Manage Experiments

CS 20SI:
TensorFlow for Deep Learning Research
Lecture 5
1/27/2017
Guest lectures

Justin Johnson
Stanford Vision Lab
Wednesday (2/1)

Jon Shlens
Google Brain
Wednesday (2/8)

They are amazing.

Read their papers!
Livestream party on campus
(probably) with food and drinks and TF engineers

When: Wednesday, Feb 15, 2015
Location: TBD
Interested? Send me an email
Agenda

More word2vec
tf.train.Saver
tf.summary
Randomization
Data Readers
Where are the gradients?
Reverse mode automatic differentiation
Reverse mode automatic differentiation

Figure 5: Gradients computed for graph in Figure 2
tf.gradients(y, [xs])

Take derivative of y with respect to each tensor in the list [xs]
tf.gradients(y, [xs])

x = tf.Variable(2.0)

y = 2.0 * (x ** 3)

z = 3.0 + y ** 2

grad_z = tf.gradients(z, [x, y])

with tf.Session() as sess:
 sess.run(x.initializer)
 print sess.run(grad_z) # >> [768.0, 32.0]

768 is the gradient of z with respect to x, 32 with respect to y
Should I still learn to take gradients?
Vanishing/exploding gradients

Plot by “Understanding the exploding gradient problem”, Pascanu et al. (2012)
Structure our model
We’ve dumped everything into one giant function word2vec (check minus for style in CS106)
Need models to be reusable
class SkipGramModel:
 """ Build the graph for word2vec model """
 def __init__(self, params):
 pass

 def _create_placeholders(self):
 """ Step 1: define the placeholders for input and output """
 pass

 def _create_embedding(self):
 """ Step 2: define weights. In word2vec, it's actually the weights that we care about """
 pass

 def _create_loss(self):
 """ Step 3 + 4: define the inference + the loss function """
 pass

 def _create_optimizer(self):
 """ Step 5: define optimizer """
 pass

Yay, object oriented programming!!
Manage experiments
tf.train.Saver saves graph’s variables in binary files
Saves sessions, not graphs!

```
tf.train.Saver.save(sess, save_path, global_step=None...)
```
Saves sessions, not graphs!

tf.train.Saver.save(sess, save_path, global_step=None...)
Save parameters after 1000 steps

define model

create a saver object
saver = tf.train.Saver()

launch a session to compute the graph
with tf.Session() as sess:
 # actual training loop
 for step in range(training_steps):
 sess.run([optimizer])

 if (step + 1) % 1000 == 0:
 saver.save(sess, 'checkpoint_directory/model_name',
 global_step=model.global_step)
Each saved step is a checkpoint

```python
# define model

# create a saver object
saver = tf.train.Saver()

# launch a session to compute the graph
with tf.Session() as sess:
    # actual training loop
    for step in range(training_steps):
        sess.run([train_op])

        if (step + 1) % 1000==0:
            saver.save(sess, 'checkpoint_directory/model_name',
                       global_step=model.global_step)
```
Global step

Very common in TensorFlow program

```python
self.global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step')
```
Global step

self.global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step')

Need to tell optimizer to increment global step
tf.train.Saver

Only save variables, not graph

Checkpoints map variable names to tensors
saver.restore(sess, 'checkpoints/name_of_the_checkpoint')

e.g. saver.restore(sess, 'checkpoints/skip-gram-99999')
Restore the latest checkpoint

```python
ckpt = tf.train.get_checkpoint_state(os.path.dirname('checkpoints/checkpoint'))
if ckpt and ckpt.model_checkpoint_path:
    saver.restore(sess, ckpt.model_checkpoint_path)
```

1. checkpoint keeps track of the latest checkpoint
2. Safeguard to restore checkpoints only when there are checkpoints
tf.summary
Why matplotlib when you can summarize?
tf.summary

Visualize our summary statistics during our training
	tf.summary.scalar
	tf.summary.histogram
	tf.summary.image
with tf.name_scope("summaries"):
 tf.summary.scalar("loss", self.loss)
 tf.summary.scalar("accuracy", self.accuracy)
 tf.summary.histogram("histogram loss", self.loss)
 # merge them all
 self.summary_op = tf.summary.merge_all()
Step 2: run them

```
loss_batch, _, summary = sess.run([model.loss, model.optimizer,
                                 model.summary_op],
                                 feed_dict=feed_dict)
```

Like everything else in TF, summaries are ops
Step 3: write summaries to file

writer.add_summary(summary, global_step=step)
See summaries on TensorBoard
Scalar loss
Histogram loss
Toggle run to compare experiments

Runs
Write a regex to filter runs

- [x] lr0.5
- [] lr1.0

TOGGLE ALL RUNS

./improved_graph

Loss

0.000 2.000k 4.000k 6.000k 8.000k 10.00k
Control Randomization
Op level random seed

e.g.

```
my_var = tf.Variable(tf.truncated_normal((-1.0,1.0), stddev=0.1, seed=0))
```
Sessions keep track of random state

```python
c = tf.random_uniform([], -10, 10, seed=2)

with tf.Session() as sess:
    print sess.run(c) # >> 3.57493
    print sess.run(c) # >> -5.97319

---

c = tf.random_uniform([], -10, 10, seed=2)

with tf.Session() as sess:
    print sess.run(c) # >> 3.57493

with tf.Session() as sess:
    print sess.run(c) # >> 3.57493
```

Each new session restarts the random state
Op level seed: each op keeps its own seed

c = tf.random_uniform([], -10, 10, seed=2)
d = tf.random_uniform([], -10, 10, seed=2)

with tf.Session() as sess:
 print sess.run(c) # >> 3.57493
 print sess.run(d) # >> 3.57493
Graph level seed

tf.set_random_seed(seed)
(example: live coding)
Data Readers
Problem with feed_dict?
Problem with feed_dict?

Storage → Client → Workers

Slow when client and workers are on different machines
Data Readers

Readers allow us to load data directly into the worker process.
Data Readers

Ops that return different values every time you call them
(Think Python’s generator)
Different Readers for different file types

tf.TextLineReader
Outputs the lines of a file delimited by newlines
E.g. text files, CSV files
Different Readers for different file types

tf.TextLineReader
Outputs the lines of a file delimited by newlines
E.g. text files, CSV files

tf.FixedLengthRecordReader
Outputs the entire file when all files have same fixed lengths
E.g. each MNIST file has 28 x 28 pixels, CIFAR-10 32 x 32 x 3
Different Readers for different file types

tf.TextLineReader
Outputs the lines of a file delimited by newlines
E.g. text files, CSV files

tf.FixedLengthRecordReader
Outputs the entire file when all files have same fixed lengths
E.g. each MNIST file has 28 x 28 pixels, CIFAR-10 32 x 32 x 3

tf.WholeFileReader
Outputs the entire file content
Different Readers for different file types

tf.TextLineReader
Outputs the lines of a file delimited by newlines
E.g. text files, CSV files

tf.FixedLengthRecordReader
Outputs the entire file when all files have same fixed lengths
E.g. each MNIST file has 28 x 28 pixels, CIFAR-10 32 x 32 x 3

tf.WholeFileReader
Outputs the entire file content

tf.TFRecordReader
Reads samples from TensorFlow’s own binary format (TFRecord)
Different Readers for different file types

tf.TextLineReader
Outputs the lines of a file delimited by newlines
E.g. text files, CSV files

tf.FixedLengthRecordReader
Outputs the entire file when all files have same fixed lengths
E.g. each MNIST file has 28 x 28 pixels, CIFAR-10 32 x 32 x 3

tf.WholeFileReader
Outputs the entire file content

tf.TFRecordReader
Reads samples from TensorFlow’s own binary format (TFRecord)

tf.ReaderBase
To allow you to create your own readers
Read in files from queues

```python
filename_queue = tf.train.string_input_producer(["file0.csv", "file1.csv"])

reader = tf.TextLineReader()
key, value = reader.read(filename_queue)
```
tf.FIFOQueue

```python
q = tf.FIFOQueue(3, "float")
init = q.enqueue_many(([0.,0.,0.],))

x = q.dequeue()
y = x+1
q_inc = q.enqueue([y])

init.run()
q_inc.run()
q_inc.run()
q_inc.run()
q_inc.run()
```
Threads & Queues

You can use tf.Coordinator and tf.QueueRunner to manage your queues
with tf.Session() as sess:
 # start populating the filename queue.
 coord = tf.train.Coordinator()
 threads = tf.train.start_queue_runners(coord=coord)

More on this in week 8
Next class

Guest lecture by Justin Johnson

Convnet

Style Transfer

Feedback: huyenn@stanford.edu

Thanks!