
Convolutional Neural Networks
+ Neural Style Transfer

Justin Johnson
2/1/2017

Outline
● Convolutional Neural Networks

○ Convolution
○ Pooling
○ Feature Visualization

● Neural Style Transfer
○ Feature Inversion
○ Texture Synthesis
○ Style Transfer

Convolutional Neural Networks:
Deep Learning with Images

Justin Johnson Lecture 19 - 4 6 Dec 2016

Justin Johnson Lecture 19 - 5 6 Dec 2016Slide credit: Kaiming He, ICCV 2015

Justin Johnson

Object segmentation

Lecture 19 - 6 6 Dec 2016Figure credit: Dai, He, and Sun, “Instance-aware Semantic Segmentation via Multi-task Network Cascades”, CVPR 2016

Justin Johnson

Pose Estimation

Lecture 19 - 7 6 Dec 2016Figure credit: Cao et al, “Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields”, arXiv 2016

Justin Johnson

Image Captioning

Lecture 19 - 8 6 Dec 2016Figure credit: Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for Generating Image Descriptions”, CVPR 2015

Justin Johnson

Dense Image Captioning

Lecture 19 - 9 6 Dec 2016Figure credit: Johnson*, Karpathy*, and Fei-Fei, “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”, CVPR 2016

Justin Johnson

Visual Question Answering

Lecture 19 - 10 6 Dec 2016

Figure credit: Agrawal et al, “VQA: Visual Question Answering”, ICCV 2015

Figure credit: Zhu et al, “Visual7W: Grounded
Question Answering in Images”, CVPR 2016

Justin Johnson

Image Super-Resolution

Lecture 19 - 11 6 Dec 2016
Figure credit: Ledig et al, “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”, arXiv 2016

Justin Johnson

Generating Art

Lecture 19 - 12 6 Dec 2016

Figure credit: Gatys, Ecker, and Bethge, “Image Style
Transfer using Convolutional Neural Networks”, CVPR 2016

Figure credit: Johnson, Alahi, and Fei-Fei: “Perceptual Losses for Real-Time Style Transfer and
Super-Resolution”, ECCV 2016, https://github.com/jcjohnson/fast-neural-style

Figure credit: Mordvintsev, Olah, and Tyka, “Inceptionism: Going Deeper into Neural Networks”,
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

https://github.com/jcjohnson/fast-neural-style
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Justin Johnson

What is a Convolutional Neural Net?

Fully-Connected Neural Network

x
C1

w1
C2×C1

Matrix

Multiply

s
C2

Nonlinearity

a
C2

w2
C3×C2

ŷ
C3

Matrix

Multiply

Convolutional Neural Network

x
C1×H×W

w1
C2×C1×k×k

Convolution

s
C2×H×W

Nonlinearity

a
C2×H×W

w2
C2HW/4×C3

ŷ
C3

p
C2×H/2×W/2

Pooling
Fully

Connected

16

32

32

3

Convolution Layer
32x32x3 image

width

height

depth

Slide credit: CS231n Lecture 7

17

32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Slide credit: CS231n Lecture 7

18

32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Filters always extend the full
depth of the input volume

Slide credit: CS231n Lecture 7

19

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

Slide credit: CS231n Lecture 7

20

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

Slide credit: CS231n Lecture 7

21

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

1

28

28

consider a second, green filter

Slide credit: CS231n Lecture 7

22

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Slide credit: CS231n Lecture 7

23

Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

Slide credit: CS231n Lecture 7

24

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2 6 8

3 4

MAX POOLING

Slide credit: CS231n Lecture 7

25

Case Study: LeNet-5
[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

Slide credit: CS231n Lecture 7

26

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Slide credit: CS231n Lecture 7

27

Case Study: VGGNet
[Simonyan and Zisserman, 2014]

best model

Only 3x3 CONV stride 1, pad 1
and 2x2 MAX POOL stride 2

11.2% top 5 error in ILSVRC 2013
->
7.3% top 5 error

Slide credit: CS231n Lecture 7

28

Case Study: GoogLeNet [Szegedy et al., 2014]

Inception module

ILSVRC 2014 winner (6.7% top 5 error)

Slide credit: CS231n Lecture 7

29

Case Study:
ResNet
[He et al., 2015]

224x224x3

spatial dimension
only 56x56!

Slide credit: CS231n Lecture 7

30

Case Study: ResNet [He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

(slide from Kaiming He’s ICCV 2015 presentation)

2-3 weeks of training
on 8 GPU machine

at runtime: faster
than a VGGNet!
(even though it has
8x more layers)

Slide credit: CS231n Lecture 7

31

(slide from Kaiming He’s ICCV 2015 presentation)

Visualizing ConvNet Features

33

Visualizing CNN features: Look at filters AlexNet

conv1

Slide credit: CS231n Lecture 9

34
Slide credit: CS231n Lecture 9

Many networks learn similar filters

35

Visualizing CNN features: Look at filters

Filters from higher layers don’t make much senseImage credit: CS231n Lecture 9;
Filters from ConvNetJS CIFAR-10 model

36

Visualizing CNN features: (Guided) Backprop

Slide credit: CS231n Lecture 9

Choose an image Choose a layer and a neuron in a CNN

Question:
How does the chosen neuron respond to the image?

37

Visualizing CNN features: (Guided) Backprop

Slide credit: CS231n Lecture 9

1. Feed image into net

Zeiler and Fergus, “Visualizing and Understanding
Convolutional Networks”, ECCV 2014

Dosovitskiy et al, “Striving for Simplicity: The All
Convolutional Net”, ICLR Workshop 2015

38

Visualizing CNN features: (Guided) Backprop

Slide credit: CS231n Lecture 9

1. Feed image into net

Zeiler and Fergus, “Visualizing and Understanding
Convolutional Networks”, ECCV 2014

Dosovitskiy et al, “Striving for Simplicity: The All
Convolutional Net”, ICLR Workshop 2015

2. Set gradient of chosen layer to all zero, except 1 for the chosen neuron

39

Visualizing CNN features: (Guided) Backprop

Slide credit: CS231n Lecture 9

1. Feed image into net

Zeiler and Fergus, “Visualizing and Understanding
Convolutional Networks”, ECCV 2014

Dosovitskiy et al, “Striving for Simplicity: The All
Convolutional Net”, ICLR Workshop 2015

2. Set gradient of chosen layer to all zero, except 1 for the chosen neuron

3. Backprop to image:

2. Set gradient of chosen layer to all zero, except 1 for the chosen neuron

3. Backprop to image:

40

Visualizing CNN features: (Guided) Backprop

Slide credit: CS231n Lecture 9

1. Feed image into net

Guided
backpropagation:
insteadZeiler and Fergus, “Visualizing and Understanding

Convolutional Networks”, ECCV 2014

Dosovitskiy et al, “Striving for Simplicity: The All
Convolutional Net”, ICLR Workshop 2015

41

Visualization of patterns
learned by the layer conv6
(top) and layer conv9
(bottom) of the network
trained on ImageNet.

Each row corresponds to
one filter.

The visualization using
“guided backpropagation” is
based on the top 10 image
patches activating this filter
taken from the ImageNet
dataset.

Dosovitskiy et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

42

Visualizing CNN features: Gradient Ascent

(Guided) backprop:
Find the part of an
image that a neuron
responds to

Gradient ascent:
Generate a synthetic
image that maximally
activates a neuron

I* = arg maxI f(I) + R(I)

Neuron value Natural image
regularizer

43

Visualizing CNN features: Gradient Ascent

Simonyan et al, “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, ICLR Workshop 2014

score for class c (before Softmax)

zero image

1. Initialize image to zeros

Repeat:
2. Forward image to compute current scores
3. Set gradient of scores to be 1 for target class, 0 for others
4. Backprop to get gradient on image
5. Make a small update to the image

44

Visualizing CNN features: Gradient Ascent

Simonyan et al, “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, ICLR Workshop 2014

45
Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2015

Visualizing CNN features: Gradient Ascent
Better image regularizers give prettier results:

46
Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2015

Visualizing CNN features: Gradient Ascent
Use the same approach to visualize intermediate features

47

Visualizing CNN features: Gradient Ascent

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2015

Use the same approach to visualize intermediate features

48

Visualizing CNN features: Gradient Ascent
You can add even more tricks to get nicer results:

Nguyen et al, “Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each
Neuron in Deep Neural Networks”, ICML Visualization for Deep Learning Workshop 2016

49

Visualizing CNN features: Gradient Ascent

GAN image priors give amazing results:

Nguyen et al, “Synthesizing the preferred inputs for neurons in neural networks via deep generator networks”, NIPS 2016

50

Feature Inversion

Given a feature vector for an image, find a new image such that:
- Its features are similar to the given features
- It “looks natural” (image prior regularization)

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

51

Feature Inversion

Given a feature vector for an image, find a new image such that:
- Its features are similar to the given features
- It “looks natural” (image prior regularization)

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

52

Feature Inversion

Given a feature vector for an image, find a new image such that:
- Its features are similar to the given features
- It “looks natural” (image prior regularization)

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

Given feature vector

Features of new image

Total Variation regularizer
(encourages spatial smoothness)

53

Feature Inversion

original image
Reconstructions
from the 1000
log probabilities
for ImageNet
(ILSVRC)
classes

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

54

Feature Inversion

Reconstructions from the representation after last last pooling layer
(immediately before the first Fully Connected layer)

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

55

Reconstructions from intermediate layers

Higher layers are less sensitive to changes in
color, texture, and shape

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

Feature Inversion

(Neural) Texture Synthesis

57

Texture Synthesis

Given a sample patch of some texture, can we
generate a bigger image of the same texture?

Input

Output

58

Texture Synthesis

Wei and Levoy, “Fast Texture Synthesis using
Tree-structured Vector Quantization”, SIGGRAPH 2000

Efros and Leung, “Texture Synthesis by
Non-parametric Sampling”, ICCV 1999

59

Texture Synthesis

Wei and Levoy, “Fast Texture Synthesis using
Tree-structured Vector Quantization”, SIGGRAPH 2000

Efros and Leung, “Texture Synthesis by
Non-parametric Sampling”, ICCV 1999

I have a Torch implementation here:
https://github.com/jcjohnson/texture-synthesis

60

Neural Texture Synthesis

Gatys et al, “Texture Synthesis using Convolutional Neural Networks”, NIPS 2015

1. Pretrain a CNN on ImageNet (VGG-19)
2. Run input texture forward through CNN,

record activations on every layer; layer i
gives feature map of shape Ci × Hi × Wi

3. At each layer compute the Gram matrix
giving outer product of features:

 (shape Ci × Hi)

4. Initialize generated image from random
noise

5. Pass generated image through CNN,
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2
distance between Gram matrices

7. Backprop to get gradient on image
8. Make gradient step on image
9. GOTO 5

61

Neural Texture Synthesis

Gatys et al, “Texture Synthesis using Convolutional Neural Networks”, NIPS 2015

1. Pretrain a CNN on ImageNet (VGG-19)
2. Run input texture forward through CNN,

record activations on every layer; layer i
gives feature map of shape Ci × Hi × Wi

3. At each layer compute the Gram matrix
giving outer product of features:

 (shape Ci × Hi)

4. Initialize generated image from random
noise

5. Pass generated image through CNN,
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2
distance between Gram matrices

7. Backprop to get gradient on image
8. Make gradient step on image
9. GOTO 5

62

Neural Texture Synthesis

Gatys et al, “Texture Synthesis using Convolutional Neural Networks”, NIPS 2015

1. Pretrain a CNN on ImageNet (VGG-19)
2. Run input texture forward through CNN,

record activations on every layer; layer i
gives feature map of shape Ci × Hi × Wi

3. At each layer compute the Gram matrix
giving outer product of features:

 (shape Ci × Hi)

4. Initialize generated image from random
noise

5. Pass generated image through CNN,
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2
distance between Gram matrices

7. Backprop to get gradient on image
8. Make gradient step on image
9. GOTO 5

63

Neural Texture Synthesis

Gatys et al, “Texture Synthesis using Convolutional Neural Networks”, NIPS 2015

1. Pretrain a CNN on ImageNet (VGG-19)
2. Run input texture forward through CNN,

record activations on every layer; layer i
gives feature map of shape Ci × Hi × Wi

3. At each layer compute the Gram matrix
giving outer product of features:

 (shape Ci × Hi)

4. Initialize generated image from random
noise

5. Pass generated image through CNN,
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2
distance between Gram matrices

7. Backprop to get gradient on image
8. Make gradient step on image
9. GOTO 5

64

Neural Texture Synthesis

Gatys et al, “Texture Synthesis using Convolutional Neural Networks”, NIPS 2015

1. Pretrain a CNN on ImageNet (VGG-19)
2. Run input texture forward through CNN,

record activations on every layer; layer i
gives feature map of shape Ci × Hi × Wi

3. At each layer compute the Gram matrix
giving outer product of features:

 (shape Ci × Hi)

4. Initialize generated image from random
noise

5. Pass generated image through CNN,
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2
distance between Gram matrices

7. Backprop to get gradient on image
8. Make gradient step on image
9. GOTO 5

65

Neural Texture Synthesis

Gatys et al, “Texture Synthesis using Convolutional Neural Networks”, NIPS 2015

1. Pretrain a CNN on ImageNet (VGG-19)
2. Run input texture forward through CNN,

record activations on every layer; layer i
gives feature map of shape Ci × Hi × Wi

3. At each layer compute the Gram matrix
giving outer product of features:

 (shape Ci × Hi)

4. Initialize generated image from random
noise

5. Pass generated image through CNN,
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2
distance between Gram matrices

7. Backprop to get gradient on image
8. Make gradient step on image
9. GOTO 5

66

Neural Texture Synthesis

Gatys et al, “Texture Synthesis using Convolutional Neural Networks”, NIPS 2015

1. Pretrain a CNN on ImageNet (VGG-19)
2. Run input texture forward through CNN,

record activations on every layer; layer i
gives feature map of shape Ci × Hi × Wi

3. At each layer compute the Gram matrix
giving outer product of features:

 (shape Ci × Hi)

4. Initialize generated image from random
noise

5. Pass generated image through CNN,
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2
distance between Gram matrices

7. Backprop to get gradient on image
8. Make gradient step on image
9. GOTO 5

67

Neural Texture Synthesis

Gatys et al, “Texture Synthesis using Convolutional Neural Networks”, NIPS 2015

1. Pretrain a CNN on ImageNet (VGG-19)
2. Run input texture forward through CNN,

record activations on every layer; layer i
gives feature map of shape Ci × Hi × Wi

3. At each layer compute the Gram matrix
giving outer product of features:

 (shape Ci × Hi)

4. Initialize generated image from random
noise

5. Pass generated image through CNN,
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2
distance between Gram matrices

7. Backprop to get gradient on image
8. Make gradient step on image
9. GOTO 5

68

Neural Texture Synthesis

Reconstructing from
higher layers recovers
larger features from the
input texture

Gatys et al, “Texture Synthesis using Convolutional
Neural Networks”, NIPS 2015

Style Transfer:
Feature Inversion + Texture Synthesis

70

Neural Style Transfer: Feature + Gram reconstruction

Feature
reconstruction

Texture synthesis
(Gram
reconstruction)

Figure credit: Johnson et al, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016

71

Neural Style Transfer

+

Gatys et al, “A Neural Algorithm of Artistic Style”, arXiv 2015
Gatys et al, “Image Style Transfer using Convolutional Neural Networks”, CVPR 2016

Content Image Style Image

Given a content image and a style image, find a new image that
- Matches the CNN features of the content image (feature reconstruction)
- Matches the Gram matrices of the style image (texture synthesis)

Combine feature reconstruction from Mahendran et al with Neural Texture
Synthesis from Gatys et al, using the same CNN!

72

Neural Style Transfer

+ =

Gatys et al, “A Neural Algorithm of Artistic Style”, arXiv 2015
Gatys et al, “Image Style Transfer using Convolutional Neural Networks”, CVPR 2016

Content Image Style Image Stylized Result

Given a content image and a style image, find a new image that
- Matches the CNN features of the content image (feature reconstruction)
- Matches the Gram matrices of the style image (texture synthesis)

Combine feature reconstruction from Mahendran et al with Neural Texture
Synthesis from Gatys et al, using the same CNN!

73

Neural Style Transfer
1. Pretrain CNN
2. Compute features for

content image
3. Compute Gram matrices

for style image
4. Randomly initialize new

image
5. Forward new image

through CNN
6. Compute style loss (L2

distance between Gram
matrices) and content
loss (L2 distance
between features)

7. Loss is weighted sum of
style and content losses

8. Backprop to image
9. Take a gradient step

10. GOTO 5

Gatys et al, “Image Style Transfer using Convolutional Neural Networks”, CVPR 2016

74

Neural Style Transfer

Gatys et al, “Image Style Transfer using Convolutional Neural Networks”, CVPR 2016

75

Neural Style Transfer

Gatys et al, “Image Style Transfer using Convolutional Neural Networks”, CVPR 2016

From my implementation on GitHub:
https://github.com/jcjohnson/neural-style

https://github.com/jcjohnson/neural-style
https://github.com/jcjohnson/neural-style

76

Neural Style Transfer: Style / Content Tradeoff

More weight to
content loss

More weight to
style loss

Justin Johnson, “neural-style”, https://github.com/jcjohnson/neural-style

https://github.com/jcjohnson/neural-style

77

Neural Style Transfer: Style Scale

Larger style
image

Smaller style
image

Resizing style image before running style transfer
algorithm can transfer different types of features

Justin Johnson, “neural-style”, https://github.com/jcjohnson/neural-style

https://github.com/jcjohnson/neural-style

78

Neural Style Transfer: Multiple Style Images
Mix style from multiple images by taking a weighted average of Gram matrices

Justin Johnson, “neural-style”, https://github.com/jcjohnson/neural-style

https://github.com/jcjohnson/neural-style

79

Neural Style Transfer: Multiple Style Images

More “Scream” More “Starry Night”

Justin Johnson, “neural-style”, https://github.com/jcjohnson/neural-style

https://github.com/jcjohnson/neural-style

80

Neural Style Transfer: Preserve colors
Style Content

Normal style transfer Color-preserving style transferhttp://blog.deepart.io/2016/06/04/color-independent-style-transfer/
Gatys et al, “Preserving Color in Neural Artistic Style Transfer”, arXiv 2016
Gatys et al, “Controlling Perceptual Factors in Neural Style Transfer”, arXiv 2016

Perform style transfer only on the
luminance channel
(eg Y in YUV colorspace);
Copy colors from content image

http://blog.deepart.io/2016/06/04/color-independent-style-transfer/
http://blog.deepart.io/2016/06/04/color-independent-style-transfer/

81

Simultaneous DeepDream and Style Transfer!

https://github.com/jcjohnson/fast-neural-style/issues/5

Jointly minimize feature reconstruction loss, style reconstruction
loss, and maximize DeepDream feature amplification loss!

https://github.com/jcjohnson/fast-neural-style/issues/5
https://github.com/jcjohnson/fast-neural-style/issues/5

82

Style Transfer on Video

Ruder et al, “Artistic style transfer for videos”, arXiv 2016

Running style transfer independently on each
video frame results in poor per-frame consistency:

83

Style Transfer on Video

Appearance of the rock formation different in each frame!

Ruder et al, “Artistic style transfer for videos”, arXiv 2016

Running style transfer independently on each
video frame results in poor per-frame consistency:

84

Style Transfer on Video

Ruder et al, “Artistic style transfer for videos”, arXiv 2016
https://github.com/manuelruder/artistic-videos

Tricks for video style transfer:
- Initialization: Initialize frame t+1 with
a warped version of the stylized result
at frame t (using optical flow)
- Short-term temporal consistency:
warped forward optical flow should be
opposite of backward optical flow
- Long-term temporal consistency:
When a region is occluded then visible
again, it should look the same
- Multipass processing: Make multiple
forward and backward passes over the
video with few iterations per pass

https://github.com/manuelruder/artistic-videos
https://github.com/manuelruder/artistic-videos
http://www.youtube.com/watch?v=Khuj4ASldmU

85

Beyond Gram Matrices: CNNMRF

Li and Wand, “Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis”, CVPR 2016
https://github.com/chuanli11/CNNMRF

Idea: Use patch matching like classic texture synthesis,
but match patches in CNN feature space rather than pixel space!

Neural patches at different layers of VGG19:

For each neural patch in generated image, find nearest-neighbor
neural patch in style image; minimize distance between patches

https://github.com/chuanli11/CNNMRF
https://github.com/chuanli11/CNNMRF

86

Beyond Gram Matrices: CNNMRF

Li and Wand, “Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis”, CVPR 2016
https://github.com/chuanli11/CNNMRF

Content Style Output

https://github.com/chuanli11/CNNMRF
https://github.com/chuanli11/CNNMRF

87

Fast Style Transfer

Problem: Style transfer is slow;
need hundreds of forward +
backward passes of VGG

Solution: Train a feedforward
network to perform style transfer!

88

Fast Style Transfer
(1) Train a feedforward network for each style
(2) Use pretrained CNN to compute same losses as before
(3) After training, stylize images using a single forward pass

Works real-time at test-time!
Johnson et al, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016

89

Fast Style Transfer

Johnson et al, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016
https://github.com/jcjohnson/fast-neural-style

Gatys GatysOurs Ours

Works real-time on video!

https://github.com/jcjohnson/fast-neural-style
https://github.com/jcjohnson/fast-neural-style

90

Fast Style Transfer: Texture Networks

Ulyanov et al, “Texture Networks: Feed-forward Synthesis of Textures and Stylized Images”, ICML 2016
https://github.com/DmitryUlyanov/texture_nets

Multiscale architecture for generator

Concurrent work with mine
with comparable results

https://github.com/DmitryUlyanov/texture_nets
https://github.com/DmitryUlyanov/texture_nets

A minor tweak to the architecture of the generator significantly improves results

91

Fast Style Transfer: Instance Normalization

Instance
Normalization

Batch
Normalization

Ulyanov et al Johnson et al

Ulyanov et al, “Instance Normalization: The Missing Ingredient for Fast Stylization”, ICML 2016

92

Fast Style Transfer: Multiple styles with one network

Dumoulin et al, “A Learned Representation for Artistic Style”, arXiv 2016
https://research.googleblog.com/2016/10/supercharging-style-transfer.html

Use the same network for multiple styles using
conditional instance normalization:
learn separate scale and shift parameters per style

At test-time, blend scale and shift parameters
for realtime style blending!

https://research.googleblog.com/2016/10/supercharging-style-transfer.html
https://research.googleblog.com/2016/10/supercharging-style-transfer.html

93

Fast Style Transfer: Multiple styles with one network

Dumoulin et al, “A Learned Representation for Artistic Style”, arXiv 2016
https://research.googleblog.com/2016/10/supercharging-style-transfer.html

http://www.youtube.com/watch?v=6ZHiARZmiUI
https://research.googleblog.com/2016/10/supercharging-style-transfer.html
https://research.googleblog.com/2016/10/supercharging-style-transfer.html

For more details on CNNs,
take CS 231n in Spring!

