trainable variables whose objective function depend on. If 
there are variables that you do not want to train, you can set the keyword trainable to False 
when you declare a variable. One example of a variable you don’t want to train is the variable 
global_step, a common variable you will see in many TensorFlow model to keep track of how 
many times you’ve run your model. 
 

global_step = tf.Variable(0, trainable=False, dtype=tf.int32) 

learning_rate = 0.01 * 0.99 ** tf.cast(global_step, tf.float32) 

 

increment_step = global_step.assign_add(1) 



optimizer = tf.GradientDescentOptimizer(learning_rate) # learning rate can be a 

tensor 

 
While we are at it, let’s look at the full definition of the class tf.Variable: 

tf​.​Variable​(​initial_value​=​None​,​ trainable​=​True​,​ collections​=​None​, 
validate_shape​=​True​,​ caching_device​=​None​,​ name​=​None​,​ variable_def​=​None​,​ dtype​=​None​, 
expected_shape​=​None​,​ import_scope​=​None) 

 
You can also ask your optimizer to take gradients of specific variables. You can also modify the 
gradients calculated by your optimizer. 
 

# create an optimizer. 

optimizer ​=​ ​GradientDescentOptimizer​(​learning_rate​=​0.1) 
 

# compute the gradients for a list of variables. 

grads_and_vars ​=​ opt​.​compute_gradients​(​loss​,​ ​<​list of variables​>) 
 

# grads_and_vars is a list of tuples (gradient, variable).  Do whatever you 

# need to the 'gradient' part, for example, subtract each of them by 1. 

subtracted_grads_and_vars ​=​ ​[(​gv​[​0​]​ ​-​ ​1.0​,​ gv​[​1​])​ ​for​ gv ​in​ grads_and_vars] 
 

# ask the optimizer to apply the subtracted gradients. 

optimizer​.​apply_gradients​(​subtracted_grads_and_vars) 
 

 
More on computing gradients 
 
The optimizer classes automatically compute derivatives on your graph, but creators of new 
Optimizers or expert users can call the lower-level functions below.  
 

tf​.​gradients​(​ys​,​ xs​,​ grad_ys​=​None​,​ name​=​'gradients'​, 
colocate_gradients_with_ops​=​False​,​ gate_gradients​=​False​,​ aggregation_method​=​None​)  

This method constructs symbolic partial derivatives of sum of ys w.r.t. x in xs. ys and xs are 
each a Tensor or a list of tensors. grad_ys is a list of Tensor, holding the gradients received by 
the ys. The list must be the same length as ys. 
 
Technical detail​: This is especially useful when training only parts of a model. For example, we 
can use tf.gradients() for to take the derivative G of the loss w.r.t. to the middle layer. Then we 
use an optimizer to minimize the difference between the middle layer output M and M + G. This 
only updates the lower half of the network. 
 
List of optimizers 



 
GradientDescentOptimizer is not the only update rule that TensorFlow supports. Here is the list 
of optimizers that TensorFlow supports, as of 1/8/2017. The names are self-explanatory. You 
can visit the​ official documentation​ for more details: 
 
tf.train.GradientDescentOptimizer 
tf.train.AdadeltaOptimizer 
tf.train.AdagradOptimizer 
tf.train.AdagradDAOptimizer 
tf.train.MomentumOptimizer 
tf.train.AdamOptimizer 
tf.train.FtrlOptimizer 
tf.train.ProximalGradientDescentOptimizer 
tf.train.ProximalAdagradOptimizer 
tf.train.RMSPropOptimizer 
 
Sebastian Ruder, a PhD candidate at the Insight Research Centre for Data Analytics did a 
pretty great comparison of these optimizers in ​his blog post​. If you’re too lazy to read, here is 
the conclusion: 
 
“RMSprop is an extension of Adagrad that deals with its radically diminishing learning rates. It is 
identical to Adadelta, except that Adadelta uses the RMS of parameter updates in the 
numerator update rule. Adam, finally, adds bias-correction and momentum to RMSprop. Insofar, 
RMSprop, Adadelta, and Adam are very similar algorithms that do well in similar circumstances. 
Kingma et al. [15] show that its bias-correction helps Adam slightly outperform RMSprop 
towards the end of optimization as gradients become sparser. Insofar, Adam might be the best 
overall choice.” 
 
TL;DR​: Use AdamOptimizer. 
 
Discussion questions 
 
What are some of the real world problems that we can solve using linear regression? Can you 
write a quick program to do so? 
 
Logistic Regression in TensorFlow 
 
We can’t talk about linear regression without logistic regression. Let’s illustrate logistic 
regression in TensorFlow solving the good old classifier on the MNIST database.  
 

https://www.tensorflow.org/api_docs/python/train/
http://sebastianruder.com/optimizing-gradient-descent/


The MNIST database (Mixed National Institute of Standards and Technology database) is 
probably one of the most popular databases used for training various image processing systems 
It is a database of handwritten digits. The images look like this: 
 

 
 
Each image is 28 x 28 pixels, flatten to be a 1-d tensor of size 784. Each comes with a label. 
For example, images on the first row is labelled as 0, the second as 1, and so on. The dataset is 
hosted on Yann Lecun’s website (​http://yann.lecun.com/exdb/mnist/​).  
 
TF Learn (the simplified interface of TensorFlow) has a script that lets you load the MNIST 
dataset from Yann Lecun’s website and divide it into train set, validation set, and test set. 
 

from​ tensorflow​.​examples​.​tutorials​.​mnist ​import​ input_data 
MNIST ​=​ input_data​.​read_data_sets​(​"/data/mnist"​,​ one_hot​=​True​)  

 

One-hot encoding 
In digital circuits, one-hot refers to a group of bits among which the legal combinations of 
values are only those with a single high (1) bit and all the others low (0). 
 
In this case, one-hot encoding means that if the output of the image is the digit 7, then the 
output will be encoded as a vector of 10 elements with all elements being 0, except for the 
element at index 7 which is 1. 

 
MNIST is a TensorFlow’s Datasets object. It has 55,000 data points of training data 
(MNIST.train), 10,000 points of test data (MNIST.test), and 5,000 points of validation data 
(MNIST.validation). 
 

http://yann.lecun.com/exdb/mnist/


The construction of the logistic regression model is pretty similar to the linear regression model. 
However, now we have A LOT more data. We learned in CS229 that if we calculate gradient 
after every single data point it’d be painfully slow. One way to go around this is to batch ‘em up. 
Fortunately, TensorFlow has a wonderful support for batching data. 
 
To do batched logistic regression, we just need to change the dimension of X_placeholder and 
Y_placeholder to be able to accommodate batch_size data points. 
 

X ​=​ tf​.​placeholder​(​tf​.​float32​,​ ​[​batch_size​,​ ​784​],​ name​=​"image"​)  
Y ​=​ tf​.​placeholder​(​tf​.​float32​,​ ​[​batch_size​,​ ​10​],​ name​=​"label") 

 
And when you feed in data to the placeholder, instead of feeding each data point, we can feed 
in the batch_size number of data points. 
 

X_batch​,​ Y_batch ​=​ mnist​.​test​.​next_batch​(​batch_size) 
sess​.​run​(​train_op​,​ feed_dict​={​X​:​ X_batch​,​ Y​:​Y_batch​})  

 
Here is the full implementation. 
 

import​ time 
import​ numpy ​as​ np 
import​ tensorflow ​as​ tf 
from​ tensorflow​.​examples​.​tutorials​.​mnist ​import​ input_data 
 
# Step 1: Read in data 
# using TF Learn's built in function to load MNIST data to the folder data/mnist 
MNIST ​=​ input_data​.​read_data_sets​(​"/data/mnist"​,​ one_hot​=​True​)  
 
# Step 2: Define parameters for the model 
learning_rate ​=​ ​0.01 
batch_size ​=​ ​128 
n_epochs ​=​ ​25 
 
# Step 3: create placeholders for features and labels 
# each image in the MNIST data is of shape 28*28 = 784 
# therefore, each image is represented with a 1x784 tensor 
# there are 10 classes for each image, corresponding to digits 0 - 9.  
# each label is one hot vector. 
X ​=​ tf​.​placeholder​(​tf​.​float32​,​ ​[​batch_size​,​ ​784​])  
Y ​=​ tf​.​placeholder​(​tf​.​float32​,​ ​[​batch_size​,​ ​10​]) 
 
# Step 4: create weights and bias 
# w is initialized to random variables with mean of 0, stddev of 0.01 
# b is initialized to 0 
# shape of w depends on the dimension of X and Y so that Y = tf.matmul(X, w) 
# shape of b depends on Y 
w ​=​ tf​.​Variable​(​tf​.​random_normal​(​shape​=[​784​,​ ​10​],​ stddev​=​0.01​),​ name​=​"weights") 



b ​=​ tf​.​Variable​(​tf​.​zeros​([​1​,​ ​10​]),​ name​=​"bias") 
 
# Step 5: predict Y from X and w, b 
# the model that returns probability distribution of possible label of the image 
# through the softmax layer 
# a batch_size x 10 tensor that represents the possibility of the digits 
logits ​=​ tf​.​matmul​(​X​,​ w​)​ ​+​ b  
 
# Step 6: define loss function 
# use softmax cross entropy with logits as the loss function 
# compute mean cross entropy, softmax is applied internally 
entropy ​=​ tf​.​nn​.​softmax_cross_entropy_with_logits​(​logits​,​ Y) 
loss ​=​ tf​.​reduce_mean​(​entropy) # computes the mean over examples in the batch 
 
# Step 7: define training op 
# using gradient descent with learning rate of 0.01 to minimize cost 
optimizer ​= 
tf​.​train​.​GradientDescentOptimizer​(​learning_rate​=​learning_rate​).​minimize​(​loss) 
 
init ​=​ tf​.​global_variables_initializer​() 
 
with​ tf​.​Session​()​ ​as​ sess: 

sess​.​run​(​init​)  
n_batches ​=​ ​int​(​MNIST​.​train​.​num_examples​/​batch_size) 
for​ i ​in​ range​(​n_epochs​):​ ​# train the model n_epochs times 

for​ _ ​in​ range​(​n_batches​): 
X_batch​,​ Y_batch ​=​ MNIST​.​train​.​next_batch​(​batch_size) 
sess​.​run​([​optimizer​,​ loss​],​ feed_dict​={​X​:​ X_batch​,​ Y​:​Y_batch​})  

 
# average loss should be around 0.35 after 25 epochs 

 
Running on my Mac, the batch version of the model with batch size 128 runs in 0.5 second, 
while the non-batch model runs in 24 seconds! However, note that higher batch size typically 
requires more epochs since it does fewer update steps. See “​mini-batch size” in Bengio's 
practical tips​. 
 
We can actually test the model because we have a test set. Let’s see how we can do it in 
TensorFlow. 
 

# test the model 
n_batches ​=​ ​int​(​MNIST​.​test​.​num_examples​/​batch_size) 
total_correct_preds ​=​ 0 
for​ i ​in​ range​(​n_batches​): 

X_batch​,​ Y_batch ​=​ MNIST​.​test​.​next_batch​(​batch_size) 
_​,​ loss_batch​,​ logits_batch ​=​ sess​.​run​([​optimizer​,​ loss​,​ logits​], 

feed_dict​={​X​:​ X_batch​,​ Y​:​Y_batch​})  
preds ​=​ tf​.​nn​.​softmax​(​logits_batch) 
correct_preds ​=​ tf​.​equal​(​tf​.​argmax​(​preds​,​ ​1​),​ tf​.​argmax​(​Y_batch​,​ ​1​)) 
accuracy ​=​ tf​.​reduce_sum​(​tf​.​cast​(​correct_preds​,​ tf​.​float32​))​ ​# similar 

https://arxiv.org/pdf/1206.5533v2.pdf
https://arxiv.org/pdf/1206.5533v2.pdf


to numpy.count_nonzero(boolarray) :( 
total_correct_preds ​+=​ sess​.​run​(​accuracy​)  

 
print​ ​"Accuracy {0}"​.​format​(​total_correct_preds​/​MNIST​.​test​.​num_examples) 

 
We achieved the accuracy of 90% after 10 epochs. This is about what we can get from a linear 
classifier. 
 
Note: TensorFlow has a feeder (dataset parser) for MNIST but don’t count on it having a feeder 
for any dataset. You should learn how to write your own data parser. 
 
Here is how our graph looks in on TensorBoard: 
 
 
 

 
WOW 
I know. That’s why we’ll learn how to structure our model in the next lecture! 
 


