
CS224d
Deep	NLP

Lecture	4:	
Word	Window	Classification

and	Neural	Networks

Richard	Socher

Overview	Today:

• General	classification	background

• Updating	word	vectors	for	classification

• Window	classification	&	cross	entropy	error	derivation	tips

• A	single	layer	neural	network!

• (Max-Margin	loss	and	backprop)

4/7/16Richard	SocherLecture	1,	Slide	 2

Classification	setup	and	notation

• Generally	we	have	a	training	dataset	consisting	of	samples	

{xi,yi}Ni=1

• xi - inputs,	e.g.	words	(indices	or	vectors!),	context	windows,	
sentences,	documents,	etc.

• yi - labels	we	try	to	predict,	
• e.g.	other	words
• class:	sentiment,	named	entities,	buy/sell	decision,	
• later:	multi-word	sequences

4/7/16Richard	SocherLecture	1,	Slide	 3

Classification	intuition

• Training	data:	{xi,yi}Ni=1

• Simple	illustration	case:	
• Fixed	2d	word	vectors	to	classify
• Using	logistic	regression
• à linear	decision	boundary	à

• General	ML:	assume	x	is	fixed	and	
only	train	logistic	regression	weights	
W	and	only	modify	the	decision	boundary

4/7/16Richard	SocherLecture	1,	Slide	 4

Visualizations	with	ConvNetJS by	Karpathy!
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Classification	notation

• Cross	entropy	loss	function	over	
dataset	{xi,yi}Ni=1	

• Where	for	each	data	pair	(xi,yi):	

• We	can	write	f in	matrix	notation and	index	elements	of	it	based	
on	class:

4/7/16Richard	SocherLecture	1,	Slide	 5

Classification:	Regularization!

• Really	full	loss	function	over	any	dataset	includes	regularization
over	all	parameters	µ:

• Regularization	will	prevent	overfitting
when	we	have	a	lot	of	features	(or	
later	a	very	powerful/deep	model)
• x-axis:	more	powerful	model	or	
more	training	iterations

• Blue:	training	error,	red:	test	error

4/7/16Richard	SocherLecture	1,	Slide	 6

Details:	General	ML	optimization

• For	general	machine	learning	µ usually
only	consists	of	columns	of	W:

• So	we	only	update	the	decision	
boundary

4/7/16Richard	SocherLecture	1,	Slide	 7

Visualizations	with	ConvNetJS by	Karpathy

Classification	difference	with	word	vectors

• Common	in	deep	learning:
• Learn	both	W	and	word	vectors	x

4/7/16Richard	SocherLecture	1,	Slide	 8

Very	large!

OverfittingDanger!

Losing	generalization	by	re-training	word	vectors

• Setting:	Training	logistic	regression	for	movie	review	sentiment	
and	in	the	training	data	we	have	the	words		
• “TV”	and	“telly”

• In	the	testing	data	we	have	
• “television”

• Originally	they	were	all	similar	
(from	pre-training	word	vectors)

• What	happens	when	we	train
the	word	vectors?

4/7/16Richard	SocherLecture	1,	Slide	 9

TVtelly

television

Losing	generalization	by	re-training	word	vectors

• What	happens	when	we	train	the	word	vectors?
• Those	that	are	in	the	training	data	move	around	
• Words	from	pre-training	that	do	NOT	appear	in	training	stay

• Example:
• In	training	data:	“TV”	and	“telly”
• In	testing	data	only:	“television”

4/7/16Richard	SocherLecture	1,	Slide	 10

TV
telly

television
:(

Losing	generalization	by	re-training	word	vectors

• Take	home	message:

If	you	only	have	a	small	
training	data	set,	don’t	
train	the	word	vectors.	

If	you	have	have	a	very	
large	dataset,	it	may	
work	better	to	train	
word	vectors	to	the	task.

4/7/16Richard	SocherLecture	1,	Slide	 11

TV
telly

television

Side	note	on	word	vectors	notation

• The	word	vector	matrix	L	is	also	called	lookup	table
• Word	vectors	=	word	embeddings =	word	representations	(mostly)
• Mostly	from	methods	like	word2vec	or	Glove

|V|

L =									d …									…

aardvark	a				…	meta					…			zebra
• These	are	the	word	features	xword from	now	on

• Conceptually	you	get	a	word’s	vector	by	left	multiplying	a	one-hot	
vector	e by	L:					x =	Le	2 d£ V	¢ V	£ 1

[]

12

Window	classification

• Classifying	single	words	is	rarely	done.

• Interesting	problems	like	ambiguity	arise	in	context!

• Example:	auto-antonyms:
• "To	sanction"	can	mean	"to	permit"	or	"to	punish.”
• "To	seed"	can	mean	"to	place	seeds"	or	"to	remove	seeds."

• Example:	ambiguous	named	entities:
• Paris	à Paris,	France	vs Paris	Hilton	
• Hathaway	à Berkshire	Hathaway	vs Anne	Hathaway

4/7/16Richard	SocherLecture	1,	Slide	 13

Window	classification

• Idea:	classify	a	word	in	its	context	window	of	neighboring	words.

• For	example	named	entity	recognition	into	4	classes:
• Person,	location,	organization,	none

• Many	possibilities	exist	for	classifying	one	word	in	context,	e.g.	
averaging	all	the	words	in	a	window	but	that	looses	position	
information

4/7/16Richard	SocherLecture	1,	Slide	 14

Window	classification

• Train	softmax classifier	by	assigning	a	label	to	a	center	word	and	
concatenating	all	word	vectors	surrounding	it

• Example:	Classify	Paris	in	the	context	of	this	sentence	with	
window	length	2:	

…					museums						in									Paris									are						amazing				…	.

Xwindow =	[xmuseums xin xParis xare xamazing]T

• Resulting	vector	xwindow =	x	2 R5d				,	a	column	vector!

4/7/16Richard	SocherLecture	1,	Slide	 15

Simplest	window	classifier:	Softmax

• With	x	=	xwindow we	can	use	the	same	softmax classifier	as	before

• With	cross	entropy	error	as	before:	

• But	how	do	you	update	the	word	vectors?

4/7/16Richard	SocherLecture	1,	Slide	 16

same

predicted	model	
output	probability

Updating	concatenated	word	vectors

• Short	answer:	Just	take	derivatives	as	before

• Long	answer:	Let’s	go	over	the	steps	together	(you’ll	have	to	fill	
in	the	details	in	PSet 1!)

• Define:	
• :	softmax probability	output	vector	(see	previous	slide)						
• :	target	probability	distribution	(all	0’s	except	at	ground	
truth	index	of	class	y,	where	it’s	1)

• and	fc =	c’th element	of	the	f	vector

• Hard,	the	first	time,	hence	some	tips	now	:)

4/7/16Richard	SocherLecture	1,	Slide	 17

• Tip	1:	Carefully	define	your	variables	and
keep	track	of	their	dimensionality!

• Tip	2:	Know	thy	chain	rule	and	don’t	forget	which	variables	
depend	on	what:

• Tip	3:	For	the	softmax part	of	the	derivative:	First	take	the	
derivative	wrt fc when	c=y	(the	correct	class),	then	take	
derivative	wrt fc when	c≠ y	(all	the	incorrect	classes)

Updating	concatenated	word	vectors

4/7/16Richard	SocherLecture	1,	Slide	 18

• Tip	4:	When	you	take	derivative	wrt
one	element	of	f,	try	to	see	if	you	can
create	a	gradient	in	the	end	that	includes
all	partial	derivatives:

• Tip	5:	To	later	not	go	insane	&	implementation!	à results	in	
terms	of	vector	operations	and	define	single	index-able	vectors:

Updating	concatenated	word	vectors

4/7/16Richard	SocherLecture	1,	Slide	 19

• Tip	6:	When	you	start	with	the	chain	rule,
first	use	explicit	sums	and	look	at	
partial	derivatives	of	e.g.	xi or	Wij

• Tip	7:	To	clean	it	up	for	even	more	complex	functions	later:	
Know	dimensionality	of	variables	&simplify	into	matrix	notation

• Tip	8:	Write	this	out	in	full	sums	if	it’s	not	clear!

Updating	concatenated	word	vectors

4/7/16Richard	SocherLecture	1,	Slide	 20

• What	is	the	dimensionality	of	the	window	vector	gradient?

• x is	the	entire	window,	5	d-dimensional	word	vectors,	so	the	
derivative	wrt to	x	has	to	have	the	same	dimensionality:

Updating	concatenated	word	vectors

4/7/16Richard	SocherLecture	1,	Slide	 21

• The	gradient	that	arrives	at	and	updates	the	word	vectors	can	
simply	be	split	up	for	each	word	vector:

• Let	
• With	xwindow =	[xmuseums xin xParis xare xamazing]

• We	have

Updating	concatenated	word	vectors

4/7/16Richard	SocherLecture	1,	Slide	 22

• This	will	push	word	vectors	into	areas	such	they	will	be	helpful	
in	determining	named	entities.	

• For	example,	the	model	can	learn	that	seeing	xin as	the	word	
just	before	the	center	word	is	indicative	for	the	center	word	to	
be	a	location

Updating	concatenated	word	vectors

4/7/16Richard	SocherLecture	1,	Slide	 23

• The	gradient	of	J	wrt the	softmax weights	W!

• Similar	steps,	write	down	partial	wrt Wij first!
• Then	we	have	full	

What’s	missing	for	training	the	window	model?

4/7/16Richard	SocherLecture	1,	Slide	 24

A	note	on	matrix	implementations

4/7/16Richard	Socher25

• There	are	two	expensive	operations	in	the	softmax:

• The	matrix	multiplication	 																			and	the	exp

• A	for	loop	is	never	as	efficient	when	you	implement	it	
compared	vs when	you	use	a	larger	matrix	
multiplication!

• Example	code	à

A	note	on	matrix	implementations

4/7/16Richard	Socher26

• Looping	over	word	vectors	instead	of	concatenating	
them	all	into	one	large	matrix	and	then	multiplying	
the	softmax weights	with	that	matrix

• 1000	loops,	best	of	3:	639	µs	per	loop
10000	loops,	best	of	3:	53.8	µs	per	loop

A	note	on	matrix	implementations

4/7/16Richard	Socher27

• Result	of	faster	method	is	a	C	x	N	matrix:

• Each	column	is	an	f(x)	in	our	notation	(unnormalized class	scores)

• Matrices	are	awesome!	

• You	should	speed	test	your	code	a	lot	too

Softmax (=	logistic	regression)	is	not	very	powerful

4/7/16Richard	Socher28

• Softmax only	gives	linear	decision	boundaries	in	the	
original	space.	

• With	little	data	that	can	be	a	good	regularizer

• With	more	data	it	is	very	limiting!

Softmax (=	logistic	regression)	is	not	very	powerful

4/7/16Richard	Socher29

• Softmax only	linear	decision	boundaries

• à Lame	when	problem
is	complex

• Wouldn’t	it	be	cool	to	
get	these	correct?

Neural	Nets	for	the	Win!

4/7/16Richard	Socher30

• Neural	networks	can	learn	much	more	complex	
functions	and	nonlinear	decision	boundaries!

From	logistic	regression	to	neural	nets

31

Demystifying	neural	networks

Neural	networks	come	with	
their	own	terminological	
baggage	

…	just	like	SVMs

But	if	you	understand	how	
softmax models	work

Then	you	already	understand the	
operation	of	a	basic	neural	
network	neuron!

A	single	neuron
A	computational	unit	with	n	(3)	 inputs

and	1	output
and	parameters	W,	b

Activation	
function

Inputs

Bias	unit	corresponds	 to	intercept	term

Output

32

A	neuron	is	essentially	a	binary	logistic	regression	unit

hw,b(x) = f (w
Tx + b)

f (z) = 1
1+ e−z

w,	b are	the	parameters	of	this	neuron
i.e.,	this	logistic	regression	model

33

b:	We	can	have	an	“always	on”	
feature,	which	gives	a	class	prior,	
or	separate	it	out,	as	a	bias	term

A	neural	network	
=	running	several	logistic	regressions	at	the	same	time
If	we	feed	a	vector	of	inputs	through	a	bunch	of	logistic	regression	
functions,	then	we	get	a	vector	of	outputs	…

But	we	don’t	have	to	decide	
ahead	of	time	what	variables	
these	logistic	regressions	are	
trying	to	predict!

34

A	neural	network	
=	running	several	logistic	regressions	at	the	same	time
…	which	we	can	feed	into	another	logistic	regression	function

It	is	the	loss	function	
that	will	direct	what	
the	intermediate	
hidden	variables	should	
be,	so	as	to	do	a	good	
job	at	predicting	the	
targets	for	the	next	
layer,	etc.

35

A	neural	network	
=	running	several	logistic	regressions	at	the	same	time

Before	we	know	it,	we	have	a	multilayer	neural	network….

36

Matrix	notation	for	a	layer

We	have	

In	matrix	notation

where	f is	applied	element-wise:

a1

a2

a3

a1 = f (W11x1 +W12x2 +W13x3 + b1)
a2 = f (W21x1 +W22x2 +W23x3 + b2)
etc.

z =Wx + b
a = f (z)

f ([z1, z2, z3]) = [f (z1), f (z2), f (z3)]
37

W12

b3

Non-linearities (f):	Why	they’re	needed

• Example:	function	approximation,	
e.g.,	regression	or	classification
• Without	non-linearities,	deep	neural	networks	
can’t	do	anything	more	than	a	linear	
transform

• Extra	layers	could	just	be	compiled	down	into	
a	single	linear	transform:	
W1	W2	x =	Wx

• With	more	layers,	they	can	approximate	more	
complex	functions!

38

A	more	powerful	window	classifier

• Revisiting	

• Xwindow =	[xmuseums xin xParis xare xamazing]

4/7/16Richard	SocherLecture	1,	Slide	 39

A	Single	Layer	Neural	Network

• A	single	layer	is	a	combination	of	a	linear	layer	
and	a	nonlinearity:

• The	neural	activations	a	can	then
be	used	to	compute	some	function

• For	instance,	a	softmax probability		or	an	
unnormalized score:

40

Summary:	Feed-forward	Computation

41

Computing	a	window’s	score	with	a	3-layer	neural	
net:	s	=	score(museums	in	Paris	are	amazing)

Xwindow =	[xmuseums xin xParis xare xamazing]

Next	lecture:

4/7/16Richard	Socher42

Training	a	window-based	neural	network.

Taking	more	deeper	derivatives	à Backprop

Then	we	have	all	the	basic	tools	in	place	to	learn	about	
more	complex	models	:)

Probably	for	next	lecture…

4/7/16Richard	Socher43

Another	output	layer	and	loss	function	combo!

44

• So	far:	softmax and	cross-entropy	error	(exp slow)

• We	don’t	always	need	probabilities,	often	
unnormalized scores	are	enough	to	classify	correctly.

• Also:	Max-margin!

• More	on	that	in	future
lectures!

Neural	Net	model	to	classify	grammatical	phrases

4/7/16Richard	Socher45

• Idea:	Train	a	neural	network	to	produce	high	scores	
for	grammatical	 phrases	of	specific	length	and	low	
scores	for	ungrammatical	phrases

• s =	score(cat	chills	on	a	mat)

• sc =	score(cat	chills	Menlo	a	mat)

Another	output	layer	and	loss	function	combo!

• Idea	for	training	objective
• Make	score	of	true	window	larger	and	corrupt	
window’s	score	lower	(until	they’re	good	enough):	
minimize

• This	is	continuous,	can	perform	SGD
46

Training	with	Backpropagation

Assuming	cost	J	is	>	0,	it	is	simple	to	see	that	we	
can	compute	the	derivatives	of	s and	sc wrt all	the	
involved	variables:	U,	W,	b,	x

47

Training	with	Backpropagation

• Let’s	consider	the	derivative	of	a	single	weight	Wij

• This	only	appears	inside	ai

• For	example:	W23 is	only	
used	to	compute	a2

x1 x2																	x3 +1

a1 a2

s		 U2

W23

48

Training	with	Backpropagation

Derivative	of	weight	Wij:

49

x1 x2																	x3 +1

a1 a2

s		 U2

W23

where																																																		for	logistic	f

Training	with	Backpropagation

Derivative	of	single	weight	Wij :

Local	error	
signal

Local	input	
signal

50

x1 x2																	x3 +1

a1 a2

s		 U2

W23

• We	want	all	combinations	of
i =	1,	2 and j	=	1,	2,	3

• Solution:	Outer	product:
where																		is	the	
“responsibility”	coming	from	
each	activation	a

Training	with	Backpropagation

• From	single	weight	Wij to	full	W:

51

x1 x2																	x3 +1

a1 a2

s		 U2

W23

Training	with	Backpropagation

• For	biases	b,	we	get:

52

x1 x2																	x3 +1

a1 a2

s		 U2

W23

Training	with	Backpropagation

53

That’s	almost	backpropagation
It’s	simply	taking	derivatives	and	using	the	chain	rule!

Remaining	trick:	we	can	re-use	derivatives	computed	for	
higher	layers	in	computing	derivatives	for	lower	layers

Example:	last	derivatives	of	model,	the	word	vectors	in	x

Training	with	Backpropagation

• Take	derivative	of	score	with	
respect	to	single	word	vector	
(for	simplicity	a	1d	vector,	
but	same	if	it	was	longer)

• Now,	we	cannot	just	take	
into	consideration	one	ai
because	each	xj is	connected	
to	all	the	neurons	above	and	
hence	xj influences	the	
overall	score	through	all	of	
these,	hence:

Re-used	part	of	previous	derivative54

Summary

4/7/16Richard	Socher55

