Beat the World’s Best at Super Smash Bros.
Agenda

All about RNNs

Implementation tricks & treats

Live demo of Language Modeling
From feed-forward to RNNs

Graph by Nature
From feed-forward to RNNs

- RNNs take advantage of sequential information of data (texts, genomes, spoken words, etc.)
- Directed cycles
- All steps share weights to reduce the total number of parameters
- Form the backbone of NLP
- Can also be used for images
Simple Recurrent Neural Network (SRNN)

Introduced by Jeffrey Elman in 1990. Also known as Elman Network

Simple RNNs are Simple

Elman and Jordan networks are also known as "simple recurrent networks" (SRN).

Elman network[^10]

\[h_t = \sigma_h (W_h x_t + U_h h_{t-1} + b_h) \]
\[y_t = \sigma_y (W_y h_t + b_y) \]

Jordan network[^11]

\[h_t = \sigma_h (W_h x_t + U_h y_{t-1} + b_h) \]
\[y_t = \sigma_y (W_y h_t + b_y) \]

Variables and functions

- \(x_t \): input vector
- \(h_t \): hidden layer vector
- \(y_t \): output vector
- \(W, U \) and \(b \): parameter matrices and vector
- \(\sigma_h \) and \(\sigma_y \): Activation functions

From Wikipedia
RNNs in the context of NLP

Diagram from CS 224D Slides
The problem with RNNs

- In practice, RNNs aren’t very good at capturing long-term dependencies

“I grew up in France... I speak fluent ???”

-> Needs information from way back
The rise of LSTMs

Long Short Term Memory
The rise of LSTMs

- Control how much of new input to take, how much of the previous hidden state to forget
- Closer to how humans process information
- The idea is not new. Hochreiter and Schmidhuber published the paper in 1997*

The rise of LSTMs

\[i^{(t)} = \sigma(W^{(i)}x^{(t)} + U^{(i)}h^{(t-1)}) \]
Input gate

\[f^{(t)} = \sigma(W^{(f)}x^{(t)} + U^{(f)}h^{(t-1)}) \]
Forget gate

\[o^{(t)} = \sigma(W^{(o)}x^{(t)} + U^{(o)}h^{(t-1)}) \]
Output/Exposure gate

\[\tilde{c}^{(t)} = \tanh(W^{(c)}x^{(t)} + U^{(c)}h^{(t-1)}) \]
New memory cell

\[c^{(t)} = f^{(t)} \circ \tilde{c}^{(t-1)} + i^{(t)} \circ \tilde{c}^{(t)} \]
Final memory cell

\[h^{(t)} = o^{(t)} \circ \tanh(c^{(t)}) \]

From CS 224D Lecture Note
The rise of LSTMs

Input: Does $x^{(t)}$ matter?

New memory: Compute new memory

Forget: Should $c^{(t-1)}$ be forgotten?

Output/Exposure: How much $c^{(t)}$ should be exposed?

From CS 224D Lecture Note
The rise of LSTMs

Visualization of LSTM in action by Alex Graves (DeepMind)
LSTMs vs GRUs

People find LSTMs work well, but unnecessarily complicated, so they introduced GRUs
GRUs (Gated Recurrent Units)

Two most widely used gated recurrent units

Gated Recurrent Unit
[Cho et al., EMNLP2014; Chung, Gulcehre, Cho, Bengio, DLUFL2014]

\[
\begin{align*}
 h_t &= u_t \odot \tilde{h}_t + (1 - u_t) \odot h_{t-1} \\
 \tilde{h} &= \tanh(W [x_t] + U (r_t \odot h_{t-1}) + b) \\
 u_t &= \sigma(W_u [x_t] + U_u h_{t-1} + b_u) \\
 r_t &= \sigma(W_r [x_t] + U_r h_{t-1} + b_r)
\end{align*}
\]

Long Short-Term Memory
[Hochreiter & Schmidhuber, NC1999; Gers, Thesis2001]

\[
\begin{align*}
 h_t &= o_t \odot \tanh(c_t) \\
 c_t &= f_t \odot c_{t-1} + i_t \odot \tilde{c}_t \\
 \tilde{c}_t &= \tanh(W_c [x_t] + U_c h_{t-1} + b_c) \\
 o_t &= \sigma(W_o [x_t] + U_o h_{t-1} + b_o) \\
 i_t &= \sigma(W_i [x_t] + U_i h_{t-1} + b_i) \\
 f_t &= \sigma(W_f [x_t] + U_f h_{t-1} + b_f)
\end{align*}
\]

From CS 224D Lecture Note
GRUs (Gated Recurrent Units)

- Computationally less expensive
- Performance on par with LSTMs*

What can RNNs do?
Language Modeling

- Allows us to measure how likely a sentence is
- Important input for Machine Translation (since high-probability sentences are typically correct)
- Can generate new text
PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:
They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.
static int indicate_policy(void)
{
 int error;
 if (fd == MARN_EPT) {
 /*
 * The kernel blank will coeld it to userspace.
 */
 if (ss->segment < mem_total)
 unblock_graph_and_set_blocked();
 else
 ret = 1;
 goto bail;
 }
 segaddr = in_SB(in.addr);
 selector = seg / 16;
 setup_works = true;
 for (i = 0; i < blocks; i++) {
 seq = buf[i++];
 bpf = bd->bd.next + i * search;
 if (fd) {
 current = blocked;
 }
 }
 rw->name = "Getjbbregs";
 bprm_self_clearf(&iv->version);
 regs->new = blocks[(BPF_STATS << info->historidac) | PFMR_CLOBATHINC_SECONDS << 12];
 return segtable;
}
For $\bigoplus_{n=1,...,m} \mathcal{L}_{m_1}$ where $\mathcal{L}_{m_1} = 0$, hence we can find a closed subset \mathcal{H} in \mathcal{H} and any sets \mathcal{F} on X, U is a closed immersion of S, then $U \to T$ is a separated algebraic space.

Proof. Proof of (1). It also start we get

$$S = \text{Spec}(\mathcal{R}) = U \times_X U \times_X U$$

and the comparisoly in the fibre product covering we have to prove the lemma generated by $\prod U \times U \to V$. Consider the maps M along the set of points Sch_{ppf} and $U \to U$ is the fibre category of S in U in Section, ?? and the fact that any U affine, see Morphisms, Lemma ???. Hence we obtain a scheme S and any open subset $W \subset U$ in $\text{Sh}(G)$ such that $\text{Spec}(\mathcal{R'}) \to S$ is smooth or an

$$U = \bigcup U_i \times_{S_i} U_i$$

which has a nonzero morphism we may assume that f_i is of finite presentation over S. We claim that $\mathcal{O}_{X,x}$ is a scheme where x, x', $s'' \in S'$ such that $\mathcal{O}_{X,x'} \to \mathcal{O}_{X',s''}$ is separated. By Algebra, Lemma ?? we can define a map of complexes $\text{GL}_S'(x'/S'')$ and we win. \qed

To prove study we see that $\mathcal{F}|_U$ is a covering of X', and \mathcal{T}_i is an object of $\mathcal{F}_{X/S}$ for $i > 0$ and \mathcal{F}_p exists and let \mathcal{F}_i be a presheaf of \mathcal{O}_X-modules on \mathcal{C} as a \mathcal{F}-module. In particular $\mathcal{F} = U/\mathcal{F}$ we have to show that

$$\widehat{M}^* = T^* \otimes_{\text{Spec}(k)} \mathcal{O}_{S,s} - i_{X}^{-1}\mathcal{F}$$

is a unique morphism of algebraic stacks. Note that

$$\text{Arrows} = (\text{Sch}/S)_{\text{ppf}} \rightarrow (\text{Sch}/S)_{\text{ppf}}$$

and

$$V = \Gamma(S, \mathcal{O}) \mapsto (U, \text{Spec}(A))$$
Character-level Language Modeling

Deep learning neural network architectures can be used to best developing a new architectures contros of the training and max model parametrinal Networks (RNNs) outperform deep learning algorithm is easy to out unclears and can be used to train samples on the state-of-the-art RNN more effective Lorred can be used to best developing a new architectures contros of the training and max model and state-of-the-art deep learning algorithms to a similar pooling relevant. The space of a parameter to optimized hierarchy the state-of-the-art deep learning algorithms to a simple analytical pooling relevant. The space of algorithm is easy to outions of the network are allowed at training and many dectional representations are allow develop a groppose a network by a simple model interact that training algorithms to be the activities to maximul setting, ...

Fake Arvix Abstracts Generator
We’ll build this!!!!
Machine Translation

Google Neural Machine Translation (Google Research’s blog)
<table>
<thead>
<tr>
<th>Input sentence:</th>
<th>Translation (PBMT):</th>
<th>Translation (GNMT):</th>
<th>Translation (human):</th>
</tr>
</thead>
<tbody>
<tr>
<td>李克強此行將啟動中加總理年度對話機制，與加拿大總理杜魯多舉行兩國總理首次年度對話。</td>
<td>Li Keqiang premier added this line to start the annual dialogue mechanism with the Canadian Prime Minister Trudeau two prime ministers held its first annual session.</td>
<td>Li Keqiang will start the annual dialogue mechanism with Prime Minister Trudeau of Canada and hold the first annual dialogue between the two premiers.</td>
<td>Li Keqiang will initiate the annual dialogue mechanism between premiers of China and Canada during this visit, and hold the first annual dialogue with Premier Trudeau of Canada.</td>
</tr>
</tbody>
</table>
Image Captioning

man in black shirt is playing guitar.
construction worker in orange safety vest is working on road.
two young girls are playing with lego toy.
girl in pink dress is jumping in air.
black and white dog jumps over bar.
young girl in pink shirt is swinging on swing.

Image Captioning

RNNs in TensorFlow
Cell Support (tf.nn.rnn_cell)

- **BasicRNNCell**: The most basic RNN cell.
- **RNNCell**: Abstract object representing an RNN cell.
- **BasicLSTMCell**: Basic LSTM recurrent network cell.
- **LSTMCell**: LSTM recurrent network cell.
- **GRUCell**: Gated Recurrent Unit cell
Construct Cells (tf.nn.rnn_cell)

cell = tf.nn.rnn_cell.GRUCell(hidden_size)
Stack multiple cells

cell = tf.nn.rnn_cell.GRUCell(hidden_size)

rnn_cells = tf.nn.rnn_cell.MultiRNNCell([cell] * num_layers)
Construct Recurrent Neural Network

- `tf.nn.dynamic_rnn`: uses a `tf.While` loop to dynamically construct the graph when it is executed. Graph creation is faster and you can feed batches of variable size.
- `tf.nn.bidirectional_dynamic_rnn`: `dynamic_rnn` with bidirectional
Stack multiple cells

cell = tf.nn.rnn_cell.GRUCell(hidden_size)

rnn_cells = tf.nn.rnn_cell.MultiRNNCell([cell] * num_layers)

output, out_state = tf.nn.dynamic_rnn(cell, seq, length, initial_state)

Any problem with this?
Stack multiple cells

cell = tf.nn.rnn_cell.GRUCell(hidden_size)

rnn_cells = tf.nn.rnn_cell.MultiRNNCell([cell] * num_layers)

output, out_state = tf.nn.dynamic_rnn(cell, seq, length, initial_state)

Most sequences are not of the same length
Dealing with variable sequence length

Pad all sequences with zero vectors and all labels with zero label (to make them of the same length)

Most current models can’t deal with sequences of length larger than 120 tokens, so there is usually a fixed max_length and we truncate the sequences to that max_length
Dealing with variable sequence length

Pad all sequences with zero vectors and all labels with zero label (to make them of the same length)

Most current models can’t deal with sequences of length larger than 120 tokens, so there is usually a fixed max_length and we truncate the sequences to that max_length

Problem?
The padded labels change the total loss, which affects the gradients
Padded/truncated sequence length

Approach 1:

- Maintain a mask (True for real, False for padded tokens)
- Run your model on both the real/padded tokens (model will predict labels for the padded tokens as well)
- Only take into account the loss caused by the real elements

\[
\text{full_loss} = \text{tf.nn.softmax_cross_entropy_with_logits}(\text{preds}, \text{labels})
\]

\[
\text{loss} = \text{tf.reduce_mean}(\text{tf.boolean_mask}(\text{full_loss}, \text{mask}))
\]
Padded/truncated sequence length

Approach 2:

- Let your model know the real sequence length so it only predict the labels for the real tokens

```python
cell = tf.nn.rnn_cell.GRUCell(hidden_size)
rnn_cells = tf.nn.rnn_cell.MultiRNNCell([cell] * num_layers)
tf.reduce_sum(tf.reduce_max(tf.sign(seq), 2), 1)
output, out_state = tf.nn.dynamic_rnn(cell, seq, length, initial_state)
```
How to deal with common problems when training RNNS
Vanishing Gradients

Use different activation units:
- tf.nn.relu
- tf.nn.relu6
- tf.nn.crelu
- tf.nn.elu

In addition to:
- tf.nn.softplus
- tf.nn.softsign
- tf.nn.bias_add
- tf.sigmoid
- tf.tanh
Exploding Gradients

Clip gradients with \texttt{tf.clip_by_global_norm}

\begin{verbatim}
gradients = tf.gradients(cost, tf.trainable_variables())

clipped_gradients, _ = tf.clip_by_global_norm(gradients, max_grad_norm)

optimizer = tf.train.AdamOptimizer(learning_rate)
train_op = optimizer.apply_gradients(zip(gradients, trainables))
\end{verbatim}
Exploding Gradients

Clip gradients with tf.clip_by_global_norm

```
gradients = tf.gradients(cost, tf.trainable_variables())  # take gradients of cost w.r.t. all trainable variables

clipped_gradients, _ = tf.clip_by_global_norm(gradients, max_grad_norm)

optimizer = tf.train.AdamOptimizer(learning_rate)
train_op = optimizer.apply_gradients(zip(gradients, trainables))
```
Exploding Gradients

Clip gradients with `tf.clip_by_global_norm`

```python
gradients = tf.gradients(cost, tf.trainable_variables())
# take gradients of cost w.r.t. all trainable variables

clipped_gradients, _ = tf.clip_by_global_norm(gradients, max_grad_norm)
# clip the gradients by a pre-defined max norm

optimizer = tf.train.AdamOptimizer(learning_rate)
train_op = optimizer.apply_gradients(zip(gradients, trainables))
```
Exploding Gradients

Clip gradients with tf.clip_by_global_norm

```python
gradients = tf.gradients(cost, tf.trainable_variables())
# take gradients of cost w.r.t. all trainable variables

clipped_gradients, _ = tf.clip_by_global_norm(gradients, max_grad_norm)
# clip the gradients by a pre-defined max norm

optimizer = tf.train.AdamOptimizer(learning_rate)
train_op = optimizer.apply_gradients(zip(gradients, trainables))
# add the clipped gradients to the optimizer
```
Anneal the learning rate

Optimizers accept both scalars and tensors as learning rate

```python
learning_rate = tf.train.exponential_decay(init_lr,
                                          global_step,
                                          decay_steps,
                                          decay_rate,
                                          staircase=True)

optimizer = tf.train.AdamOptimizer(learning_rate)
```
Overfitting

Use dropout through `tf.nn.dropout` or `DropoutWrapper` for cells

- `tf.nn.dropout`

  ```
  hidden_layer = tf.nn.dropout(hidden_layer, keep_prob)
  ```

- `DropoutWrapper`

  ```
  cell = tf.nn.rnn_cell.GRUCell(hidden_size)
  cell = tf.nn.rnn_cell.DropoutWrapper(cell, output_keep_prob=keep_prob)
  ```
Language Modeling
Neural Language Modeling

- Allows us to measure how likely a sentence is
- Important input for Machine Translation (since high-probability sentences are typically correct)
- Can generate new text
Language Modeling: Main approaches

- Word-level: n-grams
- Character-level
- Subword-level: somewhere in between the two above
Language Modeling: N-grams

- The traditional approach up until very recently
- Train a model to predict the next word based on previous n-grams

What can be the problems?
Language Modeling: N-grams

- The traditional approach up until very recently
- Train a model to predict the next word based on previous n-grams
- Huge vocabulary
- Can’t generalize to OOV (out of vocabulary)
- Requires a lot of memory
Language Modeling: Character-level

- Introduced in the early 2010s
- Both input and output are characters

Pros and cons?
Language Modeling: Character-level

- Introduced in the early 2010s
- Both input and output are characters

Pros:
- Very small vocabulary
- Doesn’t require word embeddings
- Faster to train

Cons:
- Low fluency (many words can be gibberish)
Language Modeling: Hybrid

- Word-level by default, switching to character-level for unknown tokens
Language Modeling: Subword-Level

- Input and output are subwords
- Keep W most frequent words
- Keep S most frequent syllables
- Split the rest into characters
- Seem to perform better than both word-level and character-level models*

new company dreamworks interactive
new company dre+ am+ wo+ rks: in+ te+ ra+ cti+ ve:

Demo:
Character-level Language Modeling
Generate fake Arvix abstracts

- Dataset: 7200 abstracts of Arvix papers about neural networks

“Heuristic optimisers which search for an optimal configuration of variables relative to an objective function often get stuck in local optima where the algorithm is unable to find further improvement. The standard approach to circumvent this problem involves periodically restarting the algorithm from random initial configurations when no further improvement can be found. We propose a method of partial reinitialization, whereby, in an attempt to find a better solution, only sub-sets of variables are re-initialised rather than the whole configuration. Much of the information gained from previous runs is hence retained. This leads to significant improvements in the quality of the solution found in a given time for a variety of optimisation problems in machine learning.”
Generate fake Arvix abstracts

- Evaluation: no scientific way to evaluate

“Deep learning neural network architectures can be used to best developing a new architectures controsof the training and max model parametrinal Networks (RNNs) outperform deep learning algorithm is easy to out unclears and can be used to train samples on the state-of-the-art RNN more effective Lorred can be used to best developing a new architectures controsof the training and max model and state-of-the-art deep learning algorithms to a similar pooling relevants. The space of a parameter to optimized hierarchy the state-of-the-art deep learning algorithms to a simple analytical pooling relevants. The space of algorithm is easy to outions of the network are allowed at training and many dectional representations are allow develop a groppose a network by a simple model interact that training algorithms to be the activities to maximul setting, ...”
GitHub

data/arvix_abstracts.txt
examples/11_char_nn_gist.py
Next class

Guest lecture by Lukasz Kaiser

Feedback: huyenn@stanford.edu

Thanks!