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Abstract

Knowledge bases can be applied to a wide variety of tasks such as search and
question answering, however they are plagued by the problem of incompleteness.
In this project, we propose two models for automated relation classification using
extracted entity pairs and related sentences from natural text. We evaluate both
models on a portion of the Stanford KBP dataset across 38 relations, achieving a
classification accuracy of 53.65%.

1 Introduction

Knowledge bases such as Freebase [5], NELL [8]], and YAGO [[18] contain a wealth of information
that can be leveraged to improve systems in domains from natural language processing to computer
vision. A difficulty in using knowledge bases is that the data contained are incomplete. It may
be intractable to construct a knowledge base that is both comprehensive and complete, however it
would be helpful if one can leverage existing instances in the knowledge base to make inferences
about instances that are not in the knowledge base.

To this end, we propose two approaches to learn distributed representations for knowledge base
entries with the goal of enabling such inference. Given a fact in the form of a triplet subject,
relation, object, we learn representations for each component of the fact to facilitate the
prediction of the relation given the entities. Moreover, we leverage the natural language information
by jointly learning representations for the sentences in which the two entities are mentioned. In this
sense, the model jointly learns the representations for the entities as well as the representation for
the context in which they co-occur.

2 Related Work

Embedding based approaches have become a popular method for dealing with tasks such as language
modeling [3}[15]], statistical machine translation [21]], and image captioning [13]].

Embedding based approaches have also been applied successfully to knowledge base completion
[7, 116416} 10]. Another successful technique for knowledge base completion has been proposed by
Lao et al [14] using probabilistic random walks. Gardner et al [12] subsequently improved the PRA
system by selectively sampling paths according to embedding similarity. In addition, embedding
based knowledge base completion techniques have been incorporated into large-scale web-based
probabilistic knowledge bases [10} 2]].

Embedding based relation classification using natural text was proposed by Socher et Al. [[17] using
matrix-vector recursive neural networks over parse tree paths between entity pairs. Weston and
Bordes proposed a relation extraction model that projects relation mentions in text to the embedding
space learned using triplets from the knowledge base [19].



14000 _frequency of relations
12000
10000

8000

6000

neyuciy

4000
2000

0
= VO NTC e NV NENET U =NC .o ccccopw
£ LOPBELS Y SLYELegEYZTLES Y SS555888
o= oZEc SofEP et eERRe R w20y
h=) SrPFow ELE =0 E o o B2
el tEesog B 20C gUTEOoU g VUV 52 g
! CE 8o, s L o83, _B055F0C0E,.OT TOUT =3 EQ
5] 2858623 2560l SinCeontn b E Rl ENT =
EC2ETR 52 L8y IESEU05E 005856555 E &
> T T wPo T > o T =R =y T] |L,2i = 11 1PE s D
§ 28§ gokocog AgPECEST Qgra RE PUgubos
o c £89 ¢ cES5YL T 95850 o°Elcgoo
| 2L L 1Y 5o Ei LnE>gin S5ns25=
e u ws w2 0 3 2962258 S83LI3D
5 5ol & o® Y oZ 2582 I 2=
) 1n 15O E o2 af®s gog='g
s 25 yoga g £g 5 S
£ ©ld ES°E 5 o2 2 B2 37
3 o > ! g L@ S 5 =AY}
o 2 ) s 5 o g c=
g © 5 2 N -
o - o ﬂJEL &L L a8
5 o = a © ¥-
@ S n o
] £ & o
& 2 c °
b g g
o 9
5 5

Figure 1: Distribution of training triplets with respect to relation type

The contribution of this work is the incorporation of natural text into the classification task using
recurrent models without parsing and without annotated relation mentions. Moreover, we learn this
task in a loosely supervised fashion - for each entity pair, we are given a list of known relations
between the entity pair as well as a list of sentences in which the entity pair occurs.

3 Approach

3.0.1 Dataset

We use data from Stanford’s Knowledge Base Population system as proposed by Angeli et al [1]].
This database consists of over 4 million sentences describing 57k unique entities across 38 unique
relations concerning people and organizations. There are 130k unique (subject, relation, object)
training triplets present in the database. For each entity pair, the database contains a list of known
relations between the two entities, as well as a list sentences that mention the two entities.

An example entity pair from the dataset is Barack_Obama, Michelle_Obama. A true triplet
consisting of this entity pair and known relations is

Barack_Obama per:spouse Michelle_Obama

From this dataset, we randomly sample 100k triplets as training data, 20k million triplets as devel-
opment data, and 10k triplets as test data. The distribution of the triplets with respect to the relation
types are shown in figure[l}

In addition to the known relations between entity pairs, we also have a list of sentences in which
each entity pair occurs. The relation prediction task is loosely supervised in the sense that a sentence
in which the entity pair occurs does not necessarily provide provenance for a valid relation between
the two entities.

3.1 Notation

For notational convenience, given a triplet of the form subject, relation, object, we
denote the subject entity as e, the object entity as eo, and the relation as r. For example, given the
triplet

Barack_Obama per:spouse Michelle_Obama

ey represents the vector representation for Barack_Obama, eo the vector representation for
Michelle_Obama, and 7 the vector representation for per: spouse.



3.2 Models

3.2.1 Multilayer Perceptron
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Figure 2: Multilayer perceptron model Figure 3: Recurrent model

We begin by introducing a multilayer perceptron model as shown in figure

In this model, the inputs are the distributed representations for the entities involved in the triplet.
The concatenated embeddings are projected into a high dimensional space via the hidden layers and
condensed into the softmax layer.

During training, we iterate over all unique triplets in the training data, and minimize the categorical
cross entropy loss given the entity pairs. This is shown in equation [I]
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where T is the number of unique triplets in training, and egi), egi), and r® are the respective subject,
object, and relation in the +¢th training triplet.

We train the network via backpropagation, backpropagating the error into the distributed represen-
tations of the entities.

3.2.2 Recurrrent Model

The MLP model described in section does not take into account the context in which the entity
pair occurs. In this section, we propose an approach that also models this context by directly utilising
the text corpus.

Given an entity pair, we have available the sentences in which the entity pair is contained, as well as
the known relations that hold between the entities. An example of this is

Rod_Blagojevich graduated from Northwestern University , and
received his law degree from Pepperdine University , working to
help pay for it

One of the triplets this sentence corresponds to is
Rod_Blagojevich per:schools_attended Pepperdine_University

Should we know which sentence p provides provenance to which relation, we can construct a model
that classifies the relation between the entities given the sentences, as shown in equation 2]
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where p(*) is the sentence which provides provenance for the ith triplet.

However, in the database we do not have this correspondence readily available. Instead, for each
entity pair, we have available a list of sentences in which the entities occur. With this information
available, we attempt to approximate equation |3|as follows:

For each triplet, instead of using the sentence that provides provenance for the triplet, we sample s
as a sentence in which the entity pair occurred. This is shown in equation |3} This corresponding
model is shown in figure[3] In practice, we found that using only the text snippet between the entity
pair yields better performance.
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where (%) is a randomly sampled sentence that contains the entity pair present in the ith triplet.

With text information, the recurrent model should be able to distinguish between similar relations
such as per: spouse, per:parents, and per: children by learning about the text in which
the entity pair occurs. Because the multilayer perceptron model does not take into account this
context, we expect it to struggle more with respect to correctly classifying these relations.

4 [Experiments

We design and implement our models using Theano [4]], a symbolic math library for Python. Unless
specified otherwise, we constrain all embedding vectors to have unit norm and use 50 dimensional
embedding vectors. We train using Adagrad as described in [11]. For the recurrent model, we use
Gated Recurrent Units (GRUs) as described in [9].
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Figure 4: Learning curve across optimization  Figure 5: Learning curve for MLP and recurrent
schemes. model.

We did not find noticeable differences in performance between the tanh, ReLU, and leaky ReL.U [20]]
activations. We were able to achieve faster convergence with Adagrad in comparison to SGD, Ada-
grad, AdaDelta, and RMSprop optimization as shown in figure ] The model is a MLP comprised
of 100 dimensional embeddings and one 300 dimensional hidden layer.



MLP Recurrent
Accuracy 0.5099 | 0.5365
F1 macro averaged | 0.3707 | 0.3938

Table 1: Test set performance
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Figure 6: Confusion matrix for recurrent model.

The learning curves for the MLP model and the recurrent model are shown in figure [5] We use 3
hidden layers of dimensions 500, 400, and 300 trained with dropout. We visualize the weights for
each relation in appendix [A]

We evaluate both models on the test set using multiclass classification accuracy and macro averaged
F1. The latter is the calculated using the average of the per-class precisions and the average of the
per-class recalls, and hence is noticeably worse due poor performance on the rarer relations (the
distribution of the training set across relations is shown in figure[T)). The scores are reported in table

ik

The confusion matrix on the test set for the recurrent model is shown in figure[6] We have sorted the
columns from the most frequent relations (top-most) to the least frequent relations (bottom-most).
We note that the model struggles with rare relations (relations towards the bottom).

Figures [7] and [§] show the confusion matrix for the person-person relations per:spouse,
per:siblings, per:alternate_names, per:parents, and per:children for the
MLP model and for the recurrent model. Although both models struggle on these relations, the
recurrent model, with the addition of learned representations for the sampled sentence, markedly
outperforms the MLP model on these relations. The MLP model frequently confuses person-person
relations with per : parents, which happens to be the most frequent relation seen during training.

Indeed, these relations are hard to distinguish given that the sampled sentences don’t necessarily
provide provenance for the corresponding triplet. If the text does not provide enough evidence as to



confusion matrix for mlp_rmsprop_leaky 5( confusion matrix for recurrent_adagrad_leak)

per:parents per:parents

per:children per:children

per:spouse per:spouse

per:siblings. per:siblings

cer:alternate_names
Jser:alternate_names -

per:spouse

per:parents

per:children
per:spouse
per:siblings
per:parents
per:children

ser:alternate_names
per:alternate_names
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matrix for MLP. matrix for recurrent model.

which relation is the correct one, the recurrent only has the learned representations of the entity pair
to work with. Nevertheless, we note that improved performance on these relations can be achieved
even with noisily sampled sentences that may not provide provenance for the triplet.

5 Future Work

One direct extension to this work is to construct a dataset such that each triplet is matched with the
corresponding sentence that provide provenance for the triplet. We expect models trained on this
dataset to further improve performance on the relation classification task.

One limitation of this work is that the models proposed are not explicitly trained to distinguish
mention pairs between which there are valid relations and mention pairs between which there are no
valid relations. The ability to do so is crucial for the KBP slotfilling task, whereby the majority of
mention pairs extracted from sentences are not related. It is therefore crucial to be able to distinguish
between entities that are related and entities that are not related.

We hypothesize that a recurrent model such as the one proposed in this work may be able to dis-
tinguish between related entity pairs and unrelated entity pairs given the sentence from which the
mention pair is extracted (eg. the provenance for the triplet). While it may be possible to accom-
plish this task using the proposed model by thresholding the confidence scores, we hypothesize that
introducing an explicit objective should be give much better performance. For example, one ap-
proach that may prove fruitful is to add to the objective of equation [3|another sigmoid unit to predict
whether a relation exists between the two entities.

6 Conclusion

In this project, we proposed two models for automated relation classification: a multilayer percep-
tron that learns representations for the entity pair, and a recurrent model that additionally learns rep-
resentations for context in which the entity pair occurs. Despite that the sampled sentences are noisy
in that they do not necessarily provide provenance for the given triplet, we show that by leveraging
learned representations for this context, the recurrent model is able to distinguish between similar
relations much better than the multilayer perceptron model. Finally, we evaluate both models on a
portion of the KBP dataset across 38 relations, achieving a classfication accuracy of 53.65%.
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Figure 9: Relation weights reduced via SVD
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