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Lessons Learned Building the Neural GPU
What I learned building NNs to learn algorithms?



What’s That?

Can you recognize these patterns?

Should we expect a computer to do so?

● All patterns? What are patterns?
● Simple computer? Advanced?
● Does is require a search?
● Can the training data have noise?
● In what time should we do it?
● Can a neural network learn it?
● Just with gradient descent?

Pattern 1:
i: 10 i: 11 i: 10110   i: 1000  i: 1101
o: 01 o: 11 o: 01101   o: 0001  o: 1011

Pattern 2:
i: 1_ i: 10__ i: 101___  i: 1000____
o: 11 o: 1010 o: 101101  o: 10001000

Pattern 3:
i: 121 i: 10210 i: 01210  i: 01201  i:11201
o: 1__ o: 1____ o: 01___  o: 001__  o:011__

i: 11211 i: 1012100 i: 1012010  i: 011020101
o: 101__ o: 101____ o: 0101___  o: 00111____



Gradient Descent?

Gradient descent is the standard way of 
training neural networks and many other 
forms of machine learning.

But it is a very basic method that only 
finds local minima. It is counter-intuitive 
to apply it to combinatorial problems. 
But very high-dimensional spaces are 
often counter-intuitive and proper 
representations can make gradient 
descent applicable to combinatorial 
problems too.

But how can gradient descent do combinatorics?



Computing with 
Neural Networks

Basic feed-forward neural networks 
operate on fixed-size vectors, so their 
power to generalize is limited.

Recurrent neural networks lift this 
major limitation, but their architecture 
restricts their power in other ways.

Feed-forward neural network:

● fixed-size input
● fixed-size output
● number of parameters depends on these sizes
● limited computational power

Recurrent neural network:

● variable-size input
● variable-size output
● number of parameters depends on memory size
● computational power limited by this memory size

Great success in speech recognition and language processing!



Why Learn 
Algorithms?

Algorithms are universal patterns, so 
if we can learn them, then in principle 
we can learn everything. If we can’t 
learn basic ones, then we can’t hope to 
build universal machine intelligence.

Can’t recurrent neural networks do it?

- Only if testing length ~ training.
- But with higher length we need 

to increase network capacity 
(number of parameters).

- Fail to capture algorithmic 
patterns, even in principle.

The big dream of universal learning.

                      Kolmogoroff complexity
           Solomonoff induction

        Universal AI

Previous work on neural algorithm learning.
● RNN and LSTM-based, generalizes a bit with attention.
● Data-structure based (stack RNN, memory nets).
● Neural Turing Machines.

Problems with Neural Turing Machines.
● Look close, your computer does not have a tape!
● Very sequential in nature, hard to train on hard problems.
● Example problem: long multiplication.



Neural Computation

Recurrent Neural Networks share 
weights across time steps but use 
fixed-size memory vectors. 

Time: O(f(n))   Space: O(1)

Neural Turing Machines work with 
variable-size memory and so can do 
general computation, but are sequential.

Time: O(f(n))   Space: O(g(n))

...

O(f(n))

O(1)

RNN:

NTM:

...

O(f(n))

O(g(n))

Step Op:

tanh(xW+B)

?????



Arbitrary Size Ops

Neural computation requires operators 
that use a fixed number of parameters 
but operate on memory of arbitrary size. 
There are a few candidates:

1) Attention (Neural Turing Machine)

2) Stack, (De)Queue, Lists

3) … other memory structures ...

4) Convolutions!
Why convolutions? They act like a neural GPU.

● Attention is a softmax, effectively ~1 memory item / step.
● Similarly a stack and other task-specific memory structures.
● Convolutions affect all memory items in each step.
● Convolutions are already implemented and optimized.
● To train well we need to use LSTM-style gates: CGRN.

Attention mechanism:

c·W  + mi·W’  =   xi

softmax(vT · tanh(xi))

c

m



Neural GPU

Convolutional Gated Recurrent 
Networks (CGRNs) perform many 
parallel operations in each step, akin 
to a neural GPU and in contrast to the 
sequential nature of Neural Turing 
Machines.

The definition of a CGRN is also very 
simple and elegant, see on the right!

CGRU definition: (similar to GRU replacing linear by convolution)

st+1 = g · st + (1 - g) · c   where:

           g = sigmoid(conv(st, Kg))

           c = tanh(conv(st · r, Kc))

           r = sigmoid(conv(st, Kr))

Computational power:
● Small number of parameters (3 kernels: Kg, Kc, Kr).
● Can simulate computation of cellular automata.
● With memory of size n can do n local operations / step.
● E.g., can do long multiplication in O(n) steps.



Neural GPU

Convolutional Gated Recurrent 
Networks (CGRNs) perform many 
parallel operations in each step, akin to 
a neural GPU or a cellular automaton.

CGRU definition: (similar to GRU replacing linear by convolution)

mt+1 = g · mt + (1 - g) · c   where:

           g = sigmoid(conv(mt, Kg))

           c = tanh(conv(mt · r, Kc))

           r = sigmoid(conv(mt, Kr))



Neural GPU
Results

Reversing:
i:  3 0 8 4
o: 4 8 0 3

(all examples for length=4)

Long decimal addition:
i:  4 5 3 0 OP+ 0 9 9 5
o: 4 4 3 6

(OP+, OP* are input characters)

Long binary multiplication:
i:  0 1 1 0 OP* 0 1 0 1
o: 0 0 1 1 1

(6 * 10 = 60 = 32+16+8+4)

* Training upto length 20.

Length Neural GPU 
Error

LSTM+A Error

10* 0% 0%

20* 0% 0%

60 0% 7%

10* 0% 34%

20* 0% 100%

25 0% 100%

2000 0% 100%

10* 0% 91%

20* 0% 100%

25 0% 100%

2000 0% 100%

A n-step n-size memory CGRN 
achieves 100x generalization on a 
number of tasks such as reversing 
sequences, long addition, or even 
non-linear-time long multiplication.

We say an output is correct only if all 
its digits are right. So an error of 40% 
means that there are still 60% of fully 
correct sequences on output.



http://www.youtube.com/watch?v=LzC8NkTZAF4


Tricks of the Trade

A number of techniques are needed to 
make the training of a Neural GPU 
work well, and some are required for 
the generalization to work or to be 
stable.

Curriculum learning.
● Start training on small lengths, increase when learned.

Parameter sharing relaxation.
● Allow to do different things in different time-steps first.
● Not needed now with bigger models and orthogonal init.

Dropout on recurrent connections.
● Randomly set 10% of state vectors to 0 in each step.
● Interestingly, this is key for good length generalization.

Noise added to gradients.
● Add small gaussian noise to gradients in each training step.

Gate cutoff (saturation).
● Instead of sigmoid(x) use [1.2sigmoid(x) - 0.1][0,1].

Tune parameters. Tune, tune, tune.
● A lot of GPUs running for a few months; or: better method!



How to code this?

A few issues that come up.

Illustrate each one with code.

Is the graph static or dynamic?
● Dynamic ops were not exposed in first TF release, tricky.
● Static graph requires bucketing and takes long to build.
● Focus: why conditionals are tricky: batches and lambdas.

How do we do bucketing?
● Sparse or dense buckets? Masks are bug-prone.
● How do we bucket training data? Feed or queues?
● If queues, how to do curriculum? How to not starve?

How do we write layers?
● Is there a canonical way to define new functions?
● Frameworks: Keras vs Slim (OO vs functional)
● Unification in tf.layers: callable objects save scope.
● Example: weight-normalization through custom_getter.

How do we organize experiments?
● Use tf.learn, Estimator, Experiment.
● How to registering models and problems? Save runs?
● Hyper-parameters manual or tuned with ranges?



Thank You
Joint work with Ilya Sutskever, 
Samy Bengio, friends in Brain.

Exercises:

- Write your trainer framework.
- Focus on design first, not any 

particular performance metric!
- Train some interesting model, 

maybe the Neural GPU.


