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We’ve built our word2vec model and it seems to be working pretty well for the small 
dataset that it uses. We know that it’d take much longer time for a larger dataset, and we 
also know that training more complicated models can take an ungodly amount of time. 
For example, future assignments in CS 224N will often take up to 4 hours. Models to do 
abstractive summarization can take days to get even results that only make sense in the 
slightest sense, even on pretty powerful GPUs. Many computer vision tasks can take 
much longer time to train.  
 
We can’t afford to let our models to run for days, wait to see how they go, then make 
adjustment. Or if our computer crashes, the training is interrupted and we’ll have to run 
our model all over again. It’s crucial to be able to stop training at any point, for any 
reason, and resume training as if nothing happens. It will be especially helpful for 
analyzing our models, as this allows us close inspection of our models after any number 
of training steps. 
 
Another problem that researchers often face is how to produce our work in such a work 
that other researchers can replicate/verify our results. In training neural networks, we 
often use randomization. For example, we randomize the weights for our models, or we 
shuffle the order of our training samples. It’s important to learn how to control this 
random factor in our models. 
 
In this lecture, we will go over the excellent set of tools that TensorFlow provides to help 
us manage our experiments. The topics we cover today include: tf.train.Saver() class, 
TensorFlow’s random seed and NumPy’s random state, and visualization our training 
progress (aka more TensorBoard). 
 
tf.train.Saver() 
 
A good practice is to periodically save the model’s parameters after a certain number of steps 
so that we can restore/retrain our model from that step if need be. The tf.train.Saver() class 
allows us to do so by saving the graph’s variables in binary files.  
 

tf​.​train​.​Saver​.​save​(​sess​,​ save_path​,​ global_step​=​None​,​ latest_filename​=​None​, 
meta_graph_suffix​=​'meta'​,​ write_meta_graph​=​True​,​ write_state​=​True) 
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For example, if we want to save the variables of the graph after every 1000 training steps, we 
do the following: 
 

# define model 
 
# create a saver object 
saver ​=​ tf​.​train​.​Saver​() 
 
# launch a session to compute the graph 
with​ tf​.​Session​()​ ​as​ sess: 
    ​# actual training loop 

for​ step ​in​ range​(​training_steps​):  
sess​.​run​([​optimizer​]) 

 
if​ (step + 1) ​%​ ​1000​==​0: 

saver​.​save​(​sess​,​ ​'checkpoint_directory/model_name'​,  
                                global_step​=​model​.​global_step) 

 
In TensorFlow lingo, the step at which you save your graph’s variables is called a checkpoint. 
Since we will be creating many checkpoints, it’s helpful to append the number of training steps 
our model has gone through in a variable called global_step. It’s a very common variable to see 
in TensorFlow program. We first need to create it, initialize it to 0 and set it to be not trainable, 
since we don’t want to TensorFlow to optimize it. 
 

self​.​global_step ​=​ tf​.​Variable​(​0​,​ dtype​=​tf​.​int32​,​ trainable​=​False​,​ name​=​'global_step') 

 
We need to pass global_step as a parameter to the optimizer so it knows to increment 
global_step by one with each training step: 
 

self​.​optimizer ​=​ tf​.​train​.​GradientDescentOptimizer​(​self​.​lr​).​minimize​(​self​.​loss​,  
                                                              global_step​=​self​.​global_step) 

 
To save the session’s variables in the folder ‘checkpoints’ with name model-name-global-step, 
we use this: 
 

saver​.​save​(​sess​,​ ​'checkpoints/skip-gram'​,​ global_step​=​model​.​global_step) 

 
So our training loop for word2vec now looks like this: 
 

self​.​global_step ​=​ tf​.​Variable​(​0​,​ dtype​=​tf​.​int32​,​ trainable​=​False​,​ name​=​'global_step') 
 
self​.​optimizer ​=​ tf​.​train​.​GradientDescentOptimizer​(​self​.​lr​).​minimize​(​self​.​loss​, 
global_step​=​self​.​global_step) 
 
saver ​=​ tf​.​train​.​Saver​()​ ​# defaults to saving all variables 
    ​with​ tf​.​Session​()​ ​as​ sess: 



        sess​.​run​(​tf​.​global_variables_initializer​()) 
 
        average_loss ​=​ ​0.0 
        writer ​=​ tf​.​summary​.​FileWriter​(​'./improved_graph'​,​ sess​.​graph) 
        ​for​ index ​in​ xrange​(​num_train_steps​): 
            batch ​=​ batch_gen​.​next​() 
            loss_batch​,​ _ ​=​ sess​.​run​([​model​.​loss​,​ model​.​optimizer​],  
                                    feed_dict​={​model​.​center_words​:​ batch​[​0​],  
                                               model​.​target_words​:​ batch​[​1​]}) 
            average_loss ​+=​ loss_batch 
            ​if​ ​(​index ​+​ ​1​)​ ​%​ ​1000​ ​==​ ​0: 
                saver​.​save​(​sess​,​ ​'checkpoints/skip-gram'​,​ global_step​=​model​.​global_step) 

 
If you go to the folder ‘checkpoints’, you will see files like the below: 

 
 
To restore the variables, we use tf.train.Saver.restore(sess, save_path). For example, you want 
to restore the checkpoint at 10,000th step. 

saver​.​restore​(​sess​,​ ​'checkpoints/skip-gram-10000') 

 
But of course, we can only load saved variables if there is a valid checkpoint. What you 
probably want to do is that if there is a checkpoint, restore it. If there isn’t, train from the start. 
TensorFlow allows you to get checkpoint from a directory with 
tf.train.get_checkpoint_state(‘directory-name’). The code for checking looks something like this: 
 



ckpt ​=​ tf​.​train​.​get_checkpoint_state​(​os​.​path​.​dirname​(​'checkpoints/checkpoint'​)) 
if​ ckpt ​and​ ckpt​.​model_checkpoint_path: 
     saver​.​restore​(​sess​,​ ckpt​.​model_checkpoint_path) 

 
The file checkpoint automatically updates the path to the latest checkpoint. 
 

model_checkpoint_path​:​ ​"skip-gram-21999" 
all_model_checkpoint_paths​:​ ​"skip-gram-13999" 
all_model_checkpoint_paths​:​ ​"skip-gram-15999" 
all_model_checkpoint_paths​:​ ​"skip-gram-17999" 
all_model_checkpoint_paths​:​ ​"skip-gram-19999" 
all_model_checkpoint_paths​:​ ​"skip-gram-21999" 

 
By default, saver.save() stores all variables of the graph, and this is recommended. However, 
you can also choose what variables to store by passing them in as a list or a dict when we 
create the saver object. Example from TensorFlow documentation. 
 

v1 ​=​ tf​.​Variable​(...,​ name​=​'v1'​)  
v2 ​=​ tf​.​Variable​(...,​ name​=​'v2'​)  
 
# pass the variables as a dict:  
saver ​=​ tf​.​train​.​Saver​({​'v1'​:​ v1​,​ ​'v2'​:​ v2​})  
 
# pass them as a list 
saver ​=​ tf​.​train​.​Saver​([​v1​,​ v2​])  
 
# passing a list is equivalent to passing a dict with the variable op names # as keys 
saver ​=​ tf​.​train​.​Saver​({​v​.​op​.​name​:​ v ​for​ v ​in​ ​[​v1​,​ v2​]}) 

 
Note that savers only save variables, not the entire graph, so we still have to create the graph 
ourselves, and then load in variables. The checkpoints specify the way to map from variable 
names to tensors. 
 
What people usually is not just save the parameters from the last iteration, but also save the 
parameters that give the best result so far so that you can evaluate your model on the best 
parameters so far. 
 
tf.summary  
 
We’ve been using matplotlib to visualize our losses and accuracy, which is cool but 
unnecessary because TensorBoard provides us with a great set of tools to visualize our 
summary statistics during our training. Some popular statistics to visualize is loss, average loss, 
accuracy. You can visualize them as scalar plots, histograms, or even images. So we have a 
new namescope in our graph to hold all the summary ops. 
 

def​ _create_summaries​(​self​): 



     ​with​ tf​.​name_scope​(​"summaries"​): 
            tf​.​summary​.​scalar​(​"loss"​,​ ​self​.​loss 
            tf​.​summary​.​scalar​(​"accuracy"​,​ ​self​.​accuracy​)  
            tf​.​summary​.​histogram​(​"histogram loss"​,​ ​self​.​loss) 
            ​# because you have several summaries, we should merge them all 
            ​# into one op to make it easier to manage 
            ​self​.​summary_op ​=​ tf​.​summary​.​merge_all​() 

 
Because it’s an op, you have to execute it with sess.run() 
 

loss_batch​,​ _​,​ summary ​=​ sess​.​run​([​model​.​loss​,​ model​.​optimizer​,​ model​.​summary_op​],  
                                  feed_dict​=​feed_dict) 

 
Now you’ve obtained the summary, you need to write the summary to file using the same 
FileWriter object we created to visual our graph. 
 

writer​.​add_summary​(​summary​,​ global_step​=​step) 

 
Now, if you go run tensorboard and go to ​http://localhost:6006/​, in the Scalars page, you will see 
the plot of your scalar summaries. This is the summary of your loss in scalar plot. 

 
And the loss in histogram plot. 
 

http://localhost:6006/


 
 
If you save your summaries into different 
sub-folder in your graph folder, you can 
compare your progresses. For example, 
the first time we run our model with 
learning rate 1.0, we save it in 
‘improved_graph/lr1.0’ and the second 
time we run our model, we save it in 
‘improved_graph/lr0.5’, on the left corner 
of the Scalars page, we can toggle the 
plots of these two runs to compare 
them. This can be really helpful when 
you want to compare the progress made 

with different optimizers or different parameters. 
 



 
 
 
You can write a Python script to automate the naming of folders where you store the 
graphs/plots of each experiment. 
 
You can visualize the statistics as images using ​tf.summary.image​. 
 

tf​.​summary​.​image​(​name​,​ tensor​,​ max_outputs​=​3​,​ collections​=​None) 

 
Control randomization  
 
I never realized what an oxymoron this sounds like until I’ve written it down, but the truth is that 
you often have to control the randomization process to get stable results for your experiments. 
You’re probably familiar with random seed and random state from NumPy. TensorFlow doesn’t 
allow to you to get random state the way numpy does (at least not that I know of -- I will double 
check), but it does allow you to get stable results in randomization through two ways: 
 
1. Set random seed at operation level. All random tensors allow you to pass in seed value in 
their initialization. For example: 

my_var ​=​ tf​.​Variable​(​tf​.​truncated_normal​((-​1.0​,​1.0​),​ stddev​=​0.1​,​ seed​=​0​)) 

 
Note that, session is the thing that keeps track of random state, so each new session will start 
the random state all over again. 
 

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/api_docs/python/functions_and_classes/shard5/tf.summary.image.md


c ​=​ tf​.​random_uniform​([],​ ​-​10​,​ ​10​,​ seed​=​2) 
 
with​ tf​.​Session​()​ ​as​ sess: 

print​ sess​.​run​(​c) # >> 3.57493 
print​ sess​.​run​(​c) # >> -5.97319 

 

c ​=​ tf​.​random_uniform​([],​ ​-​10​,​ ​10​,​ seed​=​2) 
 
with​ tf​.​Session​()​ ​as​ sess: 

print​ sess​.​run​(​c) # >> 3.57493 
 
with​ tf​.​Session​()​ ​as​ sess: 

print​ sess​.​run​(​c) # >> 3.57493 

 
With operation level random seed, each op keeps its own seed. 
 

c ​=​ tf​.​random_uniform​([],​ ​-​10​,​ ​10​,​ seed​=​2) 
d ​=​ tf​.​random_uniform​([],​ ​-​10​,​ ​10​,​ seed​=​2) 
 
with​ tf​.​Session​()​ ​as​ sess: 

print​ sess​.​run​(​c) # >> 3.57493 
print​ sess​.​run​(​d) # >> 3.57493 

 
2. Set random seed at graph level with tf.Graph.seed 
 

tf​.​set_random_seed​(​seed) 

 
If you don’t care about the randomization for each op inside the graph, but just want to be able 
to replicate result on another graph (so that other people can replicate your results on their own 
graph), you can use tf.set_random_seed instead. Setting the current TensorFlow random seed 
affects the current default graph only.  
 
For example, you have two models a.py and b.py that have identical code: 
 

import​ tensorflow ​as​ tf 
 
tf​.​set_random_seed​(​2) 
c ​=​ tf​.​random_uniform​([],​ ​-​10​,​ ​10) 
d ​=​ tf​.​random_uniform​([],​ ​-​10​,​ ​10) 
 
with​ tf​.​Session​()​ ​as​ sess: 

print​ sess​.​run​(​c) 
print​ sess​.​run​(​d) 

 
Without graph level seed, running python a.py and b.py will return 2 completely different results, 
but with tf.set_random_seed, you will get two identical results: 
 



$ python a​.​py  
>>​ ​-​4.00752 
>>​ ​-​2.98339 
 
$ python b​.​py  
>>​ ​-​4.00752 
>>​ ​-​2.98339 

 
Reading Data in TensorFlow 
 
There are two main ways to load data into a TensorFlow graph: one is through feed_dict that we 
are familiar with, and another is through readers that allow us to read tensors directly from file. 
There is, of course, the third way which is to load in your data using constants, but you should 
only use this if you want your graph to be seriously bloated and un-runnable (I made up another 
word but you know what I mean). 
 
To see why we need something more than feed_dict, we need to look into how feed_dict works 
under the hood. Feed_dict will first send data from the storage system to the client, and then 
from client to the worker process. This will cause the data to slow down, especially if the client is 
on a different machine from the worker process. TensorFlow has readers that allow us to load 
data directly into the worker process.  
 
The improvement will not be noticeable when we aren’t on a distributed system or when our 
dataset is small, but it’s still something worth looking into. TensorFlow has several built in 
readers to match your reading needs. 
 

tf​.​TextLineReader 
Outputs​ the lines of a file delimited ​by​ newlines 
E​.​g​.​ text files​,​ CSV files 
 
tf​.​FixedLengthRecordReader 
Outputs​ the entire file ​when​ all files have same ​fixed​ lengths 
E​.​g​.​ each MNIST file has ​28​ x ​28​ pixels​,​ CIFAR​-​10​ ​32​ x ​32​ x 3 
  
tf​.​WholeFileReader 
Outputs​ the entire file content 
 
tf​.​TFRecordReader 
Reads​ samples ​from​ ​TensorFlow​'​s own binary format ​(​TFRecord) 
 
tf​.​ReaderBase 
Allows​ you to create your own readers 

 
Data can be read in as individual data examples or in batches of examples. 
 
<not finished, will update soon> 
 
 


