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Abstract

This project seeks to improve the classification accuracy of Large Language Mod-
els on tabular data. We explore in-context learning (ICL) with various input data
formats, including Text, HTML, JSON, and more, to identify the most effective
format for LLM prompts in predicting the Class column of tabular data. We eval-
uate these formats using Llama-3-70B and Gemma-7B models accessed through
the Together AI API. We also fine-tuned the pre-trained Gemma-7B model from
HuggingFace with serialized tabular data rows on Google Colab. We also fine-tune
the pre-trained Gemma-7B model from HuggingFace with serialized tabular data
on Google Colab, testing datasets with 16, 128, and 512 rows. Our experiments
aim to enhance the accuracy and robustness of tabular data classification by lever-
aging both ICL and fine-tuning methods with different input formats, ultimately
providing insights into optimizing LLMs for tabular data tasks.
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2 Introduction

Large Language Models (LLMs) have recently demonstrated remarkable capabilities beyond natural
language processing (NLP) tasks that they were initially known for. Despite their impressive growth
in so many areas from text to images and videos in so many domains from healthcare to software
development, they still struggle with tabular data (Fang et al, 2024).

Traditionally, gradient-boosted trees like XGBoost and methods like logistic regression have com-
monly been used for predictions on tabular data (Borisov et al, 2022). Researchers have also
investigated ways to integrate tabular data with deep neural networks (Hollmann et al., 2023).

Today, there is increasing research in using LLMs on tabular data. There are two main fields that
researchers focus on: 1) table understanding and 2) table prediction. Table understanding is the ability
of a model to accurately interpret, extract, and reason about data presented in tabular format. A recent
study evaluates table understanding of LLMs by developing a benchmark that includes tasks like cell
lookup and row retrieval, exploring different input designs and prompting methods (Sui et al., 2023).

In contrast, table prediction uses table serialization (the process of converting tabular data into a
sequential text format suitable for input to LLMs) and prompting for an LLM to predict a value in a
table. While table understanding is crucial for tasks that require interpreting and reasoning about
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data, in this paper, we wanted to focus on table prediction to improve the performance of LLMs on
tabular data by using in-context learning (ICL) with different prompting techniques such as zero-shot,
few-shot, and rule-based as well as fine-tuning an open source model. Our hypothesis is that since
LLMs are mostly being trained on web data, they will perform better with prompts in the HTML
Table format.

3 Related Work

With our sharp focus on improving the performance of LLMs in tabular data prediction, we narrowed
down the potential areas to three main categories that can be listed as input formatting, prompting,
and fine-tuning.

In order to feed tabular data as input into LLMs, we have to convert the structured data into a text
format for training and inference purposes (Sui et al., 2024). The streaming format itself can have a
direct impact on the performance of a model as its understanding will depend on the text being in
free form, HTML table, CSV, JSON, XML, or YAML (Fang et al., 2024).

Researchers have been exploring how providing a Chain-of-Thought (CoT) may significantly improve
the ability of LLMs in complex reasoning (Wei et al., 2023). They show how reasoning abilities
emerge via a method called CoT prompting, where a chain of thought examples are provided in
prompting.

Recently researchers have developed a framework called Hypotheses-to-Theories to help LLMs in
reasoning tasks by teaching them how to learn from rules. It involves induction and deduction stages,
resulting in a 20% accuracy improvement and transferable learned rules (Zhu et al., 2024) The learned
rules are also transferable to different models and to different forms of the same problem.

In a new paradigm based on learning from rules, researchers proposed a method called rule distillation,
where they extract knowledge from textual rules and explicitly encode them into the parameters of
LLMs through in-context learning (ICL). The experiments show that this approach is more efficient
and improves generalization ability compared to example-based learning (Yang et al., 2024).

Recent research suggests that using LLMs for the prediction of tabular data could be promising
(Hegselmann et al., 2023). The researchers fine-tune GPT-3 in zero-shot and few-shot settings using
serialized rows to make predictions on tabular data. Hegselmann et al. found that with a large number
of shots, traditional methods including XGBoost, TabPFN (Hollmann et al., 2023), and logistic
regression (LR) tend to surpass GPT-3 in AUC score. However, in zero to 8-shot settings, their
TabLLM performs well against these common benchmarks.

4 Approach

Based on insights from related research on LLMs, we focused on three main components:

1. Input Stream Formatting
2. In-Context Learning (ICL)
3. Parameter Efficient Fine-Tuning (PEFT)

4.1 Input Stream Formatting

Since there has been a strong conviction in recent studies about the impact of the input format on
LLMs, we converted the original tabular data into various input formats such as Text, HTML Table,
DIV Table, CSV, JSON, XML, and YAML to compare their performance in training and inference.

4.2 In-Context Learning (ICL)

We implemented ICL in our prompts for the Llama-3-70B model, making API calls through Together
AI. To optimize resource usage, we transitioned to using the Gemma-7B model for both prompting
and fine-tuning. After observing Text and HTML Table as the top two performers in input streaming
formats, we narrowed down our focus to these two formats when prompting with the Gemma-7B
model. We employed three distinct prompting techniques to enhance performance.
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4.2.1 Zero-Shot Prompting:

Figure 1: Optimizing Input Formats for Zero-Shot Classification of Tabular Data Using LLMs

As illustrated in Figure 1, the general zero-shot prompting process involves iterating through each
row of the dataset and creating various input formats (HTML, Text, JSON, YAML, etc.) that contain
information about each attribute. This information is then added to a new "description" column (as
shown in step 2). We then shuffle the rows, randomly select one, and prompt the LLM by providing it
the "description" column in the following format:

System: You are an expert car evaluator. Given the attributes of a car, you will recommend whether
the car is ‘unacceptable’, ‘acceptable’, ‘good’, or ‘very good’.

User: Here are the attributes of a car in format format: row[‘description’]. Summarize your
recommendation to buy this car in one or two words as ‘unacceptable’, ‘acceptable’, ‘good’, or ‘very
good’ without providing any reasoning.

For our system prompt, which serves as the fixed instruction to constrain the LLM’s response, we
specify the LLM’s task to ensure it understands its role.

For our user prompt, which is the query that the user feeds the LLM, we provide the input format it
should expect and the content of the ‘description’ column. We also include constricting instruction
about the four classes and specify that the response should be "without providing any reasoning".
This double measure addresses one of the issues found in the TabLLM paper, where the authors noted
that GPT-3 often added statements like "This car is a good choice" in its responses.

4.2.2 Few-Shot Prompting:

Few-shot prompting followed a similar process to zero-shot prompting, with the key difference being
the inclusion of multiple rows from the dataset in each prompt to the model. We tested few-shot
learning using only the Text and Table formats. Within the prompt, we included several random rows
from the table. Due to token limits, we could only include a maximum of 128 rows.

4.2.3 Rule-Based Prompting:

We introduced a novel prompting technique by using Rules that contained logical instructions rather
than examples, aiming to improve the model’s reasoning capabilities. Here are a few examples of the
15 rules used for training:

• If Persons are ’two’ or Safety Score is ’low’, then Recommendation should be ’unaccept-
able’.
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• If Buying Price is ’very high’ and Maintenance Cost is ’high’ or ’very high’, then Recom-
mendation should be ’unacceptable’.

• If Buying Price is ’high’ and Maintenance Cost is ’very high’, then Recommendation should
be ’unacceptable’.

4.3 Parameter Efficient Fine-Tuning (PEFT)

We used PEFT to achieve performance comparable to full fine-tuning while only having a small
number of trainable parameters (Liu et al., 2022). In full fine-tuning, all the pre-trained model weights
are updated during training, which can be computationally expensive, especially for Large Language
Models. PEFT addresses this by only updating a small subset of the model’s parameters.

We also used Low-Rank Adaptation (LoRA), which freezes the pre-trained model weights while
injecting trainable matrices into each layer of the model architecture. This approach can reduce the
number of trainable parameters by 10,000 times and the GPU memory requirement by 3 times (Hu et
al., 2021). LoRA enables efficient and scalable fine-tuning by maintaining the core model weights
and only adjusting the smaller, injected matrices.

We fine-tuned our Gemma-7B model three times on serialized rows of 16, 128, and 512 examples,
and evaluated its performance on the remaining items in the original dataset of 1,728 rows. The
specific experimental details for fine-tuning can be found in section 5.3.

5 Experiments

5.1 Data

We used the Cars Dataset from the TabLLM paper, which contains 1728 rows and 6 attributes:

Buying: buying price, {vhigh, high, med, low}
Maint: price of maintenance, {vhigh, high, med, low}
Doors: number of doors, {2, 3, 4, 5more}
Persons: capacity in terms of persons to carry {2, 4, more}
Lug_boot: size of the luggage boot {small, med, big}
Safety: estimated safety of the car, {low, med, high}

The Class attribute indicates whether a car is acceptable to buy: “unacc” (70%), “acc” (22%), “good”
(4%), “vgood” (4%).

We noticed the class distribution was uneven. Though we considered balancing it by reducing the
“unacc” and “acc” examples, we decided to keep it as the authors of TabLLM did since there wouldn’t
be sufficient data for training or testing if we matched "good" and "very good" categories that had
only 4% coverage.

For clarity, we replace terms like “vhigh” with “very high” and “unacc” with “unacceptable” when
inputting values into the LLM. Using text over numbers (e.g., “five or more” instead of “5”) ensures
better comprehension by the model.

5.2 Evaluation Methods

For our evaluation metrics, we used AUC (Area Under the Curve) and accuracy scores to compare
the LLM’s Class predictions with the ground truth Class values from the dataset.

Accuracy Score: Accuracy measures the proportion of correct predictions out of all predictions.
While straightforward, it may not fully capture performance in imbalanced datasets.

AUC (Area Under the Curve): AUC-ROC evaluates the model’s ability to distinguish between
classes. In a multiclass setting, AUC is extended using the one-vs-rest (OvR) approach by converting
multiclass labels into binary labels for each class, calculating the ROC curve and AUC score for each
class, and then averaging the AUC scores across all classes to obtain the Macro-AUC:

Macro-AUC =
1

N

N∑
i=1

AUCi
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where N is the number of classes and AUCi is the AUC score for the i-th class.

Using both AUC and accuracy provides a comprehensive evaluation of the LLM’s performance,
considering both overall correctness and discriminative ability across multiple classes.

5.3 Experimental Details

For prompting, we used VS Code as our IDE, and imported the ‘together’ library in order to make
API calls using Llama-3-70B model available publicly on the Together AI’s website.

The fine-tuning experiments were conducted with the ‘google/gemma-7b-it’ model on HuggingFace
by using a Google Colab Pro account. The model preparation involved configuring LoRA with a
rank of 6, alpha of 16, and dropout of 0.1, targeting the modules: ‘q_proj’, ‘k_proj’, ‘v_proj’, and
‘out_proj’. Gradient checkpointing was enabled to manage memory constraints. The tokenizer used
had its pad token set to the EOS token.

Model quantization was applied to optimize the model for faster inference and reduced memory
usage, making it more efficient for deployment.

We conducted fine-tuning with few-shot learning, training the model on 16, 128, and 512 randomly se-
lected rows, and testing on the remaining data. The TabLLM paper reported significant improvements
at these few-shot levels, which guided our choice of training sizes.

The custom dataset for training was derived from CSV files containing "Question" and "Answer"
columns, which were combined into a single text field. The training process utilized the ‘SFTTrainer’
from the ‘trl’ library. Key training parameters included: warmup steps of 100, batch size of 1,
gradient accumulation steps of 1, learning rate of 1 × 10−4, and a sequence length of 150 tokens.
Model checkpoints and logs were saved every 10 steps, with weights stored in the ‘./saved_weights’
directory. Training was conducted on the NVIDIA L4 GPU due to the memory needs of the Cars
dataset, while inference was run on the Tesla T4 GPU.

For inference, the fine-tuned model and tokenizer were loaded from the Hugging Face Hub. The
model was evaluated on test data, and results were saved to CSV files. The evaluation process
involved generating responses to the test prompts and comparing them to the ground truth, with
detailed logging of performance metrics.1

5.4 Results

As shown in Figure 2, we compared several input streaming formats with zero-shot prompting on
Llama-3-70B. The HTML Table format turned out to be the top performer followed by Text as the
runner-up for inference. Since the other input formats didn’t perform well, we focused on Text and
HTML Table as the two input formats for the remaining experiments.

Figure 2: Llama-3-70B Zero-Shot Prompting AUC and Accuracy Scores

Figure 3 shows the comparison of Text and Table input formats with different number of examples
used in few-shot prompting on Llama-3-70B. When we used the Text format, the accuracy increased
from 65% to 74% with 128 examples in the prompt. However, when we used the Table format, the
accuracy dropped from 67% to 64% with 100 examples. Due to the limitation of 8,192 tokens in

1Link to Github Repository: https://github.com/sukara13/CS224N-Final-Project.
Prompting: ICL/carllm.py Fine-tuning: Fine-tuning/CS224_Car_Gemma_Inference_ Fine_Tune.ipynb
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the input message, we couldn’t test with more than 128 examples in Text format and more than 100
examples in Table format. Even though the Table format performed better for inference, the Text
format worked better for training purposes.

Figure 3: Llama-3-70B Few-Shot Prompting Accuracy Scores

Figure 4A and 4B show how the accuracy and AUC scores change with the increasing number of
examples in the prompt on Llama-3-70B. Both accuarcy and AUC scores of Text and Table formats
increase with more than 32 examples in few-shot prompting.

Figure 4: Llama-3-70B Few-Shot Prompting Accuracy and AUC Scores

After completing our tests with zero-shot and few-shot prompting on Llama-3-70B, we switched
our focus to Gemma-7B for the same tests in the Text and Table formats. Since Gemma-7B didn’t
produce reliable results with zero-shot prompting, we moved onto few-shot prompting with at least
one example. Similar to Llama-3-70B, we faced the same constraints with 8,192 tokens in the input
message, and provided up to 128 examples at most.

Figure 5: Gemma-7B Few-Shot Prompting Accuracy and AUC Scores

6



Figure 5A and 5B show the accuracy and AUC scores for few-shot prompting on Gemma-7B. The
accuracy scores of Text and Table formats converge after 16 examples, but the AUC scores keep
dropping with increasing number of examples. This could be explained with the imbalanced Cars
dataset where the model may only predict the majority class of "unacceptable" well.

Rule-based prompting generated remarkable results as shown in Figure 6. Similar to few-shot
prompting, both accuracy and AUC scores improved in Llama-3-70B, while only accuracy improved
in Gemma-7B. We achieved 84% accuracy on Llama-3-70B and 71% on Gemma-7B in Table format.

Figure 6: Gemma-7B Rule-Based Prompting Accuracy and AUC Scores

Finally, we applied fine-tuning to the pre-trained Gemma-7B model with 16, 128, and 512 examples.
As shown in Figure 7, both accuracy and AUC scores consistently increased with more examples
to train the model with. We were expecting these improvements based on the TabLLM paper that
we used as our baseline benchmark (Hegselmann et al., 2023). They were able to achieve the AUC
scores of 86%, 98%, and 100% by fine-tuning GPT-3 with 16, 128, and 512 examples respectively.
Our corresponding scores with Gemma-7B were relatively lower than those baselines but were still
the best among all three approaches that we tried in this project.

Figure 7: Gemma-7B Fine-Tuning Accuracy and AUC Scores

6 Analysis

Our initial experiment to test different input streaming formats proved our hypothesis correct as the
Table format performed better for inference with zero-shot prompting. To our surprise, the Text
format performed better for training through ICL with few-shot prompting. Even though LLMs
understand HTML Table format intrinsically, the ICL process seems to work better with text.

In our few-shot prompting experiments, the accuracy and AUC scores of Llama-3-70B improved
significantly with more examples, while the performance of Gemma-7B didn’t improve. This can be
attributed to the smaller size of Gemma-7B compared to Llama-3-70B that is almost ten-fold in the
number of parameters.

Rule-based prompting showed improvements in both models. Similar to few-shot prompting, due
to their nature of the same ICL approach, Llama-3-70B performed much better than Gemma-7B
because of their size difference. If we compare the few-shot and rule-based prompting results within
Llama-3-70B, we will quickly notice the accuracy score of 66% for few-shot with 16 examples versus
84% for rule-based with 15 rules to have a relatively fair comparison.
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Out of the three different approaches we experimented with, fine-tuning performed the best. This
outcome was expected as we essentially trained the model with a large set of examples. Unlike ICL,
fine-tuning didn’t have any limitations on the number of examples. It is also a clean approach as
we didn’t have to use any few-shot training after fine-tuning. Therefore, we could save time and
money in our inferences with smaller number of tokens in the input message. However, fine-tuning
comes with its own disadvantages. Training a model is an expensive and time-consuming process
that requires a lot of resources in terms of memory and GPU. Since we’re training an existing model
with additional data, we may potentially face unexpected results such as catastrophic forgetting when
we pose questions outside the Cars dataset (Luo et al., 2024).

7 Conclusion

Among the tested input streaming formats, the HTML Table performs the best for inference, while
Text is the best choice for training through ICL and fine-tuning. However, the Table format requires a
larger number of tokens due to the HTML tags needed for each row and column. Besides, additional
template creation is required to convert the original text into the Table format.

Even though few-shot prompting shows some improvements in large models, it usually requires more
than 32 examples that may not be practical. It also creates a lot of overhead for each request, which
increases the time and cost due to excessive amount of tokens.

Fine-tuning is the best approach for smaller models as few-shot and rule-based prompting don’t
introduce much improvement. Rule-based prompting would be the ideal choice for larger models
due to the high cost of fine-tuning and the small number of rules required for training. However, rule
generating requires an additional step to identify the patterns in the dataset.

One of the limitations of our work was the 8,192 tokens allowed for input messages. Without this
limitation, we would be able to test with more examples and make a fair comparison between ICL
and fine-tuning on larger models.

Another limitation was the lack of GPU and memory due to the high cost associated with those
resources. Because of those constraints, we couldn’t train the model with more than 512 examples
during fine-tuning to compare with our baseline benchmark results of TabLLM.

In future research, hybrid approaches can be experimented to improve the performance of LLMs
even further. For example, rules can be used to train the model for fine-tuning rather than examples
from the original dataset.

Another future work could be to develop an approach to generate rules from a dataset with the use of
LLMs, and feed those rules into either ICL or fine-tuning. This would be invaluable as it will avoid
the additional step required for rule-based prompting.

8 Ethics Statement

The use and training of LLMs pose ethical challenges and societal risks, such as replicating biases in
sensitive areas like income, health, race, gender, sexual orientation, religion, or political affiliation.
To mitigate this, we prioritized diverse and inclusive data selection and training. Notably, our dataset
choice, the Cars dataset, was used by the authors of TabLLM and is not prone to harmful stereotypes
or biases.

LLMs’ resource-intensive nature also creates exclusive research environments and significant en-
vironmental impacts. To address this, we fine-tuned a smaller model, Gemma-7B, recognizing the
high costs and potential environmental harm associated with fine-tuning. Additionally, we used
parameter-efficient fine-tuning (PEFT), which further reduces resource usage and carbon emissions.
We aim for transparency in our decision-making process and seek sustainable computing solutions.

By incorporating these strategies, we strive to minimize the ethical and environmental risks associated
with LLMs, ensuring responsible and inclusive AI research practices.
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