Convolutional Neural Networks + Neural Style Transfer

Justin Johnson 2/1/2017

Outline

- Convolutional Neural Networks
 - Convolution
 - Pooling
 - Feature Visualization
- Neural Style Transfer
 - Feature Inversion
 - Texture Synthesis
 - Style Transfer

Convolutional Neural Networks: Deep Learning with Images

Russakovsky et al. arXiv, 2014

Object Detection = What, and Where

Slide credit: Kaiming He, ICCV 2015

Object segmentation

Figure credit: Dai, He, and Sun, "Instance-aware Semantic Segmentation via Multi-task Network Cascades", CVPR 2016

Pose Estimation

Figure credit: Cao et al, "Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields", arXiv 2016

Image Captioning

"man in black shirt is playing guitar."

"construction worker in orange safety vest is working on road."

lego toy."

"boy is doing backflip on wakeboard."

"girl in pink dress is jumping in air."

"man in blue wetsuit is surfing on wave."

"young girl in pink shirt is "black and white dog jumps over swinging on swing." bar."

Dense Image Captioning

Visual Question Answering

What color are her eyes? What is the mustache made of?

Is this person expecting company? What is just under the tree?

Does it appear to be rainy? Does this person have 20/20 vision?

Figure credit: Agrawal et al, "VQA: Visual Question Answering", ICCV 2015

munipic circices	Q: Who is behind the batter?	Q: What adorns the tops of the post?	Q: How many cameras are in the photo?
5	A: Catcher.	A: Gulls.	A: One.
ple	A: Umpire.	A: An eagle.	A: Two.
	A: Fans.	A: A crown.	A: Three.
	A: Ball girl.	A: A pretty sign.	A: Four.
mage	H: Catcher. 🗸	H: Gulls. 🗸	H: Three. X
w/o Image	M: Umpire. X	M: Gulls. 🗸	M: One. 🗸
lage	H: Catcher. 🗸	H: Gulls. 🗸	H: One. 🗸
w/ Image	M: Catcher. 🗸	M: A crown. X	M: One. 🗸

Q: Why is there rope?

	animal is shown?	petted?
A: To tie up the boats.	A: Teddy Bear.	A: A sheep.
A: To tie up horses.	A: Monkey.	A: Goat.
A: To hang people.	A: Tiger.	A: Alpaca.
A: To hit tether balls.	A: Bunny rabbit.	A: Pig.
H: To hit tether balls. X	H: Monkey. X	H: A sheep. 🗸
M: To hang people. X	M: Teddy Bear. 🗸	M: A sheep. 🗸
H: To tie up the boats. 🗸	H: Teddy Bear. 🗸	H: Goat. 🗡
M: To hang people. X	M: Teddy Bear. 🗸	M: A sheep. 🗸

Figure credit: Zhu et al, "Visual7W: Grounded Question Answering in Images", CVPR 2016

Image Super-Resolution BIR SRResNet SRGAN

Generating Art

Figure credit: Gatys, Ecker, and Bethge, "Image Style Transfer using Convolutional Neural Networks", CVPR 2016

Figure credit: Mordvintsev, Olah, and Tyka, "Inceptionism: Going Deeper into Neural Networks", https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Figure credit: Johnson, Alahi, and Fei-Fei: "Perceptual Losses for Real-Time Style Transfer and Super-Resolution", ECCV 2016, <u>https://github.com/jcjohnson/fast-neural-style</u>

What is a Convolutional Neural Net?

Fully-Connected Neural Network

Convolutional Neural Network

Convolution Layer

Convolution Layer

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Filters always extend the full depth of the input volume

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

activation map

consider a second, green filter

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

MAX POOLING

Single depth slice

У

max pool with 2x2 filters and stride 2

Х

Case Study: LeNet-5

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

Slide credit: CS231n Lecture 7

Case Study: AlexNet

[Krizhevsky et al. 2012]

		ConvNet C	onfiguration		
A	A-LRN	B	С	D	E
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
	i	nput (224×2	24 RGB imag	:)	
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64
	maxpool				
conv3-128	conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128
	maxpool				
conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-255 conv1-256	conv3-256 conv3-256 conv3-256	conv3-256 conv3-256 conv3-256
		max	spool		conv3-256
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512
maxpool					
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
maxpool					
			4096		
			4096		
			1000		
		soft	-max		

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

best model

11.2% top 5 error in ILSVRC 2013 -> 7.3% top 5 error

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	С	D	E
Number of parameters	133	133	134	138	144

Case Study: ResNet

[He et al., 2015]

Case Study: ResNet [He et al., 2015] ILSVRC 2015 winner (3.6% top 5 error)

(slide from Kaiming He's ICCV 2015 presentation)

Slide credit: CS231n Lecture 7

(slide from Kaiming He's ICCV 2015 presentation)

Visualizing ConvNet Features

Visualizing CNN features: Look at filters

AlexNet

Slide credit: CS231n Lecture 9

Many networks learn similar filters

Slide credit: CS231n Lecture 9

Visualizing CNN features: Look at filters

Weights:

尊孝道為臣)(動調運動者要求要者 医结肠原腺间球医脾瘤 副)(團 是常是没能的新生产)(我生物学为资源的问题在希望的问题。 新聞教育局部委員会員長常常)(在本語学校会議会議会議会会会員会) **新聞)(**国 演奏座)(標高 被医院的发展)(出现这种建筑和建筑是建筑和建筑地 建新建设设备建筑的建筑的建筑(新花市市的建筑和建筑和建筑 除贫困盗)(消除得到登 学习学校的现在分词经济性利润的现在分词 (那种高级长期有限的现在分词 律國委員習)(應於議論 周期時期時代(清陽和高麗を見る思想に「清朝時間」」(同時時後の時間)(日本の日本の日本の日本の日本 非沒許對從这的)(原兩軍自然使軍軍對非國語軍黨黨軍權的)(有用以從以因為軍事和專助 國際部務委員會的(國 (日本語学習習者)

Weights:

Image credit: CS231n Lecture 9; Filters from ConvNetJS CIFAR-10 model Filters from higher layers don't make much sense

Visualizing CNN features: (Guided) Backprop

Choose an image

Choose a layer and a neuron in a CNN

Question: How does the chosen neuron respond to the image?

Slide credit: CS231n Lecture 9

1. Feed image into net

Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014

Dosovitskiy et al, "Striving for Simplicity: The All Convolutional Net", ICLR Workshop 2015

Slide credit: CS231n Lecture 9

1. Feed image into net

2. Set gradient of chosen layer to all zero, except 1 for the chosen neuron

Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014

Dosovitskiy et al, "Striving for Simplicity: The All Convolutional Net", ICLR Workshop 2015

Slide credit: CS231n Lecture 9

1. Feed image into net

2. Set gradient of chosen layer to all zero, except 1 for the chosen neuron

3. Backprop to image:

Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014

Dosovitskiy et al, "Striving for Simplicity: The All Convolutional Net", ICLR Workshop 2015

Slide credit: CS231n Lecture 9

1. Feed image into net

2. Set gradient of chosen layer to all zero, except 1 for the chosen neuron

3. Backprop to image:

Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014

Dosovitskiy et al, "Striving for Simplicity: The All Convolutional Net", ICLR Workshop 2015

Slide credit: CS231n Lecture 9

Guided backpropagation: instead

40

Visualization of patterns learned by the layer **conv6** (top) and layer **conv9** (bottom) of the network trained on ImageNet.

Each row corresponds to one filter.

The visualization using "guided backpropagation" is based on the top 10 image patches activating this filter taken from the ImageNet dataset.

guided backpropagation

guided backpropagation

corresponding image crops

corresponding image crops

(Guided) backprop:

Find the part of an image that a neuron responds to

Gradient ascent:

Generate a synthetic image that maximally activates a neuron

1. Initialize image to zeros

$$\arg\max_{I} S_c(I) - \lambda \|I\|_2^2$$

score for class c (before Softmax)

Repeat:

- 2. Forward image to compute current scores
- 3. Set gradient of scores to be 1 for target class, 0 for others
- 4. Backprop to get gradient on image
- 5. Make a small update to the image

Simonyan et al, "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", ICLR Workshop 2014

Better image regularizers give prettier results:

Flamingo

Pelican

Hartebeest

Billiard Table

Ground Beetle

Indian Cobra

Station Wagon

Black Swan

Yosinski et al, "Understanding Neural Networks Through Deep Visualization", ICML DL Workshop 2015

Use the same approach to visualize intermediate features

Yosinski et al, "Understanding Neural Networks Through Deep Visualization", ICML DL Workshop 2015

Use the same approach to visualize intermediate features

You can add even more tricks to get nicer results:

Nguyen et al, "Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks", ICML Visualization for Deep Learning Workshop 2016

GAN image priors give amazing results:

Given a feature vector for an image, find a new image such that:

- Its features are similar to the given features
- It "looks natural" (image prior regularization)

Given a feature vector for an image, find a new image such that:

- Its features are similar to the given features
- It "looks natural" (image prior regularization)

$$\mathbf{x}^* = \operatorname*{argmin}_{\mathbf{x} \in \mathbb{R}^{H \times W \times C}} \ell(\Phi(\mathbf{x}), \Phi_0) + \lambda \mathcal{R}(\mathbf{x})$$

$$\ell(\Phi(\mathbf{x}), \Phi_0) = \|\Phi(\mathbf{x}) - \Phi_0\|^2$$
$$\mathcal{R}_{V^{\beta}}(\mathbf{x}) = \sum_{i,j} \left((x_{i,j+1} - x_{ij})^2 + (x_{i+1,j} - x_{ij})^2 \right)^{\frac{\beta}{2}}$$

Given a feature vector for an image, find a new image such that:

- Its features are similar to the given features
- It "looks natural" (image prior regularization)

$$\mathbf{x}^{*} = \underset{\mathbf{x} \in \mathbb{R}^{H \times W \times C}}{\operatorname{argmin}} \ell(\Phi(\mathbf{x}), \Phi_{0}) + \lambda \mathcal{R}(\mathbf{x}) \qquad \text{Given feature vector} \\ \vdash \operatorname{Features of new image} \\ \ell(\Phi(\mathbf{x}), \Phi_{0}) = \|\Phi(\mathbf{x}) - \Phi_{0}\|^{2} \\ \mathcal{R}_{V^{\beta}}(\mathbf{x}) = \sum_{i,j} \left((x_{i,j+1} - x_{ij})^{2} + (x_{i+1,j} - x_{ij})^{2} \right)^{\frac{\beta}{2}} \\ \top \operatorname{Total Variation regularizer}_{(\text{encourages spatial smoothness})}$$

original image

Reconstructions from the 1000 log probabilities for ImageNet (ILSVRC) classes

Reconstructions from the representation after last last pooling layer (immediately before the first Fully Connected layer)

Reconstructions from intermediate layers

Higher layers are less sensitive to changes in color, texture, and shape

Texture Synthesis

Given a sample patch of some texture, can we generate a bigger image of the same texture?

Output

Texture Synthesis

Efros and Leung, "Texture Synthesis by Non-parametric Sampling", ICCV 1999

Texture Synthesis

Wei and Levoy, "Fast Texture Synthesis using Tree-structured Vector Quantization", SIGGRAPH 2000 Efros and Leung, "Texture Synthesis by Non-parametric Sampling", ICCV 1999

I have a Torch implementation here: https://github.com/jcjohnson/texture-synthesis

1. Pretrain a CNN on ImageNet (VGG-19)

- 1. Pretrain a CNN on ImageNet (VGG-19)
- Run input texture forward through CNN, record activations on every layer; layer i gives feature map of shape C_i × H_i × W_i

- 1. Pretrain a CNN on ImageNet (VGG-19)
- Run input texture forward through CNN, record activations on every layer; layer i gives feature map of shape C_i × H_i × W_i
- 3. At each layer compute the *Gram matrix* giving outer product of features:

$$G_{ij}^{l} = \sum_{k} F_{ik}^{l} F_{jk}^{l} \text{(shape } \mathbf{C_{i}} \times \mathbf{H_{i}}\text{)}$$

- 1. Pretrain a CNN on ImageNet (VGG-19)
- Run input texture forward through CNN, record activations on every layer; layer i gives feature map of shape C_i × H_i × W_i
- 3. At each layer compute the *Gram matrix* giving outer product of features:

$$G_{ij}^{l} = \sum_{k} F_{ik}^{l} F_{jk}^{l} \text{(shape C}_{i} \times \text{H}_{i}\text{)}$$

4. Initialize generated image from random noise

- 1. Pretrain a CNN on ImageNet (VGG-19)
- Run input texture forward through CNN, record activations on every layer; layer i gives feature map of shape C_i × H_i × W_i
- 3. At each layer compute the *Gram matrix* giving outer product of features:

$$G_{ij}^{l} = \sum_{k} F_{ik}^{l} F_{jk}^{l}$$
 (shape C_i × H_i)

- 4. Initialize generated image from random noise
- 5. Pass generated image through CNN, compute Gram matrix on each layer

$$E_l = rac{1}{4N_l^2 M_l^2} \sum_{i,j} \left(G_{ij}^l - \hat{G}_{ij}^l
ight)^2 \qquad \mathcal{L}(ec{x}, \hat{ec{x}}) = \sum_{l=0}^L w_l E_l$$

- 1. Pretrain a CNN on ImageNet (VGG-19)
- Run input texture forward through CNN, record activations on every layer; layer i gives feature map of shape C_i × H_i × W_i
- 3. At each layer compute the *Gram matrix* giving outer product of features:

$$G_{ij}^{l} = \sum_{k} F_{ik}^{l} F_{jk}^{l}$$
 (shape C_i × H_i)

- 4. Initialize generated image from random noise
- 5. Pass generated image through CNN, compute Gram matrix on each layer
- 6. Compute loss: weighted sum of L2 distance between Gram matrices

$$E_l = rac{1}{4N_l^2 M_l^2} \sum_{i,j} \left(G_{ij}^l - \hat{G}_{ij}^l
ight)^2 \qquad \mathcal{L}(ec{x}, \hat{ec{x}}) = \sum_{l=0}^L w_l E_l$$

- 1. Pretrain a CNN on ImageNet (VGG-19)
- Run input texture forward through CNN, record activations on every layer; layer i gives feature map of shape C_i × H_i × W_i
- 3. At each layer compute the *Gram matrix* giving outer product of features:

$$G_{ij}^{l} = \sum_{k} F_{ik}^{l} F_{jk}^{l}$$
 (shape C_i × H_i)

- 4. Initialize generated image from random noise
- 5. Pass generated image through CNN, compute Gram matrix on each layer
- 6. Compute loss: weighted sum of L2 distance between Gram matrices
- 7. Backprop to get gradient on image

$$E_l = rac{1}{4N_l^2 M_l^2} \sum_{i,j} \left(G_{ij}^l - \hat{G}_{ij}^l
ight)^2 \qquad \mathcal{L}(ec{x}, \hat{ec{x}}) = \sum_{l=0}^L w_l E_l$$

- 1. Pretrain a CNN on ImageNet (VGG-19)
- Run input texture forward through CNN, record activations on every layer; layer i gives feature map of shape C_i × H_i × W_i
- 3. At each layer compute the *Gram matrix* giving outer product of features:

$$G_{ij}^l = \sum_k F_{ik}^l F_{jk}^l \text{(shape C}_{\rm i} \times {\rm H_{i}}\text{)}$$

- 4. Initialize generated image from random noise
- 5. Pass generated image through CNN, compute Gram matrix on each layer
- 6. Compute loss: weighted sum of L2 distance between Gram matrices
- 7. Backprop to get gradient on image
- 8. Make gradient step on image
- 9. GOTO 5

Reconstructing from higher layers recovers larger features from the input texture

Gatys et al, "Texture Synthesis using Convolutional Neural Networks", NIPS 2015

Style Transfer: Feature Inversion + Texture Synthesis

Neural Style Transfer: Feature + Gram reconstruction

Feature reconstruction

Texture synthesis (Gram reconstruction)

Figure credit: Johnson et al, "Perceptual Losses for Real-Time Style Transfer and Super-Resolution", ECCV 2016

Neural Style Transfer

Given a **content image** and a **style image**, find a new image that

- Matches the CNN features of the content image (feature reconstruction)
- Matches the Gram matrices of the style image (texture synthesis)

Combine feature reconstruction from Mahendran et al with Neural Texture Synthesis from Gatys et al, using the same CNN!

Content Image

Style Image

Gatys et al, "A Neural Algorithm of Artistic Style", arXiv 2015 Gatys et al, "Image Style Transfer using Convolutional Neural Networks", CVPR 2016

Neural Style Transfer

Given a content image and a style image, find a new image that

- Matches the CNN features of the content image (feature reconstruction)
- Matches the Gram matrices of the style image (texture synthesis)

Combine feature reconstruction from Mahendran et al with Neural Texture Synthesis from Gatys et al, using the same CNN!

Content Image

Style Image

Stylized Result

Gatys et al, "A Neural Algorithm of Artistic Style", arXiv 2015 Gatys et al, "Image Style Transfer using Convolutional Neural Networks", CVPR 2016

Neural Style Transfer

- 1. Pretrain CNN
- 2. Compute features for content image
- 3. Compute Gram matrices for style image
- 4. Randomly initialize new image
- 5. Forward new image through CNN
- 6. Compute style loss (L2 distance between Gram matrices) and content loss (L2 distance between features)
- Loss is weighted sum of style and content losses
- 8. Backprop to image
- 9. Take a gradient step
- 10. GOTO 5

Neural Style Transfer

Neural Style Transfer

From my implementation on GitHub: <u>https://github.com/jcjohnson/neural-style</u>

jejonnson / ne	eural-sty	e			O Unwatch ▼	587	\star Star	11,663	¥ Fork	1,70
<>Code ① Is	sues 201	1) Pull requests 18	III Projects 0	💷 Wiki	-/~ Pulse	di Grap	hs 🗘	Settings		
orch implementa	ation of ne	ural style algorithm —	- Edit							

Gatys et al, "Image Style Transfer using Convolutional Neural Networks", CVPR 2016

Neural Style Transfer: Style / Content Tradeoff

Neural Style Transfer: Style Scale

Resizing style image before running style transfer algorithm can transfer different types of features

Neural Style Transfer: Multiple Style Images

Mix style from multiple images by taking a weighted average of Gram matrices

Justin Johnson, "neural-style", https://github.com/jcjohnson/neural-style

Neural Style Transfer: Multiple Style Images

More "Scream"

More "Starry Night"

Neural Style Transfer: Preserve colors

Perform style transfer only on the luminance channel (eg Y in YUV colorspace); Copy colors from content image Style

Content

Color-preserving style transfer

http://blog.deepart.io/2016/06/04/color-independent-style-transfer/ Gatys et al, "Preserving Color in Neural Artistic Style Transfer", arXiv 2016 Gatys et al, "Controlling Perceptual Factors in Neural Style Transfer", arXiv 2016

Simultaneous DeepDream and Style Transfer!

Jointly minimize feature reconstruction loss, style reconstruction loss, and maximize DeepDream feature amplification loss!

Style Transfer on Video

Running style transfer independently on each video frame results in poor per-frame consistency:

Original frames

Independent per-frame processing

Style image

Style Transfer on Video

Running style transfer independently on each video frame results in poor per-frame consistency:

Original frames

Independent per-frame processing

Appearance of the rock formation different in each frame!

Style image

Style Transfer on Video

Tricks for video style transfer:

- **Initialization:** Initialize frame t+1 with a warped version of the stylized result at frame t (using optical flow)

- **Short-term temporal consistency**: warped forward optical flow should be opposite of backward optical flow

- Long-term temporal consistency: When a region is occluded then visible again, it should look the same

- **Multipass processing**: Make multiple forward and backward passes over the video with few iterations per pass

Beyond Gram Matrices: CNNMRF

Idea: Use patch matching like classic texture synthesis, but match patches in CNN feature space rather than pixel space!

Neural patches at different layers of VGG19:

relu2 1

input image

relu3 1

relu5 1

relu4 1

For each neural patch in generated image, find nearest-neighbor neural patch in style image; minimize distance between patches

Li and Wand, "Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis", CVPR 2016 https://github.com/chuanli11/CNNMRF

Beyond Gram Matrices: CNNMRF

Output Content Style

Li and Wand, "Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis", CVPR 2016 https://github.com/chuanli11/CNNMRF

Fast Style Transfer

Problem: Style transfer is slow; need hundreds of forward + backward passes of VGG

Solution: Train a feedforward network to perform style transfer!

Fast Style Transfer

Johnson et al, "Perceptual Losses for Real-Time Style Transfer and Super-Resolution", ECCV 2016

Fast Style Transfer

Johnson et al, "Perceptual Losses for Real-Time Style Transfer and Super-Resolution", ECCV 2016 <u>https://github.com/jcjohnson/fast-neural-style</u>

Works real-time on video!

Fast Style Transfer: Texture Networks

Concurrent work with mine with comparable results

Fast Style Transfer: Instance Normalization

A minor tweak to the architecture of the generator significantly improves results

Fast Style Transfer: Multiple styles with one network

Use the same network for multiple styles using *conditional instance normalization*:

learn separate scale and shift parameters per style

At test-time, blend scale and shift parameters for realtime style blending!

Dumoulin et al, "A Learned Representation for Artistic Style", arXiv 2016 https://research.googleblog.com/2016/10/supercharging-style-transfer.html

Fast Style Transfer: Multiple styles with one network

For more details on CNNs, take CS 231n in Spring!