
TensorFlow Input Pipeline
CS 20SI:

TensorFlow for Deep Learning Research
Lecture 9

2/10/2017

1

2

Announcements

3

Assignment 2 is out. It’s fun, but tricky. Start early!

No class next Wednesday (Feb 15) because of
TensorFlow Dev Summit
(sign up for live streaming party on campus)

Email me if you’d like to do IG for assignment 1

Agenda

Data Readers Revisited

TFRecord

Variable Initializer

Graph Collection

Style Transfer

4

Queues

5

tf.Session objects are designed to multithreaded
→ can run ops in parallel

Queues

6

Important TensorFlow objects for computing tensors
asynchronously in a graph.

● Multiple threads prepare training examples and push them in the queue
● A training thread executes a training op that dequeues mini-batches from the

queue

Queues

7

Important TensorFlow objects for computing tensors
asynchronously in a graph.

● All threads must be able to stop together
● Exceptions must be caught and reported
● Queues must be properly closed when stopping.

Queues

8

TensorFlow queues can’t run without proper threading,
but threading isn’t exactly pleasant in Python

tf.Coordinator and tf.train.QueueRunner

9

● QueueRunner
create a number of threads cooperating to enqueue tensors in the
same queue

tf.Coordinator and tf.train.QueueRunner

10

● QueueRunner
create a number of threads cooperating to enqueue tensors in the
same queue

● Coordinator
help multiple threads stop together and report exceptions to a
program that waits for them to stop

Very similar to threadpool in CS110
Don’t worry if this sounds confusing.
Example in a bit

Queues

11

Queue What’s it? Ops supported

tf.FIFOQueue Dequeues elements in first in
first out order

enqueue
enqueue_many
dequeue

tf.RandomShuffleQueue Dequeues elements in a
random order

enqueue
enqueue_many
dequeue

tf.PaddingFIFOQueue FIFOQueue with padding to
supports batching
variable_size tensors

enqueue
enqueue_many
dequeue
dequeue_many

tf.PriorityQueue FIFOQueue whose enqueue
and queue have another
argument: priority

enqueue
enqueue_many
dequeue

12

Queues

Create a queue

13

tf.FIFOQueue(capacity, min_after_dequeue, dtypes,
shapes=None, names=None ...)

Same for other queues

Queue example

14

all_data = 10 * np.random.randn(N_SAMPLES, 4) + 1
all_target = np.random.randint(0, 2, size=N_SAMPLES)

queue = tf.FIFOQueue(capacity=50, dtypes=[tf.float32, tf.int32], shapes=[[4], []])

enqueue_op = queue.enqueue_many([all_data, all_target])
data_sample, label_sample = queue.dequeue()

qr = tf.train.QueueRunner(queue, [enqueue_op] * NUM_THREADS)
with tf.Session() as sess:

create a coordinator, launch the queue runner threads.
coord = tf.train.Coordinator()
enqueue_threads = qr.create_threads(sess, coord=coord, start=True)
for step in xrange(100): # do to 100 iterations

if coord.should_stop():
break

one_data, one_label = sess.run([data_sample, label_sample])
coord.request_stop()
coord.join(enqueue_threads)

09_queue_example.py

Queue example

15

dummy data
all_data = 10 * np.random.randn(N_SAMPLES, 4) + 1
all_target = np.random.randint(0, 2, size=N_SAMPLES)

In practice, you can use any op to
read in your data,
even placeholder!

Queue example

16

...

queue = tf.FIFOQueue(capacity=50, dtypes=[tf.float32, tf.int32], shapes=[[4], []])
create queue.
dtypes specifies types of data and label
shapes specifies shape of data and label

...

Queue example

17

...

enqueue_op = queue.enqueue_many([all_data, all_target])
data_sample, label_sample = queue.dequeue()

a common practice is to enqueue all data at once, but dequeue one by one
...

Queue example

18

...

qr = tf.train.QueueRunner(queue, [enqueue_op] * NUM_THREADS)
with tf.Session() as sess:

create a coordinator, launch the queue runner threads.
coord = tf.train.Coordinator()
enqueue_threads = qr.create_threads(sess, coord=coord, start=True)
for step in xrange(100): # do to 100 iterations

if coord.should_stop():
break

one_data, one_label = sess.run([data_sample, label_sample])
coord.request_stop()
coord.join(enqueue_threads)

.... You can use data_sample and
label_sample to do all the training
ops as if with placeholders

Dequeue multiple elements?

19

tf.train.batch or tf.train.shuffle_batch if you
want to your batch to be shuffled

20

I have never been able to get these
to work with independent queues

Re: dequeue_many is tricky with
queues

tf.Coordinator

21

Can be used to manage the threads you created without
queues

tf.Coordinator

22

import threading

thread body: loop until the coordinator indicates a stop was requested.
if some condition becomes true, ask the coordinator to stop.

def my_loop(coord):
while not coord.should_stop():

...do something...
 if ...some condition...:
 coord.request_stop()

main code: create a coordinator.
coord = tf.Coordinator()

create 10 threads that run 'my_loop()'
you can also create threads using QueueRunner as the example above
threads = [threading.Thread(target=my_loop, args=(coord,)) for _ in xrange(10)]

start the threads and wait for all of them to stop.
for t in threads: t.start()
coord.join(threads)

Just like threadpool

Take CS110 for more threading fun!

Data Readers

23

Three ways to read in data

24

1. Through tf.constant (make everything a constant)

It’ll seriously bloat your graph
(you’ll see in assignment 2)

Three ways to read in data

25

1. Through tf.constant (make everything a constant)
NO

2. Feed dict

Storage Client Workers

Slow when client and workers are on
different machines

Three ways to read in data

26

1. Through tf.constant (make everything a constant)
NO

2. Feed dict
MAYBE …

3. Data readers

27

Data Readers

Storage Worker

Readers allow us to load data directly
into the worker process.

tf.TextLineReader
Outputs the lines of a file delimited by newlines
E.g. text files, CSV files

tf.FixedLengthRecordReader
Outputs the entire file when all files have same fixed lengths
E.g. each MNIST file has 28 x 28 pixels, CIFAR-10 32 x 32 x 3

tf.WholeFileReader
Outputs the entire file content

tf.TFRecordReader
Reads samples from TensorFlow’s own binary format (TFRecord)

tf.ReaderBase
To allow you to create your own readers

28

Different Readers for different file types

filename_queue = tf.train.string_input_producer(["file0.csv", "file1.csv"])

reader = tf.TextLineReader()
key, value = reader.read(filename_queue)

29

Read in files from queues

filename_queue = tf.train.string_input_producer(["heart.csv"])

reader = tf.TextLineReader(skip_header_lines=1)
key, value = reader.read(filename_queue)

30

Read in files from queues

string_input_producer is
really a queue

filename_queue = tf.train.string_input_producer(["heart.csv"])

reader = tf.TextLineReader(skip_header_lines=1)
key, value = reader.read(filename_queue)

with tf.Session() as sess:
 coord = tf.train.Coordinator()
 threads = tf.train.start_queue_runners(coord=coord)
 for _ in range(1): # generate 1 example
 features, labels = sess.run([data_batch, label_batch])
 coord.request_stop()
 coord.join(threads)

31

Read in files from queues

Need Coordinator and
QueueRunner

filename_queue = tf.train.string_input_producer(["heart.csv"])

reader = tf.TextLineReader(skip_header_lines=1)
key, value = reader.read(filename_queue)

with tf.Session() as sess:
 coord = tf.train.Coordinator()
 threads = tf.train.start_queue_runners(coord=coord)
 for _ in range(1): # generate 1 example
 key, value = sess.run([key, value])
 print valuee # 144,0.01,4.41,28.61,Absent,55,28.87,2.06,63,1
 print key # data/heart.csv:2
 coord.request_stop()
 coord.join(threads)

32

Read in files from queues

Value is just text. Need to
convert to 2 tensors:
+ Features tensor
+ Label tensor

Live example
(05_csv_reader.py)

33

TFRecord

34

TensorFlow’s binary file format

a serialized tf.train.Example protobuf object

Why binary?

35

● make better use of disk cache
● faster to move around
● can store data of different types (so you can put both

images and labels in one place)

Convert normal files to TFRecord

36

● Super easy
● Live example

Read in TFRecord

37

● Using TFRecordReader, duh
● Live example

Assignment 2:
Style Transfer

38

Deadpool and Guernica

Deadpool and Guernica

Deadpool and Guernica

Style Transfer

44

Not too much math,
but implementation is tricky

Mathy stuff

45

Find a new image:
● whose content is closest to the content image and
● whose style is closest to the style image

It’s all about the loss functions

46

● Content loss
To measure the content loss between the content of the generated
image and the content of the content image

● Style loss
To measure the style loss between the style of the generated image
and the style of the style image

47

What is the content/style of an image?

Content/style of an image

48

Feature visualization have shown that:

● lower layers extract features related to content
● higher layers extract features related to style

Loss functions revisited

49

● Content loss
To measure the content loss between the feature map in the
content layer of the generated image and the content image

● Style loss
To measure the style loss between the feature maps in the style
layers of the generated image and the style image

Loss functions revisited

50

● Content loss
To measure the content loss between the feature map in the
content layer of the generated image and the content image

Paper: ‘conv4_4’

● Style loss
To measure the style loss between the gram matrices of feature
maps in the style layers of the generated image and the style
image

Paper: [‘conv1_1’, ‘conv2_1’, ‘conv3_1’, ‘conv4_1’ and ‘conv5_1’]

Loss functions revisited

51

● Content loss
To measure the content loss between the feature map in the content
layer of the generated image and the content image

Paper: ‘conv4_4’

● Style loss
To measure the style loss between the gram matrices of feature maps in
the style layers of the generated image and the style image

Paper: [‘conv1_1’, ‘conv2_1’, ‘conv3_1’, ‘conv4_1’ and ‘conv5_1’]

Give more weight to deeper layers
E.g. 1.o for ‘conv1_1’, 2.0 for ‘conv2_1’, ...

Loss functions revisited

52

● Content loss

● Style loss

Optimizer

53

Optimizes the initial image to minimize the combination of the two losses

Do not optimize the weights!

Tricky implementation details

54

1. Train input instead of weights

Tricky implementation details

55

1. Train input instead of weights
2. Multiple tensors share the same variable to avoid

assembling identical subgraphs
a. Content image
b. Style image
c. Initial image

Tricky implementation details

56

1. Train input instead of weights
2. Multiple tensors share the same variable to avoid

assembling identical subgraphs
3. Use pre-trained weights (from VGG-19)

a. Weights and biases already loaded for you
b. They are numpy, so need to be converted to

tensors
c. Must not be trainable!!

Next class (Friday 2/18)

RNNs!

Example: translate

Feedback: huyenn@stanford.edu

Thanks!

57

mailto:huyenn@stanford.edu

