
Lecture note 7: Playing with convolutions in TensorFlow 
“CS 20SI: TensorFlow for Deep Learning Research” (cs20si.stanford.edu) 
Prepared by Chip Huyen (​huyenn@stanford.edu​) 
This lecture note is an unfinished draft. Proceed with care! 
 
Last class, we had a wonderful guest lecture by Justin Johnson. I hope that by now, you’re more 
or less familiar with common layers of a convolutional neural networks. Today, we will make a 
(crude) attempt to understand convolution and what kind of support TensorFlow has for 
convolutions. 
 
Understanding convolutions 
If you’ve taken maths or physics, you’re probably familiar with this term. Oxford dictionary define 
the mathematical term convolution as: 
 

a ​function​ derived ​from​ two given functions ​by​ integration that expresses how the shape of 
one ​is​ modified ​by​ the other. 

 
And that’s pretty much what convolution means in the neural networks setting. Convolution is 
how the original input (in the first convolutional layer, it’s part of the original image) is modified 
by the kernel (or filter). To better understand convolutions, you can refer to this​ wonderful blog 
post​ by Chris Olah at Google Brain. 
 

 
Gif from Wikipedia  
 
TensorFlow has great support for convolutional layers. The most popular one is tf.nn.conv2d. 
 

tf​.​nn​.​conv2d​(​input​,​ filter​,​ strides​,​ padding​,​ use_cudnn_on_gpu​=​None​,​ data_format​=​None​, 
name​=​None) 

 

Input​:​ ​Batch​ size x ​Height​ x ​Width​ x ​Channels 
Filter​:​ ​Height​ x ​Width​ x ​Input​ ​Channels​ x ​Output​ ​Channels 
(​e​.​g​.​ ​[​5​,​ ​5​,​ ​3​,​ ​64​]) 
Strides​:​ ​4​ element ​1​-​D tensor​,​ strides ​in​ each direction 
(​often ​[​1​,​ ​1​,​ ​1​,​ ​1​]​ ​or​ ​[​1​,​ ​2​,​ ​2​,​ ​1​]) 
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Padding​:​ ​'​SAME​'​ ​or​ ​'​VALID' 
Data_format​:​ ​default​ to NHWC 

 
Generally, for strides, you don’t want to use any number other than 1 in the first and the fourth 
dimension,  
 
Because of this property of convolution, we can do convolutions without training anything. We 
can simply choose a kernel and see how that kernel affects our image. For example, the kernel 
often used for blurring an image is as below. You can do the element-wise multiplication to see 
how this kernel helps blurring an image. 

Kernel for blurring 

 
 
Just as a fun exercise, you can see several other popular kernels in the kernels.py file on the 
class GitHub repository, and see how to use them in 07_basic_filters.py 
let’s see what the Blurring kernel does to this super cute image of a Chihuahua. 
 

 
 
There are also several other built-in convolutional operations. Please refer to ​the official 
documentation​ for more information. 
 

conv2d​:​ ​Arbitrary​ filters that can mix channels together. 
depthwise_conv2d​:​ ​Filters​ that operate on each channel independently. 
separable_conv2d​:​ A depthwise spatial filter followed ​by​ a pointwise filter. 
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In this case, we hard code our kernels. When training a convnet, we don’t know what the values 
for our kernels and therefore have to figure them out by learning them. We’ll go through the 
process of learning the kernels through a simple convnet with our old friend MNIST. 
 
Convnet on MNIST 
We’ve done logistic regression on MNIST and the result is abysmal. Since MNIST dataset 
contains of just images, let’s see how much better we can do with convnet on MNIST. 
 
For MNIST, we will be using two convolutional layers, each followed by a relu and a maxpool 
layers, and one fully connected layer. See the example on GitHub under the name 
07_convnet_mnist.py 
 

 
 
Variable scope 
Since we’ll be dealing with multiple layers, it’s important to introduce variable scope. Think of a 
variable scope something similar to a namespace. A variable name ‘weights’ in variable scope 
‘conv1’ will become ‘conv1-weights’. The common practice is to create a variable scope for each 
layer, so that if you have variable ‘weights’ in both convolution layer 1 and convolution layer 2, 
there won’t be any name clash. 
 
In variable scope, we don’t create variable using tf.Variable, but instead use tf.get_variable() 
 

tf​.​get_variable​(<​name​>,​ ​<shape>​,​ ​<initializer>) 

 
 If a variable with that name already exists in that variable scope, we use that variable. If a 
variable with that name doesn’t already exists in that variable scope, TensorFlow creates a new 
variable. This setup makes it really easy to share variables across architecture. This will come in 
extremely handy when you build complex models and you need to share large sets of variables. 
Variable scopes help you initialize all of them in one place.  
 
Nodes in the same variable scope will be grouped together, and therefore you don’t have to use 
name scope any more. To declare a variable scope, you do it the same way you do name 
scope: 
 



with​ tf​.​variable_scope​(​'conv1'​)​ ​as​ scope: 

 
For example: 

with​ tf​.​variable_scope​(​'conv1'​)​ ​as​ scope: 
  
    w ​=​ tf​.​get_variable​(​'weights'​,​ ​[​5​,​ ​5​,​ ​1​,​ ​32​]) 
    b ​=​ tf​.​get_variable​(​'biases'​,​ ​[​32​],​ initializer​=​tf​.​random_normal_initializer​()) 
    conv ​=​ tf​.​nn​.​conv2d​(​images​,​ w​,​ strides​=[​1​,​ ​1​,​ ​1​,​ ​1​],​ padding​=​'SAME') 
    conv1 ​=​ tf​.​nn​.​relu​(​conv ​+​ b​,​ name​=​scope​.​name) 
 
with​ tf​.​variable_scope​(​'conv2'​)​ ​as​ scope: 
  
    w ​=​ tf​.​get_variable​(​'weights'​,​ ​[​5​,​ ​5​,​ ​32​,​ ​64​]) 
    b ​=​ tf​.​get_variable​(​'biases'​,​ ​[​64​],​ initializer​=​tf​.​random_normal_initializer​()) 
    conv ​=​ tf​.​nn​.​conv2d​(​conv1​,​ w​,​ strides​=[​1​,​ ​1​,​ ​1​,​ ​1​],​ padding​=​'SAME') 
    conv2 ​=​ tf​.​nn​.​relu​(​conv ​+​ b​,​ name​=​scope​.​name) 

 
You see that with variable scope, we now have neatly block of code that can be broken into 
smaller function for reusability.  
 
For more information on variable scope, please refer to ​the official documentation​. 
 

https://www.tensorflow.org/how_tos/variable_scope/


 
Below is the training result for MNIST with covnets: 
 

Epochs Accuracy 

1 0.9111 

2 0.9401 

3 0.9494 

5 0.9549 

10 0.9692 

25 0.9736 

40 0.9793 

50 0.9804 

 


