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Up until this point, we’ve implemented two simple models in TensorFlow: linear regression on 
the number of fire and theft in the city of Chicago, and logistic regression to do an Optical 
Character Recognition task on the MNIST dataset. With the tools we have, we can definitely 
build more complicated models. However, complex models would require better planning, 
otherwise our models would be pretty messy and hard to debug. In the next two lectures, we will 
discuss a way to efficiently structure our models. And we will be doing that through an example: 
word2vec. 
  
I expect that most of you are already familiar with word embedding and understand the 
importance of a model like word2vec. For those who aren’t familiar with this, you can read the 
CS 224N lecture slide about the motivation for and explanation of word2vec at ​Simple Word 
Vector Representations​. 
 
The original papers by Mikolov et al. 
Distributed Representations of Words and Phrases and their Compositionality 
Efficient Estimation of Word Representations in Vector Space 
 
In short, we need a vector representation of words so that we can input them into our neural 
networks to do some magic tricks. Word vectors form the basis of many models studied in 
CS224N, as well as most language models in real life. 
 

Skip​-​gram vs CBOW​ ​(​Continuous​ ​Bag​-​of​-​Words) 
 
Algorithmically​,​ these models are similar​,​ ​except​ that CBOW predicts center words ​from 
context words​,​ ​while​ the skip​-​gram does the inverse ​and​ predicts source context​-​words ​from 
the center words​.​ ​For​ example​,​ ​if​ we have the sentence​:​ ​""​The​ quick brown fox jumps​""​,​ ​then 
CBOW tries to predict ​""​brown​""​ ​from​ ​""​the​""​,​ ​""​quick​""​,​ ​""​fox​""​,​ ​and​ ​""​jumps​""​,​ ​while 
skip​-​gram tries to predict ​""​the​""​,​ ​""​quick​""​,​ ​""​fox​""​,​ ​and​ ​""​jumps​""​ ​from​ ​""​brown​"". 
 
Statistically​ it has the effect that CBOW smoothes over a lot of the distributional 
information ​(​by​ treating an entire context ​as​ one observation​).​ ​For​ the most part​,​ ​this 
turns ​out​ to be a useful thing ​for​ smaller datasets​.​ ​However​,​ skip​-​gram treats each 
context​-​target pair ​as​ a ​new​ observation​,​ ​and​ ​this​ tends to ​do​ better ​when​ we have larger 
datasets. 
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Vector representations of words projected on a 3D space. 
 

 
 
In this lecture, we will try to build word2vec, the skip-gram model. You can find an 
explanation/tutorial to the skip-gram model here. 
Word2Vec Tutorial - The Skip-Gram Model  
 
In the skip-gram model, to get the vector representations of words, we train a simple neural 
network with a single hidden layer to perform a certain task, but then we don’t use that neural 

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/


network for the task we trained it on. Instead, we care about the weights of the hidden layer. 
These weights are actually the “word vectors”, or “embedding matrix” that we’re trying to learn. 
 
The certain, fake task we’re going to train our model on is predicting the neighboring words 
given the center word. Given a specific word in a sentence (the center word), look at the words 
nearby and pick one at random. The network is going to tell us the probability for every word in 
our vocabulary of being the “nearby word” that we chose. 
 
Softmax, Negative Sampling, and Noise Contrastive Estimation 
 
In CS 224N, we learned about the two training methods: hierarchical softmax and negative 
sampling. We ruled out softmax because the normalization factor is too computationally 
expensive, and the students in CS 224N implemented the skip-gram model with negative 
sampling. 
 
Negative sampling, as the name suggests, belongs to the family of sampling-based approaches. 
This family also includes importance sampling and target sampling. Negative sampling is 
actually a simplified model of an approach called Noise Contrastive Estimation (NCE), e.g. 
negative sampling makes certain assumption about the number of noise samples to generate 
(k) and the distribution of noise samples (Q) (negative sampling assumes that kQ(w) = 1) to 
simplify computation (read Sebastian Rudder’s “​On word embeddings - Part 2: Approximating 
the Softmax​” and Chris Dyer’s “​Notes on Noise Contrastive Estimation and Negative 
Sampling​”). Mikolov et al. have shown in their paper “​Distributed Representations of Words and 
Phrases and their Compositionality​” that training the Skip-gram model that results in faster 
training and better vector representations for frequent words, compared to more complex 
hierarchical softmax. 
 
While negative sampling is useful for the learning word embeddings, it doesn’t have the 
theoretical guarantee that its derivative tends towards the gradient of the softmax function, 
which makes it not so useful for language modelling.  
 
NCE has this nice theoretical guarantees that negative sampling lacks as the number of noise 
samples increases. ​Mnih and Teh (2012)​ reported that 25 noise samples are sufficient to match 
the performance of the regular softmax, with an expected speed-up factor of about 45. 
 
In this example, we will be using NCE because of its nice theoretical guarantee. 
 
Note that sampling-based approaches, whether it’s negative sampling or NCE, are only useful 
at training time -- during inference, the full softmax still needs to be computed to obtain a 
normalized probability. 
 
About the dataset 
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text8 is the first 100 MB of cleaned text of the  English Wikipedia dump on Mar. 3, 2006 (whose 
link is no longer available). We use clean text because it takes a lot of time to process the raw 
text and we’d rather use the time in this class to focus on TensorFlow. 
 
100MB is not enough to train really good word embeddings, but enough to see some interesting 
relations. There are 17,005,207 tokens by simple splitting the text by blank space using split() 
function of python strings. 
 
For better results, you should use the dataset fil9 of the first 10^9 bytes of the Wikipedia dump, 
as described on ​Matt Mahoney’s website​. 
 
Interface: How to structure your TensorFlow model 
  
We’ve done only 2 models in the past, and they more or less have the same structure: 
  
Phase 1: assemble your graph 
1. Define placeholders for input and output 
2. Define the weights 
3. Define the inference model 
4. Define loss function 
5. Define optimizer 
  
Phase 2: execute the computation 
Which is basically training your model. There are a few steps: 
1. Initialize all model variables for the first time. 
2. Feed in the training data. Might involve randomizing the order of data samples. 
3. Execute the inference model on the training data, so it calculates for each training input 
example the output with the current model parameters. 
4. Compute the cost 
5. Adjust the model parameters to minimize/maximize the cost depending on the model. 
 
Here is a visualization of training loop from the book “TensorFlow for Machine Intelligence”: 

https://cs.fit.edu/~mmahoney/compression/textdata.html


 
Let’s apply these steps to creating our word2vec, skip-gram model. 
 
Phase 1: Assemble the graph 
 
1. Define placeholders for input and output 
Input is the center word and output is the target (context) word. Instead of using one-hot 
vectors, we input the index of those words directly. For example, if the center word is the 1001th 
word in the vocabulary, we input the number 1001.  
 
Each sample input is a scalar, the placeholder for BATCH_SIZE sample inputs with have shape 
[BATCH_SIZE]. 
 
Similar, the placeholder for BATCH_SIZE sample outputs with have shape [BATCH_SIZE]. 
 

center_words ​=​ tf​.​placeholder​(​tf​.​int32​,​ shape​=[​BATCH_SIZE​]) 
target_words ​=​ tf​.​placeholder​(​tf​.​int32​,​ shape​=[​BATCH_SIZE​]) 

 
Note that our center_words and target_words being fed in are both scalars -- we feed in their 
corresponding indices in our vocabulary. 
 
2. Define the weight (in this case, embedding matrix) 
Each row corresponds to the representation vector of one word. If one word is represented with 
a vector of size EMBED_SIZE, then the embedding matrix will have shape [VOCAB_SIZE, 
EMBED_SIZE]. We initialize the embedding matrix to value from a random distribution. In this 
case, let’s choose uniform distribution. 
 

embed_matrix ​=​ tf​.​Variable​(​tf​.​random_uniform​([​VOCAB_SIZE​,​ EMBED_SIZE​],​ ​-​1.0​,​ ​1.0​)) 

 
3. Inference (compute the forward path of the graph) 
Our goal is to get the vector representations of words in our dictionary. Remember that the 
embed_matrix has dimension VOCAB_SIZE x EMBED_SIZE, with each row of the embedding 



matrix corresponds to the vector representation of the word at that index. So to get the 
representation of all the center words in the batch, we get the slice of all corresponding rows in 
the embedding matrix. TensorFlow provides a convenient method to do so called 
tf.nn.embedding_lookup().  
 
tf​.​nn​.​embedding_lookup​(​params​,​ ids​,​ partition_strategy​=​'mod'​,​ name​=​None​, 
validate_indices​=​True​,​ max_norm​=​None) 

 
This method is really useful when it comes to matrix multiplication with one-hot vectors because 
it saves us from doing a bunch of unnecessary computation that will return 0 anyway. An 
illustration from ​Chris McCormick​ for multiplication of a one-hot vector with a matrix. 
 
 

 
 
 
So, to get the embedding (or vector representation) of the input center words, we use this: 
 
embed ​=​ tf​.​nn​.​embedding_lookup​(​embed_matrix​,​ center_words) 

 
4. Define the loss function 
While NCE is cumbersome to implement in pure Python, TensorFlow already implemented it for 
us.  

tf​.​nn​.​nce_loss​(​weights​,​ biases​,​ labels​,​ inputs​,​ num_sampled​,​ num_classes​,​ num_true​=​1​, 
sampled_values​=​None​,​ remove_accidental_hits​=​False​,​ partition_strategy​=​'mod'​, 
name​=​'nce_loss') 

 
Note that by the way the function is implemented, the third argument is actually inputs, and the 
fourth is labels. This ambiguity can be quite troubling sometimes, but keep in mind that 
TensorFlow is still new and growing and therefore might not be perfect. Nce_loss source code 
can be found ​here​.  
 
For nce_loss, we need weights and biases for the hidden layer to calculate NCE loss.  
 

nce_weight ​=​ tf​.​Variable​(​tf​.​truncated_normal​([​VOCAB_SIZE​,​ EMBED_SIZE​], 
                                                stddev​=​1.0​ ​/​ EMBED_SIZE ​**​ ​0.5​)) 
nce_bias ​=​ tf​.​Variable​(​tf​.​zeros​([​VOCAB_SIZE​])) 
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Then we define loss:  
 
loss ​=​ tf​.​reduce_mean​(​tf​.​nn​.​nce_loss​(​weights​=​nce_weight​,  

biases​=​nce_bias​,  
labels​=​target_words​,  
inputs​=​embed​,  
num_sampled​=​NUM_SAMPLED​,  
num_classes​=​VOCAB_SIZE​)) 

 
5. Define optimizer 
We will use the good old gradient descent. 
 

optimizer ​=​ tf​.​train​.​GradientDescentOptimizer​(​LEARNING_RATE​).​minimize​(​loss) 

 
Phase 2: Execute the computation 
We will create a session then within the session, use the good old feed_dict to feed inputs and 
outputs into the placeholders, run the optimizer to minimize the loss, and fetch the loss value to 
report back to us. 
 

with​ tf​.​Session​()​ ​as​ sess: 
    sess​.​run​(​tf​.​global_variables_initializer​()) 
 
    average_loss ​=​ ​0.0 
    ​for​ index ​in​ xrange​(​NUM_TRAIN_STEPS​): 
        batch ​=​ batch_gen​.​next​() 
        loss_batch​,​ _ ​=​ sess​.​run​([​loss​,​ optimizer​],  
                                feed_dict​={​center_words​:​ batch​[​0​],​ target_words​:​ batch​[​1​]}) 
        average_loss ​+=​ loss_batch 
        ​if​ ​(​index ​+​ ​1​)​ ​%​ ​2000​ ​==​ ​0: 
            ​print​(​'Average loss at step {}: {:5.1f}'​.​format​(​index ​+​ ​1​,  
                                                            average_loss ​/​ ​(​index ​+​ ​1​))) 

 
You can see the full basic model on the class’s GitHub repo under the name 
word2vec_no_frills.py 
 
As you can see, the whole model takes less than 20 lines of code. If you’ve implemented 
word2vec without TensorFlow (as for the assignment 1 for CS224N), we know that this is really 
short. We’ve pretty much dumped everything into one giant function.  
 
Name Scope 
 
Let’s give the tensors name and see how our model looks like in TensorBoard. 



 
 
 
This doesn’t look very readable, as you can see in the graph, the nodes are scattering all over. 
TensorBoard doesn’t know which nodes are similar to which nodes and should be grouped 
together. This setback can grow to be extremely daunting when you build complex models with 
hundreds of ops.  
 
Then, how can we tell TensorBoard to know which nodes should be grouped together? For 
example, we would like to group all ops related to input/output together, and all ops related to 
NCE loss together. Thankfully, TensorFlow lets us do that with name scope. You can just put all 
the ops that you want to group together under the block:  
 

with​ tf​.​name_scope​(​name_of_that_scope​): 
# declare op_1 
# declare op_2 
# ... 

 
For example, our graph can have 3 op blocks: “Data”, “embed”, and “NCE_LOSS” like this: 
 

with​ tf​.​name_scope​(​'data'​): 
        center_words ​=​ tf​.​placeholder​(​tf​.​int32​,​ shape​=[​BATCH_SIZE​],​ name​=​'center_words') 
        target_words ​=​ tf​.​placeholder​(​tf​.​int32​,​ shape​=[​BATCH_SIZE​,​ ​1​],​ name​=​'target_words') 



 
with​ tf​.​name_scope​(​'embed'​): 
    embed_matrix ​=​ tf​.​Variable​(​tf​.​random_uniform​([​VOCAB_SIZE​,​ EMBED_SIZE​],​ ​-​1.0​,​ ​1.0​), 
name​=​'embed_matrix') 
 
with​ tf​.​name_scope​(​'loss'​): 
    embed ​=​ tf​.​nn​.​embedding_lookup​(​embed_matrix​,​ center_words​,​ name​=​'embed') 
    nce_weight ​=​ tf​.​Variable​(​tf​.​truncated_normal​([​VOCAB_SIZE​,​ EMBED_SIZE​], 
                                                stddev​=​1.0​ ​/​ math​.​sqrt​(​EMBED_SIZE​)), 
name​=​'nce_weight') 
    nce_bias ​=​ tf​.​Variable​(​tf​.​zeros​([​VOCAB_SIZE​]),​ name​=​'nce_bias') 
    loss ​=​ tf​.​reduce_mean​(​tf​.​nn​.​nce_loss​(​weights​=​nce_weight​,  
                                        biases​=​nce_bias​,​ labels​=​target_words​,​ inputs​=​embed​,  
                                        num_sampled​=​NUM_SAMPLED​,​ num_classes​=​VOCAB_SIZE​), 
name​=​'loss') 

 
It seems like the namescope ‘embed’ has only one node and therefore it is useless to put it in a 
separate namescope. It, in fact, has two nodes: one for the tf.Variable and one for 
tf.random_uniform. 
When you visualize that on TensorBoard, you will see your nodes are grouped into neat blocks: 

 
 



You can click on the plus sign on top of each name scope block to see all the ops inside that 
block. I love graphs so I find this visualization fascinating. Take your time to play around with it. 
 
You’ve probably noticed that TensorBoard has two kinds of edges: the solid lines and the dotted 
lines. The solid lines represent ​data flow edges. For example, the value of op tf.add(x + y) 
depends on the value of x and y. The dotted arrows represent control dependence edges. For 
example, a variable can only be used after being initialized, as you see variable embed_matrix 
depends on the op init). Control dependencies can also be declared using 
tf.Graph.control_dependencies(control_inputs) we talked about in lecture 2.  
 

 



 
 
Here is the full legend of nodes in TensorBoard: 
 

 
 
So now, our whole word2vec program looks more or less like this: 
 

# Step 1: define the placeholders for input and output 
with​ tf​.​name_scope​(​"data"​): 
    center_words ​=​ tf​.​placeholder​(​tf​.​int32​,​ shape​=[​BATCH_SIZE​],​ name​=​'center_words') 
    target_words ​=​ tf​.​placeholder​(​tf​.​int32​,​ shape​=[​BATCH_SIZE​,​ ​1​],​ name​=​'target_words') 
 
# Assemble this part of the graph on the CPU. You can change it to GPU if you have GPU 
with​ tf​.​device​(​'/cpu:0'​): 
    ​with​ tf​.​name_scope​(​"embed"​): 
        ​# Step 2: define weights. In word2vec, it's actually the weights that we care about 
        embed_matrix ​=​ tf​.​Variable​(​tf​.​random_uniform​([​VOCAB_SIZE​,​ EMBED_SIZE​],​ ​-​1.0​,​ ​1.0​), 
name​=​'embed_matrix') 
 
    ​# Step 3 + 4: define the inference + the loss function 
    ​with​ tf​.​name_scope​(​"loss"​): 
 
        ​# Step 3: define the inference 
        embed ​=​ tf​.​nn​.​embedding_lookup​(​embed_matrix​,​ center_words​,​ name​=​'embed') 
 
        ​# Step 4: construct variables for NCE loss 
        nce_weight ​=​ tf​.​Variable​(​tf​.​truncated_normal​([​VOCAB_SIZE​,​ EMBED_SIZE​], 



                                                    stddev​=​1.0​ ​/​ math​.​sqrt​(​EMBED_SIZE​)), 
name​=​'nce_weight') 
        nce_bias ​=​ tf​.​Variable​(​tf​.​zeros​([​VOCAB_SIZE​]),​ name​=​'nce_bias') 
 
        ​# define loss function to be NCE loss function 
        loss ​=​ tf​.​reduce_mean​(​tf​.​nn​.​nce_loss​(​weights​=​nce_weight​,  
                                            biases​=​nce_bias​,​ labels​=​target_words​, 
inputs​=​embed​,  
                                            num_sampled​=​NUM_SAMPLED​, 
num_classes​=​VOCAB_SIZE​),​ name​=​'loss') 
 
    ​# Step 5: define optimizer 
    optimizer ​=​ tf​.​train​.​GradientDescentOptimizer​(​LEARNING_RATE​).​minimize​(​loss) 

 
If you’ve taken any CS106 class you’ll know that this program will get check minus on styles 
because “whatever happened to decomposition?” You can’t just dump everything into a giant 
function. Also, after we’ve spent an ungodly amount of time building a model, we’d like to use it 
more than once.  
 
Question: how do we make our model most easy to reuse?  
Hint: take advantage of Python’s object-oriented-ness. 
Answer: build our model as a class! 
 
Our class should follow the interface. We combined step 3 and 4 because we want to put 
embed under the name scope of “NCE loss”.  
 

class​ ​SkipGramModel: 
    ​""" Build the graph for word2vec model """ 
    ​def​ __init__​(​self​,​ ​params​): 
        ​pass 
 
    ​def​ _create_placeholders​(​self​): 
        ​""" Step 1: define the placeholders for input and output """ 
        ​pass 
 
    ​def​ _create_embedding​(​self​): 
        ​""" Step 2: define weights. In word2vec, it's actually the weights that we care 
about """ 
        ​pass 
 
    ​def​ _create_loss​(​self​): 
        ​""" Step 3 + 4: define the inference + the loss function """ 
        ​pass 
 
    ​def​ _create_optimizer​(​self​): 
        ​""" Step 5: define optimizer """ 
        ​pass 

After 100,000 epochs, our loss went down to 10.0. 
  
Now let’s see what our model finds after training it for 100,000 epochs.  
 



If we visualize our embedding with t-SNE we will see something like below. It’s hard to visualize 
in 2D, but we’ll see in class in 3D that all the number (one, two, …, zero) are grouped in a line 
on the bottom right, next to all the alphabet (a, b, …, z) and names (john, james, david, and 
such). All the months are grouped together. “Do”, “does”, “did” are also grouped together and so 
on. 

 
If you print out the closest words to ‘american’, you will find its closest cosine neighbors are 
‘british’ and ‘english’. Fair enough. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
How about words closest to ‘government’? 

 
 

t​-​SNE​ ​(​from​ ​Wikipedia) 
 
t​-​distributed stochastic neighbor embedding ​(​t​-​SNE​)​ ​is​ a machine learning algorithm ​for 
dimensionality reduction developed ​by​ ​Geoffrey​ ​Hinton​ ​and​ ​Laurens​ van der ​Maaten​.​ ​It​ ​is​ a 
nonlinear dimensionality reduction technique that ​is​ particularly well​-​suited ​for​ embedding 
high​-​dimensional data ​into​ a space of two ​or​ three dimensions​,​ which can ​then​ be visualized 
in​ a scatter plot​.​ ​Specifically​,​ it models each high​-​dimensional ​object​ ​by​ a two​-​ ​or 
three​-​dimensional point ​in​ such a way that similar objects are modeled ​by​ nearby points ​and 
dissimilar objects are modeled ​by​ distant points​.  
 
The​ t​-​SNE algorithm comprises two main stages​.​ ​First​,​ t​-​SNE constructs a probability 
distribution over pairs of high​-​dimensional objects ​in​ such a way that similar objects have 
a high probability of being picked​,​ whilst dissimilar points have an extremely small 
probability of being picked​.​ ​Second​,​ t​-​SNE defines a similar probability distribution over 
the points ​in​ the low​-​dimensional map​,​ ​and​ it minimizes the ​Kullback​–​Leibler​ divergence 
between the two distributions ​with​ respect to the locations of the points ​in​ the map​.​ ​Note 



that whilst the original algorithm uses the ​Euclidean​ distance between objects ​as​ the ​base 
of its similarity metric​,​ ​this​ should be changed ​as​ appropriate. 

 
If you haven’t used t-SNE, you should start using it! It’s super cool. Have you read Chris Olah’s 
blog post about ​visualizing MNIST​? t-SNE made MNIST cool! Image below is from Olah’s blog. 
You should head to his blog for the interactive version. 
 

 
 
We can also visualize our embeddings using PCA too. 

http://colah.github.io/posts/2014-10-Visualizing-MNIST/


 
 
 
And I did all that visualization with less than 10 lines of code. TensorBoard provided a wonderful 
tool for doing so. Warning: the TensorFlow official guide is a bit ambiguous so you should follow 
this guide. 
 
There are several steps.  
 

from tensorflow.contrib.tensorboard.plugins import projector 
 
# obtain the embedding_matrix after you’ve trained it 
final_embed_matrix ​=​ sess​.​run​(​model​.​embed_matrix) 
 
# create a variable to hold your embeddings. It has to be a variable. Constants  
# don’t work. You also can’t just use the embed_matrix we defined earlier for our model. Why 
# is that so? I don’t know. I get the 500 most popular words. 
embedding_var = tf.Variable(final_embed_matrix[:500], name='embedding') 
sess.run(embedding_var.initializer) 
config = projector.ProjectorConfig() 
summary_writer = tf.summary.FileWriter(LOGDIR) 
 
# add embeddings to config 
embedding = config.embeddings.add() 
embedding.tensor_name = embedding_var.name 



 
# link the embeddings to their metadata file. In this case, the file that contains 
# the 500 most popular words in our vocabulary 
embedding.metadata_path = LOGDIR + '/vocab_500.tsv' 
 
# save a configuration file that TensorBoard will read during startup 
projector.visualize_embeddings(summary_writer, config) 
 
# save our embedding 
saver_embed = tf.train.Saver([embedding_var]) 
saver_embed.save(sess, LOGDIR + '/skip-gram.ckpt', 1) 
 

 
Now we run our model again, then again run tensorboard. If you go to ​http://localhost:6006​, click 
on the Embeddings tab, you’ll see all the visualization. 
 
Cool, huh?  
 
You can visualize more than word embeddings, aka, you can visualize any embeddings.  
 
Why should we still learn gradients? 
 
You’ve probably noticed that in all the models we’ve built so far, we haven’t taken a single 
gradient. All we need to do is to build a forward pass and TensorFlow takes care of the 
backward path for us. So, the question is: why should we still learn to take gradient? Why are 
Chris Manning and Richard Socher making us take gradients of cross entropy and softmax? 
Shouldn’t taking gradients by hands one day be as obsolete as trying to take square root by 
hands since the invention of calculator? 
 
Well, maybe. But for now, TensorFlow can take gradients for us, but it can’t give us intuition 
about what functions to use. It doesn’t tell us if a function will suffer from exploding or vanishing 
gradients. We still need to know about gradients to get an understanding of why a model works 
while another doesn’t. 

http://localhost:6006/

