This lecture will be about games, which have been one of the main testbeds for developing AI programs since the early days of AI. Games are distinguished from the other tasks that we’ve considered so far in this class in that they make explicit the presence of other agents, whose utility is not generally aligned with ours. Thus, the optimal strategy (policy) for us will depend on the strategies of these agents. Moreover, their strategies are often unknown and adversarial. How do we reason about this?

It depends on what optimal means.
It will be impossible to have a single policy such that for every opponent strategy, that policy is the best against that opponent strategy.
However, we will be able to design policies (based on the minimax principle) so that no matter who the opponent is, we’ll be guaranteed some minimum outcome.

Is it possible to define a policy that is optimal against all possible opponents, however adversarial?

Yes
No

Course plan

Reflex
Search problems
Markov decision processes
Adversarial games
States
Constraint satisfaction problems
Bayesian networks
Variables
"Low-level intelligence"
"High-level intelligence"
Logic
Machine learning

A simple game

Example: game 1
You choose one of the three bins.
I choose a number from that bin.
Your goal is to maximize the chosen number.

A
-50 50

B
1 3

C
-5 15
• Which bin should you pick? Depends on your mental model of the other player (me).
• If you think I’m working with you (unlikely), then you should pick A in hopes of getting 50. If you think
 I’m against you (likely), then you should pick B as to guard against the worst case (get 1). If you think
 I’m just acting uniformly at random, then you should pick C so that on average things are reasonable (get
 5 in expectation).

• In this lecture, we will specialize to two-player zero-sum games, such as chess. To be more precise, we
 will consider games in which the fully-observed state contains the current game state. A deterministic
 successor state is defined only at the end states. We could have used edge costs (like rock-paper-scissors)
 and rewards for games (in fact, that’s strictly more general), but having all the utility at the end states
 emphasizes the all-or-nothing aspect of most games. You don’t get utility for capturing pieces in chess;
you only get utility if you win the game. This ultra-delayed utility makes games hard.

• Just as in search problems, we will use a tree to describe the possibilities of the game. This tree is known
 as a game tree.
• Note: We could also think of a game graph to capture the fact that there are multiple ways to arrive at the
 same game state. However, all our algorithms will operate on the tree rather than the graph since games
 generally have enormous state spaces, and we will have to resort to algorithms similar to backtracking
 search for search problems.

Roadmap

- Games, expectimax
- Minimax, expectiminimax
- Evaluation functions
- Alpha-beta pruning

Game tree

Key idea: game tree
Each node is a decision point for a player.
Each root-to-leaf path is a possible outcome of the game.

-50 50 1 3 -5 15

Two-player zero-sum games

Players = \{agent, opp\}

Definition: two-player zero-sum game

- s_{start}: starting state
- $\text{Actions}(s)$: possible actions from state s
- $\text{Succ}(s, a)$: resulting state if choose action a in state s
- $\text{IsEnd}(s)$: whether s is an end state (game over)
- $\text{Utility}(s)$: agent’s utility for end state s
- $\text{Player}(s) \in \text{Players}$: player who controls state s

In this lecture, we will specialize to two-player zero-sum games, such as chess. To be more precise, we
will consider games in which players take turns (like rock-paper-scissors) and where the state of the
game is fully-observed (unlike poker, where you don’t know the other players’ hands). By default, we will
use the term game to refer to this restricted form.

We will assume the two players are named agent (this is your program) and opp (the opponent). Zero-sum
means that the utility of the agent is negative the utility of the opponent (equivalently, the sum of the
two utilities is zero).

Following our approach to search problems and MDPs, we start by formalizing a game. Since games are
a type of state-based model, much of the skeleton is the same: we have a start state, actions from each
state, a deterministic successor state for each state-action pair, and a test on whether a state is at the
end.

The main difference is that each state has a designated Player(s), which specifies whose turn it is. A
player p only gets to choose the action for the states s such that Player(s) = p.

Another difference is that instead of having edge costs in search problems or rewards in MDPs, we will
instead have a utility function Utility(s) defined only at the end states. We could have used edge costs
and rewards for games (in fact, that’s strictly more general), but having all the utility at the end states
emphasizes the all-or-nothing aspect of most games. You don’t get utility for capturing pieces in chess;
you only get utility if you win the game. This ultra-delayed utility makes games hard.
Example: chess

Players = \{white, black\}
State s: (position of all pieces, whose turn it is)
Actions(s): legal chess moves that Player(s) can make
IsEnd(s): whether s is checkmate or draw
Utility(s): +\infty if white wins, 0 if draw, −\infty if black wins

Characteristics of games

• All the utility is at the end state
• Different players in control at different states

Chess is a canonical example of a two-player zero-sum game. In chess, the state must represent the position of all pieces, and importantly, whose turn it is (white or black).

Here, we are assuming that white is the agent and black is the opponent. White moves first and is trying to maximize the utility, whereas black is trying to minimize the utility.

In most games that we’ll consider, the utility is degenerate in that it will be +\infty, −\infty, or 0.

There are two important characteristics of games which make them hard.

The first is that the utility is only at the end state. In typical search problems and MDPs that we might encounter, there are costs and rewards associated with each edge. These intermediate quantities make the problem easier to solve. In games, even if there are cues that indicate how well one is doing (number of pieces, score), technically all that matters is what happens at the end. In chess, it doesn’t matter how many pieces you capture, your goal is just to checkmate the opponent’s king.

The second is the recognition that there are other people in the world! In search problems, you (the agent) controlled all actions. In MDPs, we already hinted at the loss of control where nature controlled the chance nodes, but we assumed we knew what distribution nature was using to transition. Now, we have another player that controls certain states, who is probably out to get us.

The halving game

Problem: halving game
Start with a number N.
Players take turns either decrementing N or replacing it with \lfloor \frac{N}{2} \rfloor.
The player that is left with 0 wins.

Policies

Deterministic policies: \(\pi_p(s) \in \text{Actions}(s) \)

action that player \(p \) takes in state \(s \)

Stochastic policies \(\pi_p(s, a) \in [0, 1] \):

probability of player \(p \) taking action \(a \) in state \(s \)

[live solution: HalvingGame]
[live solution: policies, main loop]
Following our presentation of MDPs, we revisit the notion of a policy. Instead of having a single policy \(\pi \), we have a policy for each player \(p \in \text{Players} \). We require that \(\pi_p \) only be defined when it’s \(p \)'s turn; that is, for states \(s \) such that \(\text{Player}(s) = p \).

It will be convenient to allow policies to be stochastic. In this case, we will use \(\pi_p(s,a) \) to denote the probability of player \(p \) choosing action \(a \) in state \(s \).

We can think of an MDP as a game between the agent and nature. The states of the game are all MDP states \(s \) and all chance nodes \((s,a)\). It’s the agent’s turn on the MDP states \(s \), and the agent acts according to \(\pi_{\text{agent}} \). It’s nature’s turn on the chance nodes. Here, the actions are successor states \(s' \), and nature chooses \(s' \) with probability given by the transition probabilities of the MDP: \(\pi_{\text{nature}}((s,a),s') = T(s,a,s') \).

More generally, we can write down a recurrence for \(V_{\text{eval}}(s) \), which is the value (expected utility) of the game at state \(s \). It’s player \(p \)’s turn; we compute the expectation over the value of the successor resulting from the agent choosing an action according to \(\pi_{\text{agent}}(s,a) \). If it’s the opponent’s turn, we compute the expectation with respect to \(\pi_{\text{opp}} \) instead.

Game evaluation example

Example: game evaluation

\[\pi_{\text{agent}}(s) = \begin{cases} A & \text{for } a \in \text{Actions}(s) \\ \frac{1}{2} & \text{for } a \in \text{Actions}(s) \end{cases} \]

\[\pi_{\text{opp}}(s,a) = \begin{cases} 0 & \text{for } a \in \text{Actions}(s) \\ 0.5 & \text{for } a \in \text{Actions}(s) \end{cases} \]

\[V_{\text{eval}}(s_{\text{start}}) = 0 \]

Game evaluation recurrence

Analogy: recurrence for policy evaluation in MDPs

\[\pi_{\text{agent}} \pi_{\text{opp}} \pi_{\text{agent}} \ldots \]

Value of the game:

\[V_{\text{eval}}(s) = \begin{cases} \text{Utility}(s) & \text{IsEnd}(s) \\ \frac{1}{2} \sum_{(s',a) \in \text{Actions}(s)} \pi_{\text{agent}}(s,a) V_{\text{eval}}(\text{Succ}(s,a)) & \text{Player}(s) = \text{agent} \\ \frac{1}{2} \sum_{(s',a) \in \text{Actions}(s)} \pi_{\text{opp}}(s,a) V_{\text{eval}}(\text{Succ}(s,a)) & \text{Player}(s) = \text{opp} \end{cases} \]

Expectimax example

Example: expectimax

\[\pi_{\text{opp}}(s,a) = \begin{cases} 0 & \text{for } a \in \text{Actions}(s) \\ 0.5 & \text{for } a \in \text{Actions}(s) \end{cases} \]

\[V_{\text{exptmax}}(s_{\text{start}}) = 5 \]
Game evaluation just gave us the value of the game with two fixed policies \(\pi_{\text{agent}} \) and \(\pi_{\text{opp}} \). But we are not handed a policy \(\pi_{\text{agent}} \); we are trying to find the best policy. Expectimax gives us exactly that.

In the game tree, we will now use an upward-pointing triangle to denote states where the player is maximizing over actions (we call them max nodes).

At max nodes, instead of averaging with respect to a policy, we take the max of the values of the children.

This computation produces the expectimax value \(V_{\text{exptmax}}(s) \) for a state \(s \), which is the maximum expected utility of any agent policy when playing with respect to a fixed and known opponent policy \(\pi_{\text{opp}} \).

The recurrence for the expectimax value \(V_{\text{exptmax}} \) is exactly the same as the one for the game value \(V_{\text{eval}} \), except that we maximize over the agent’s actions rather than following a fixed agent policy (which we don’t know now).

Where game evaluation was the analogue of policy evaluation for MDPs, expectimax is the analogue of value iteration.

Problem: don’t know opponent’s policy

Approach: assume the worst case

Expectimax recurrence

Analogy: recurrence for value iteration in MDPs

\[
V_{\text{exptmax}}(s) = \begin{cases}
\text{Utility}(s), & \text{if } s \text{ is a terminal state} \\
\max_{a \in \text{Actions}(s)} \left(\sum_{s' \in \text{Succ}(s,a)} \pi_{\text{opp}}(s,a) V_{\text{exptmax}}(s') \right), & \text{otherwise}
\end{cases}
\]

Minimax example

Example: minimax

\[
V_{\text{minmax}}(s_{\text{start}}) = 1
\]

Roadmap

- Games, expectimax
- Minimax, expectiminimax
- Evaluation functions
- Alpha-beta pruning

Expectimax recurrence

Analogy: recurrence for value iteration in MDPs

\[
V_{\text{exptmax}}(s) = \begin{cases}
\text{Utility}(s), & \text{if } s \text{ is a terminal state} \\
\max_{a \in \text{Actions}(s)} \left(\sum_{s' \in \text{Succ}(s,a)} \pi_{\text{opp}}(s,a) V_{\text{exptmax}}(s') \right), & \text{otherwise}
\end{cases}
\]

Minimax example

Example: minimax

\[
V_{\text{minmax}}(s_{\text{start}}) = 1
\]
• If we could perform some mind-reading and discover the opponent’s policy, then we could maximally exploit it. However, in practice, we don’t know the opponent’s policy. So our solution is to assume the worst case, that is, the opponent is doing everything to minimize the agent’s utility.
• In the game tree, we use an upside-down triangle to represent min nodes, in which the player minimizes the value over possible actions.
• Note that the policy for the agent changes from choosing the rightmost action (expectimax) to the middle action. Why is this?

Minimax recurrence
No analogy in MDPs:
πagent πopp πagent ...
V_{minmax}(s) =
\begin{cases}
\text{Utility}(s) & \text{IsEnd}(s) \\
\max_{a \in \text{Actions}(s)} V_{minmax}(\text{Succ}(s,a)) & \text{Player}(s) = \text{agent} \\
\min_{a \in \text{Actions}(s)} V_{minmax}(\text{Succ}(s,a)) & \text{Player}(s) = \text{opp}
\end{cases}

Extracting minimax policies
\begin{align*}
\pi_{\text{max}}(s) &= \arg \max_{a \in \text{Actions}(s)} V_{\text{minmax}}(\text{Succ}(s,a)) \\
\pi_{\text{min}}(s) &= \arg \min_{a \in \text{Actions}(s)} V_{\text{minmax}}(\text{Succ}(s,a))
\end{align*}

The halving game
Problem: halving game
Start with a number \(N \).
Players take turns either decrementing \(N \) or replacing it with \(\lfloor \frac{N}{2} \rfloor \).
The player that is left with 0 wins.
Face off

Recurrences produces policies:

\[V_{\text{exptmax}} \Rightarrow \pi_{\text{exptmax}(7)}, \pi_7 \text{ (some opponent)} \]
\[V_{\text{minmax}} \Rightarrow \pi_{\text{max}}, \pi_{\text{min}} \]

Play policies against each other:

\[
\begin{array}{c|c}
\pi_{\text{min}} & \pi_7 \\
\hline
\pi_{\text{max}} & V(\pi_{\text{max}}, \pi_{\text{min}}) \quad V(\pi_{\text{max}}, \pi_7) \\
\pi_{\text{exptmax}(7)} & V(\pi_{\text{exptmax}(7)}, \pi_{\text{min}}) \quad V(\pi_{\text{exptmax}(7)}, \pi_7)
\end{array}
\]

What’s the relationship between these values?

Minimax property 1

Proposition: best against minimax opponent

\[V(\pi_{\text{max}}, \pi_{\text{min}}) \geq V(\pi_{\text{agent}}, \pi_{\text{min}}) \text{ for all } \pi_{\text{agent}} \]

Minimax property 2

Proposition: lower bound against any opponent

\[V(\pi_{\text{max}}, \pi_{\text{min}}) \leq V(\pi_{\text{max}}, \pi_{\text{opp}}) \text{ for all } \pi_{\text{opp}} \]

- So far, we have seen how expectimax and minimax recurrences produce policies.
- The expectimax recurrence computes the best policy \(\pi_{\text{exptmax}(7)} \) against a fixed opponent policy (say \(\pi_7 \) for concreteness).
- The minimax recurrence computes the best policy \(\pi_{\text{max}} \) against the best opponent policy \(\pi_{\text{min}} \).
- Now, whenever we take an agent policy \(\pi_{\text{agent}} \) and an opponent policy \(\pi_{\text{opp}} \), we can play them against each other, which produces an expected utility via game evaluation, which we denote as \(V(\pi_{\text{agent}}, \pi_{\text{opp}}) \).
- How do the four game values of different combination of policies relate to each other?

- Recall that \(\pi_{\text{max}} \) and \(\pi_{\text{min}} \) are the minimax agent and opponent policies, respectively. The first property is if the agent were to change her policy to any \(\pi_{\text{agent}} \), then the agent would be no better off (and in general, worse off).
- From the example, it’s intuitive that this property should hold. To prove it, we can perform induction starting from the leaves of the game tree, and show that the minimax value of each node is the highest over all possible policies.

- The second property is the analogous statement for the opponent: if the opponent changes his policy from \(\pi_{\text{min}} \) to \(\pi_{\text{opp}} \), then he will be no better off (the value of the game can only increase).
- From the point of view of the agent, this can be interpreted as guarding against the worst case. In other words, if we get a minimax value of 1, that means no matter what the opponent does, the agent is guaranteed at least a value of 1. As a simple example, if the minimax value is \(+\infty \), then the agent is guaranteed to win, provided it follows the minimax policy.
Minimax property 3

Proposition: not optimal if opponent is known

\[V(\pi_{\text{max}}, \pi_7) \leq V(\pi_{\text{exptmax}(7)}, \pi_7) \] for opponent \(\pi_7 \)

- However, following the minimax policy might not be optimal for the agent if the opponent is known to be
 not playing the adversarial (minimax) policy.
- Consider the running example where the agent chooses A, B, or C and the opponent chooses a bin. Suppose
 the agent is playing \(\pi_{\text{max}} \), but the opponent is playing a stochastic policy \(\pi_7 \) corresponding to choosing
 an action uniformly at random.
- Then the game value here would be 2 (which is larger than the minimax value 1, as guaranteed by property
 2). However, if we followed the expectimax \(\pi_{\text{exptmax}(7)} \), then we would have gotten a value of 5, which is
even higher.

Relationship between game values

\[
\begin{align*}
\pi_{\text{max}} : & \quad V(\pi_{\text{max}}, \pi_{\text{min}}) \leq V(\pi_{\text{max}}, \pi_7) \\
\pi_{\text{min}} : & \quad V(\pi_{\text{exptmax}(7)}, \pi_{\text{min}}) \leq V(\pi_{\text{exptmax}(7)}, \pi_7)
\end{align*}
\]

A modified game

Example: game 2

You choose one of the three bins.
Flip a coin; if heads, then move one bin to the left (with wrap around).
I choose a number from that bin.
Your goal is to maximize the chosen number.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-50</td>
<td>1</td>
<td>-5</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>3</td>
<td>15</td>
</tr>
</tbody>
</table>

- Putting the three properties together, we obtain a chain of inequalities that allows us to relate all four
 game values.
- We can also compute these values concretely for the running example.

- Now let us consider games that have an element of chance that does not come from the agent or the
 opponent. Or in the simple modified game, the agent picks, a coin is flipped, and then the opponent picks.
- It turns out that handling games of chance is just a straightforward extension of the game framework that
 we have already.
• In the example, notice that the minimax optimal policy has shifted from the middle action to the rightmost action, which guards against the effects of the randomness. The agent really wants to avoid ending up on A, in which case the opponent could deliver a deadly -50 utility.

• The resulting game is modeled using expectiminimax, where we introduce a third player (called coin), which always follows a known stochastic policy. We are using the term coin as just a metaphor for any sort of natural randomness.

• To handle coin, we simply add a line into our recurrence that sums over actions when it’s coin’s turn.

Summary so far

Primitives: max nodes, chance nodes, min nodes

Composition: alternate nodes according to model of game

Value function $V_s(s)$: recurrence for expected utility

Scenarios to think about:

• What if you are playing against multiple opponents?
• What if you and your partner have to take turns (table tennis)?
• Some actions allow you to take an extra turn?
Computation

Approach: tree search

Complexity:
- branching factor \(b \), depth \(d \) (\(2^d \) plies)
- \(O(d) \) space, \(O(b^d) \) time

Chess: \(b \approx 35 \), \(d \approx 50 \)

Speeding up minimax

- Evaluation functions: use domain-specific knowledge, compute approximate answer
- Alpha-beta pruning: general-purpose, compute exact answer

Roadmap

Games, expectimax
Minimax, expectiminimax
Evaluation functions
Alpha-beta pruning

Depth-limited search

Limited depth tree search (stop at maximum depth \(d_{max} \)):

\[
V_{\text{minmax}}(s, d) = \begin{cases}
\text{Utility}(s) & \text{if } \text{IsEnd}(s) \\
\text{Eval}(s) \max_{a \in \text{Actions}(s)} V_{\text{minmax}}(\text{Succ}(s, a), d) & \text{if } d = 0 \\
\text{min}_{a \in \text{Actions}(s)} V_{\text{minmax}}(\text{Succ}(s, a), d-1) & \text{otherwise}
\end{cases}
\]

Use: at state \(s \), call \(V_{\text{minmax}}(s, d_{max}) \)

Convention: decrement depth at last player's turn

• Thus far, we’ve only touched on the modeling part of games. The rest of the lecture will be about how to actually compute (or approximately compute) the values of games.
• The first thing to note is that we cannot avoid exhaustive search of the game tree in general. Recall that a state is a summary of the past actions which is sufficient to act optimally in the future. In most games, the future depends on the exact position of all the pieces, so we cannot forget much and exploit dynamic programming.
• Second, game trees can be enormous. Chess has a branching factor of around 35 and go has a branching factor of up to 361 (the number of moves to a player on his/her turn). Games also can last a long time, and therefore have a depth of up to 100.
• A note about terminology specific to games: A game tree of depth \(d \) corresponds to a tree where each player has moved \(d \) times. Each level in the tree is called a ply. The number of plies is the depth times the number of players.

• The rest of the lecture will be about how to speed up the basic minimax search using two ideas: evaluation functions and alpha-beta pruning.
Evaluation functions

Definition: Evaluation function
An evaluation function \(\text{Eval}(s) \) is a (possibly very weak) estimate of the value \(V_{\text{minmax}}(s) \).

Analogy: FutureCost(s) in search problems

Example: chess
\[\text{Eval}(s) = \text{material} + \text{mobility} + \text{king-safety} + \text{center-control} \]
material = 10 \((K - K') + 9(Q - Q') + 5(R - R') + 3(B - B' + N - N') + 1(P - P') \]
mobility = 0.1(num-legal-moves - num-legal-moves')

Summary: evaluation functions

Depth-limited exhaustive search: \(O(b^{2D}) \) time

- \(\text{Eval}(s) \) attempts to estimate \(V_{\text{minmax}}(s) \) using domain knowledge
- No guarantees (unlike A*) on the error from approximation
Roadmap
Games, expectimax
Minimax, expectiminimax
Evaluation functions
Alpha-beta pruning

Pruning principle
Choose A or B with maximum value:

A: [3, 5] B: [5, 100]

Key idea: branch and bound
Maintain lower and upper bounds on values. If intervals don’t overlap non-trivially, then can choose optimally without further work.

Pruning game trees

Once see 2, we know that value of right node must be ≤ 2
Root computes max(3, ≤ 2) = 3
Since branch doesn’t affect root value, can safely prune

Alpha-beta pruning
Key idea: optimal path
The optimal path is path that minimax policies take. Values of all nodes on path are the same.

- αₘ: lower bound on value of max node s
- βₘ: upper bound on value of min node s
- Prune a node if its interval doesn’t have non-trivial overlap with every ancestor (store $\alphaₘ = \max_{\nu \leq s} \alphaₜ$ and $\betaₘ = \min_{\nu \leq s} \betaₜ$)
• In general, let’s think about the minimax values in the game tree. The value of a node is equal to the utility of at least one of its leaf nodes (because all the values are just propagated from the leaves with min and max applied to them). Call the first path (ordering by children left-to-right) that leads to the first such leaf node the optimal path. An important observation is that the values of all nodes on the optimal path are the same (equal to the minimax value of the root).
• Since we are interested in computing the value of the root node, if we can certify that a node is not on the optimal path, then we can prune it and its subtree.
• To do this, during the depth-first exhaustive search of the game tree, we think about maintaining a lower bound \(\geq a_s \) for all the max nodes \(s \) and an upper bound \(\leq b_s \) for all the min nodes \(s \).
• If the interval of the current node does not non-trivially overlap the interval of every one of its ancestors, then we can prune the current node. In the example, we’ve determined the root’s node must be \(\geq 6 \). Once we get to the node on at ply 4 and determine that node is \(\leq 5 \), we can prune the rest of its children since it is impossible that this node will be on the optimal path (\(\leq 5 \) and \(\geq 6 \) are incompatible).
• Implementation note: for each max node \(s \), rather than keeping \(a_s \), we keep \(a_s \), which is the maximum value of \(a_{s'} \) over \(s \) and all of its max node ancestors. Similarly, for each min node \(s \), rather than keeping \(b_s \), we keep \(b_s \), which is the minimum value of \(b_{s'} \) over \(s \) and all of its min node ancestors. That way, at any given node, we can check interval overlap in constant time regardless of how deep we are in the tree.
• We have so far shown that alpha-beta pruning correctly computes the minimax value at the root, and seems to save some work by pruning subtrees. But how much of a savings do we get?

Move ordering

Pruning depends on order of actions.

Can’t prune the 5 node:

![Alpha-beta pruning example](image)

- We have so far shown that alpha-beta pruning correctly computes the minimax value at the root, and seems to save some work by pruning subtrees. But how much of a savings do we get?

 - The answer is that it depends on the order in which we explore the children. This simple example shows that with one ordering, we can prune the final leaf, but in the second, we can’t.

Move ordering

Which ordering to choose?

- Worst ordering: \(O(b^{2d}) \) time
- Best ordering: \(O(b^{2-0.5d}) \) time
- Random ordering: \(O(b^{2-0.75d}) \) time

In practice, can use evaluation function \(\text{Eval}(s) \):

- Max nodes: order successors by decreasing \(\text{Eval}(s) \)
- Min nodes: order successors by increasing \(\text{Eval}(s) \)
• **Game trees**: model opponents, randomness

• **Minimax**: find optimal policy against an adversary

• **Evaluation functions**: domain-specific, approximate

• **Alpha-beta pruning**: domain-general, exact