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Abstract

Protein research is essential across many fundamental disciplines. Generating
scientific hypotheses in such research depends on comprehending complex protein
structural features, a task traditionally reliant on the expertise of structural biol-
ogists, which creates a significant knowledge barrier. Recent progress in Large
Language Models (LLM) offers a promising approach to using published texts for
understanding protein structures. Here we present Posetta, a multimodal system
that combines a protein encoder and an LLM to produce detailed descriptions of
protein structures. By encoding protein .pdb files with state-of-the-art models
and integrating them through a vision transformer, Posetta aims to democratize
protein structure comprehension and accelerate advancements in protein engineer-
ing. A demo is available at https://colab.research.google.com/drive/
105FR-kbs-ax1WXpIlGico2EVR3ZDo0t-?usp=sharing.

1 Key Information to include
• Mentor: Shijia Yang
• Project type: Custom
• Team Contributions:

– H.D.: Conceptualization, Data preparation (keyword filtering of full-text), Code (evalu-
ation metrics), Evaluation, Writing

– J.L.: Conceptualization, Data preparation (extracting PDB titles), Code (protein em-
beddings), Evaluation, Writing

– T.L.: Conceptualization, Data preparation (getting ProteinChat dataset and Pubmed
full-text dataset), Code (dataloaders, model training and logging), Training, Evaluation,
Writing

• External Collaborators (if you have any): None
• Sharing project: No

2 Introduction

Proteins play crucial roles in every perspective of biological processes. Comprehending complex
protein structural information has always been essential in life science research. As protein designers,
we recognize that the inspirations of protein engineering also heavily rely on the understanding of
protein structures. However, translating these intricate structures into comprehensible text depends
on the expertise of structural biologists. For example, our PI (trained for 20+ years) would examine a
new structure first and explain to us (less experienced graduate students) the key structural features.
The reliance on expert interpretation creates a significant knowledge barrier.

Recent advancements in Large Language Models (LLMs) have demonstrated significant progress
in comprehending task-specific knowledge conditioned on data from multiple modalities. These
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advancements suggest the potential to leverage human language from published text for understanding
protein structures and provide valuable insights for protein research.

Here we introduce Posetta, which aims at generating detailed protein structural descriptions after
"looking at" the structure (Figure.1). This system integrates a protein encoder and an LLM decoder to
achieve this goal. The input protein structure (.pdb file) is encoded by state-of-art structural encoder
in the protein design field, ProteinMPNN (Dauparas et al., 2022) or LigandMPNN (Dauparas et al.,
2023). The protein embeddings are then integrated with the LLM by patchifying and feeding the
patches through a vision transformer (ViT) (Radford et al., 2021) following the GiT model (Wang
et al., 2022).

Our ideal outcome is to build a model that has effectively "read" and integrated knowledge from all
structural biology publications. By explaining important structural features, Posetta aims to serve
as an "experienced consultant" that helps researchers understand protein structures and eventually
facilitates scientific discovery in the field.

Figure 1: Schematic overview of the Posetta multimodal system

3 Related Work

Comprehending protein structures and capturing the structure-function relationship has been an active
research topic in bioinformatics, traditionally people use rules or statistical techniques for function
prediction. In recent years, machine learning methods have started to emerge. Earlier methods
leverage ML models to embed structure features, for example, Gligorijević et al. (2021) used a graph
convolutional network for structure embedding to predict Gene Ontology terms. However, using
protein function classification (Gene Ontology terms, enzyme commission (EC) numbers, etc.) as
function labels, these models are limited to predicting these low-resolution function features, omitting
the uniqueness of each protein. Free-form text allows more sophisticated descriptions of protein
structure and function. An earlier work of Xu et al. (2023) pioneered learning from biomedical text
descriptions, the ProtST model they developed was evaluated on protein function classification and
functional protein retrieval (text to protein).

The recent advance of large language models (e.g., ChatGPT) has laid the foundations for specialized
language generation tasks. Research on Vision-Language-Pretraining (VLP) has demonstrated the
possibility on learning multimodal foundation models and performed well on vision-and-language
tasks (Radford et al., 2021). Meanwhile, work in protein neural-network has produced diverse
protein encoding solutions. Inspired by these advances, LLM based multimodal text generation
models for protein have been explored recently. In 2023, Guo et al. (2023) developed the ProteinChat
model. They constructed the PDB Description Dataset containing PDB structures and the abstract of
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their corresponding publication. Their model includes a fixed pre-trained protein structure encoder
ESM-IF1 and the LLM model Vicuna-13b. They only trained the projection layer between the
protein encoder and the LLM. The model can perform ChatGPT-like function on simple prompts,
however, the paper only provided one example output, making it hard to compare with. In 2024,
Wang et al. (2024) reported the ProtChatGPT model, which uses the same PDB Description Dataset
to achieve ChatGPT like function. In addition to the pre-trained ESM-IF1 structure encoder, they
used an additional pre-trained protein sequence encoder ESM-1b. They also used Vicuna-13b as their
LLM decoder. Their main advantage is introducing a transformer-based model instead of a simple
projection layer to connect the protein encoder and the LLM decoder. Their training also only occurs
on this transformer (i.e. freezing protein encoder and LLM decoder). The model can generate text
related to the function of the input protein, and the model was evaluated on a spectrum of metrics.

Since the goal of the Posetta model is to generate structural description (e.g. This protein is a tyrosine
kinase which contains 3 helices and 2 beta-sheets) instead of only general functional description
(e.g. This protein is an enzyme), we recognize several limitations in ProtChatGPT and ProteinChat.
First of all, the protein encoder used by both models are from ESMfold (Hsu et al., 2022), which
is a model trained on the protein structure prediction task (predicting a protein structure from a
sequence). A drawback of the ESMfold model is its tendency to memorize protein folds by aligning
to native sequences rather than learning the protein’s biophysical features. This limitation means that
the protein embedding might lack important structural information, such as amino-acid interaction.
Recent models for de novo protein design (Dauparas et al., 2022; Dauparas et al., 2023) could
potentially provide better protein encoding solutions for our purpose, as their ability to capture protein
structural feature and sequence-structure correlation have been verified in wet labs with proteins
unseen by nature. In Posetta, we used the protein encoders from protein design models. Secondly,
ProtChatGPT and ProteinChat models are only trained on paper abstract text, which might not include
the desired information about a specific protein structure. In Posetta, we included sentences from
the publication full-text that are related to structural features. Finally, the PDB Description Dataset
only contains the first chain (chain A) of each pdb file, which excludes important information on
protein-protein and protein-small molecule interactions between chains. For Posetta, considering the
multi-chain protein complex with its ligands is essential to generate meaningful structural feature
descriptions.

4 Approach

The Posetta model is composed of a protein encoder and a LLM. The protein encoder generates
protein latent embeddings from .pdb files with protein sequence and structural information (Figure 2).
The embeddings are reshaped and normalized to be compatible with the input shape of the LLM.

We used the pre-trained protein encoder from ProteinMPNN (Dauparas et al., 2022) and LigandMPNN
(Dauparas et al., 2023) in out model. Both of the models were developed for designing protein
sequences from backbone structures. Both models used a sparse graph to represent protein structure,
a message-passing neural network (MPNN) to encode the protein structure, and an auto-regressive
decoder to predict protein sequences. We modified the code to extract the node feature from the
encoder embedding to input to the LLM decoder.

We experimented with both ProteinMPNN and LigandMPNN to investigate the effect of encoded
information on the resolution of the generated text descriptions. ProteinMPNN only takes in backbone
atoms as context and thus does not have access to sidechain coordinate information. This makes it
suitable for descriptions involving e.g. secondary structure or topology. In contrast, LigandMPNN
(side chain only) takes in backbone and sidechain atoms as context, making it suitable for descriptions
involving amino acid mutation or atomic interactions such as hydrogen bonds and pi-stacking.
LigandMPNN (side chain and heteroatoms) additionally encodes the coordinate of ligands. (e.g. ATP
molecules).

As in ProteinChat and ProChatGPT, we decided to freeze the pre-trained encoders. ProteinMPNN
and LigandMPNN are trained on all .pdb files in the protein data bank, and have been extensively
verified in wet-lab for their ability to capture protein structure features correctly. We believe that they
generate ideal proteins structural embeddings and do not want to perturb/bias it with text descriptions.

We use the GiT model architecture described by Wang et al. (2022) and Guo et al. (2023) as the LLM
component. The original GiT model was trained to caption (224× 224) RGB images. We repurpose
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the model to take in (128 ×N) protein embeddings, where 128 is the per-amino acid embedding
dimension from ProteinMPNN and N is the protein length. The protein embeddings are zero-padded
to (128 × M) where M is the next greatest integer divisible by 3, reshaped to (128 × M/3 × 3)
and then zero-padded to (224 × 224 × 3). Since LigandMPNN embeddings include information
from multiple chains, the total protein length can become very large. To fit information from longer
proteins, we average pool adjacent embedding vectors of LigandMPNN embeddings such that each
position in the final embedding corresponds to a pair of adjacent residues.

Figure 2: Model Architecture

5 Experiments

5.1 Data

We used the PDBs in the PDB Description dataset. The dataset was randomly split into 90% train
and 10% test, giving 73,508 training and 8303 test examples for the backbone-only ProteinMPNN
encodings and 89,846 training and 10052 test examples for the atomic-context LigandMPNN en-
codings. Only chain A of the PDB file was used for ProteinMPNN encoding for compatibility. The
full-length PDBs containing all chains were used for LigandMPNN encoding. Approximately 76%
of the dataset include articles not in the open access full text dataset of PubMed so for such examples
we fall back to using their abstracts. For structures that has open access full text available, we filter
the text based on structural description keywords for extracting the structural description paragraphs.

5.2 Evaluation method

For quantitative evaluation, we employ six commonly used metrics described in ProtChatGPT (Wang
et al., 2024), including BLEU (Papineni et al., 2002), ROUGE-L (Lin and Hovy, 2002), METEOR
(Banerjee and Lavie, 2005), CIDEr (Vedantam et al., 2015), and BertScore (Zhang et al., 2019), as a
systematic comparison between the generated text and the reference text. BLEU score quantifies the
similarity between the candidate and reference text through n-gram matching. ROUGE-L calculates
the longest common subsequence between the candidate and reference text. METEOR evaluates the
text by also considering synonyms and stemming. CIDEr is designed to evaluate generated image
captions. BertScore measures the similarity between the candidate text and the reference text using
contextual embeddings from BERT models. To better access the quality of generated protein-related
descriptions, PubMedBERT (Gu et al., 2021) was applied, which is a BERT model pre-trained on the
biomedical corpus.
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5.3 Experimental details

We train five models, each with the same architecture but with differences which are summarized
below. Model 1 was trained for 57 epochs for 3 days and 22 hours on an A100 before a force
restart on our node. We then continued training from the epoch 57 checkpoint for an additional 26
epochs. Model 2 was trained for 41 epochs but its validation loss remained much higher than the
fully trainable model (Figure.3). Model 3 was trained for 13 epochs before another force restart on
our node. We then continued training from the epoch 13 checkpoint for an additional 5 epochs.

The model architecture is identical for all models and taken from Wang et al. (2022), consisting of
12 layers of ViT (self-attention on patchified structure embeddings) followed by 6 layers of self and
cross attention for generating text tokens. The vocabulary size is 30522, the embedding and hidden
dimensions are 768 throughout, except in intermediate MLP blocks where the dimensionality expands
4× to 3072 then back down. A dropout probability of 0.1 is applied to the input word embeddings
and each output of the text attention blocks. The model was trained with a batch size of 32, learning
rate of 1e-5 using the AdamW optimizer with β1 = 0.9 and β2 = 0.999 (Loshchilov and Hutter,
2017). We experimented with Low-Rank Adaptation (Hu et al., 2021) by only training adaptors to
the query, key, value, and output projection linear layers of both the ViT attention blocks and the text
attention blocks.

We initially planned to train the Posetta Model using PubMed full text and the ProteinMPNN
embedding (Model 1 and 2). However, we observed issues with repetitive text and inaccurate scientific
descriptions in the initial results. To address these issues, we tried several different strategies. Model
3 was trained on short PDB titles, which are usually a general description of the structure identity,
instead of long PubMed texts. This is because the GiT model was pre-trained on image captioning
texts, which are typically short. Models 4 and 5 were trained using LigandMPNN, incorporating side
chain and all-atom information, respectively. This was done to: first, test whether more complex
protein encoders would provide more comprehensive encoding of structural features; second, enable
protein encoding on protein-protein complex and protein-ligand complex.

Model Dataset Structure Encoding Sidechain Heteroatom LoRA
1 PubMed full-text ProteinMPNN No No No
2 PubMed full-text ProteinMPNN No No Yes
3 PDB Title ProteinMPNN No No No
4 PubMed full-text LigandMPNN Yes No No
5 PubMed full-text LigandMPNN Yes Yes No

5.4 Results

We observe a steady decrease in both train and test losses for models using ProteinMPNN structure
encodings, with training loss still decreasing at epoch 57 but test loss reaching a plateau (Figure.3).
This trend holds for the LigandMPNN structure encodings as well (Figure.4). Interestingly, the
LigandMPNN training losses are higher which could be explained by the average pooling reducing
the resolution of the embeddings compared to ProteinMPNN.

We compute metrics on 100 randomly sampled holdout structures. The results are summarized in
the table below. In all cases, higher score is better. We do not evaluate on the LoRA trained model
as the validation loss was much higher than the other models. For multinomial sampling, we set
temperature = 0.1, top_k = 50, and top_p = 0.95 with a fixed seed of 1.

The Posetta Models overall have worse BLEU, ROUGE, METEOR, and CIDEr scores compared
to the ProChatGPT model, indicating that the generated language is less similar to their reference
texts. However, they achieve better PubMed BERT scores, suggesting that the generated content has
better scientific context. Model 1 behaved the best for overall scoring metrics, and should be
the default choice when analyzing monomeric proteins. Model 4 should be considered when
analyzing protein-protein complex structures. Model 5 should be considered when analyzing
protein-ligand complex structures. Model 1 can not be applied for these examples because
the ProteinMPNN encode excluded these features. However, it is important to note that the
increased complexity of the LigandMPNN encoder makes training more challenging, potentially
affecting performance.
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Model Sampling BLEU-1 ROUGE-L METEOR CIDEr PubMed
BERTScore

1 Greedy 0.20 0.22 0.23 0.15 0.66
1 Multinomial 0.17 0.19 0.22 0.05 0.65
3 Greedy 0.07 0.31 0.28 0.00 0.70
3 Multinomial 0.07 0.26 0.23 0.00 0.68
4 Greedy 0.04 0.16 0.15 0.10 0.61
4 Multinomial 0.20 0.17 0.19 0.10 0.62
5 Greedy 0.27 0.15 0.14 0.05 0.60
5 Multinomial 0.14 0.15 0.18 0.01 0.62

ProtChatGPT Multinomial 0.61 0.49 0.29 0.64 0.46

Figure 3: Test and train loss curves for models using ProteinMPNN structure encodings (models 1, 2,
and 3). Curves are shown with a smoothing factor of 0.5.

Figure 4: Test and train loss curves for models using LigandMPNN structure encodings (models 4
and 5) with the ProteinMPNN fulltext model shown for comparison (model 1). Curves are shown
with a smoothing factor of 0.5.

Model 3 which was trained on PDB titles, appears to have the lowest train and test losses. When
looking at the generated examples, they can generate grammatically correct titles that sound like PDB
titles (reflected by the highest BERT Score), without repetition issues, which echos our hypothesis
that the GiT model is better at handling short content. However, the contents are wrong, as reflected
by the low BLEU score and CIDEr score.

We explored the multinomial sampling strategy as an alternative of the initial greedy sampling
strategy, as we observed that greedy sampling tend to give highly repetitive phrases and sentences.
Multinomial sampling with the top_k and top_p settings noted above tend to produce much
more coherent text with much fewer repetitions (see Appendix 9.1). We note that multinomial
sampling does not have a large effect on the metrics except BLEU score. The observed repetitions
in the greedy sampling strategies are not reflected in this set of metrics as repetition can artifically
inflate BLEU score, making it better than it actually is.

We also evaluate the decoder’s sensitivity to the protein structure embeddings by perturbing the
embeddings with Gaussian noise and observing differences in the decoded text. We observe that the
model is very sensitive to the input embeddings. Adding Gaussian noise with standard deviation of
as little as 0.001 changes the decoded text (see Appendix 9.1).
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6 Analysis

Evaluating the protein structure-to-text model requires a comprehensive approach that addressed both
the linguistic quality of the generated description and their scientific accuracy and utility. From a
linguistic standpoint, the evaluation focuses on how well the model generates clear, coherent, and
understandable language. From a scientific perspective, the evaluation focuses on whether the model
can identify the function class the of a unseen protein (e.g., enzyme, antibody, etc) and whether it can
capture correct structural features (secondary, ternary structure, amino acid interaction, etc).

Here we focus on analyzing two examples, which are newly deposited structures in the RCSB that
were not included in the dataset (Our dataset included all structures published before June 2023,
but both examples are new structures released in 2024.). We also aim to compare our generated text
with that produced by the reference ProtChatGPT model. However, since the ProtChatGPT model
has not been open-sourced, we currently cannot perform this comparison.

Example 1 PDB ID: 9BKP, Crystal structure of rubredoxin from Pyrococcus furiosus reconsti-
tuted with FeCl3 solved by Fe/S-SAD
This is a small monomeric protein, therefore ProteinMPNN encoding with multinomial sampling was
applied. Detailed settings see Appendix 9.2.

Generated text: a novel, highly efficient rubredoxin from thermus thermophilum. the three -
dimensional structure of the reduced rubredoxin from pyrococcus furiosus was determined with an
ncs - type distance of 18 + / - 1. 2 a. rubredoxin was solved by single - wavelength anomalous
dispersion using selenomethionine and single - quantum - mechanical ( sad ) techniques. the structure
is very similar to other rubredoxins. however, it exhibits a more compact fold that has a more extensive
network of relatively weak hydrogen bonds. two distinct clusters with interdigitated residues per
turn form a network of protein -protein and water - and disulfide bonds. rubredoxin r1 consists of
three different, two and four other auxiliary clusters, which, consisting of one small and two adjacent
aspartates, are located with no redox potentials. the structure of the rubredoxin r1 refined to 2. 0
a reveals a network of interactions between residues 29 and 50 of an extended loop with residues
30 - 37. this interface includes multiple weak but non - stable, concerted, concerted rearrangements
along aromatic and non - catalytic residues including residues 32 - 32 of highly reduced rubredoxin
r1. nevertheless, this high number of clusters in this study has not been accurately characterized. this
finding provides a new paradigm for multi - enzyme interactions, particularly for rubredoxins, which
act as protein and rubredoxins.

Language analysis: The paragraph provides a substantial amount of detail about the protein structure,
which can help in conveying a comprehensive picture of the research findings. It follows a logical
structure, beginning with an introduction to the protein, followed by details about its structural
characteristics, and ending with broader implications. However, it contains repetition of phrases
(e.g., "concerted, concerted") and awkward constructions that make the text hard to read. There
is redundancy in phrases like "protein and rubredoxins" and ambiguity in statements like "three
different, two and four other auxiliary clusters." The paragraph also lacks coherence, with abrupt
shifts between topics and ideas.

Scientific analysis: The description successfully captured that this protein is a rubredoxin. The
paragraph is detail-oriented and uses technical vocabulary effectively for an expert audience. The
functional structural description is also highly-related to the rubredoxin, for example, clusters with
redox potential, hydrogen bond networks, etc. It also successfully captured secondary structure
features, for example, the extended loop between residue 30 - 37. However, some scientific context
are vague and even nonsensical, such as "a network of protein -protein and water - and disulfide
bonds", and "three different, two and four other auxiliary clusters".

Example 2 PDB ID: 8U9G, Human Class I MHC HLA-A2 bound to sorting nexin 24 (127-135)
neoantigen KLSHQLVLL

This is protein-protein complex, therefore LigandMPNN-SC encoding with multinomial sampling
was applied. Detailed settings see Appendix 9.2.

Generated text: t cell recognition between viral and host cell receptors is considered a method for
immunotherapy. the structural basis for the highly optimized t cell receptor ( tcr ) cross - reactivity,
however, remains elusive. we found that the non - immunogenic peptide, p2 - nc5b ( residues 34 - 70
), is a potent tcr, in which binding of different and functionally unrelated peptides was replaced by
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the t cell receptor cd8 + t cells. p2 - nc5b is a prevalent public tcr in the hiv - 1 hla - a2 strain, and
it has been noted that the unmutated p2 - nc5b structure can adopt all of the same cross - reactive
conformations. the same tcr cross - reactivity of the mart - 1 - a tcr with three different mhc ligands is
the structural basis for the high tcr cross - reactivity of immunotherapy. peptides cross - reactivity
was observed in the peptides, but their conformations were different for the two presented peptides.
we conclude that p2 - nc5b is specifically recognized by class ii mhc molecules, which can be used as
all peptides to recognize the same major groove on the peptide. the structural and biochemical data
presented here provide a clear explanation for the broad tcr cross -reactivity of class i mhc molecules.

Language analysis: This paragraph follows the correct logic of introducing a protein, starting from
the relevance in immunotherapy into detailed descriptions. It uses the correct scientific terms related
to this topic. However, it has grammarly incorrect sentence constructions such as "the binding of
different and functionally unrelated peptides was replaced by the T cell receptor CD8+ T cells" make
the text difficult to follow. There is also ambiguity in phrases like "peptides cross-reactivity was
observed in the peptides," making it unclear what is being discussed.

Scientific analysis: The description generated descriptions related to TCR-MHC interactions and
peptide cross-reactivity, which is related to the input structure from a scientific topic perspective.
However, the contents about MHC peptide presentation and peptide conformation are not correctly
described. And it’s also confusing regarding whether this protein is a MHC or a TCR.

7 Conclusion

7.1 Summary of contribution

In this project, we introduce Posetta, a multimodal system designed to generate detailed descriptions
of protein structures by integrating a protein encoder with a large language model (LLM). A key con-
tribution is our successful fine-tuning of the GiT model, originally designed for image captioning, for
scientific contexts on protein structure description. Another key contribution is enabling the inclusion
of protein-protein complex and protein-ligand complex information in the structural descriptions,
which was not explored by earlier models. We developed five models using protein encoders derived
from state-of-the-art protein design models, experimenting with different training data and settings to
enhance text generation accuracy and context. This project demonstrates the potential of combining
advanced protein encoders and LLMs to facilitate protein structure comprehension and accelerate
advancements in protein engineering.

7.2 Limitations and future work

Although the model is able to generate structure-related text for proteins and capture correct structural
and functional features, we note that Posetta is prone to hallucinations where generated text contain
truthful statements that are obfuscated by falsehoods. The generated text has issues with sentence
constructions and grammar. The connection between sentences overall lack of logic coherency.

The first limitation of this work is dataset availability. While we aimed to use the full text from
PubMed for training, only a small subset is open access. Alternatively, we could rely on human
expertise to generate the dataset, but this approach would be highly labor-intensive.

Improvements to the model could be made by modifying the model architecture via a hyperparameter
sweep. Currently, no dropout is applied in the attention blocks processing the input protein structure
embedding. Adding dropout could make the model less sensitive to possibly spurious features in the
structure embedding. Noising the input protein structure embedding is another alternative, either by
noising the embeddings themselves or noising the input structure used to compute the embedding.
The goal is to make the decoder more robust to insignificant perturbations in the input structure
and embedding. However, this must be balanced preserving information content in the structure
embedding as the downstream decoder should be able to detect subtle changes in the input structure
via the structure embeddings. Finally, to combat hallucinations, we anticipate that contrastive learning
of protein structure-description pairs can help by pushing incorrect but plausible generations to have
embeddings more distant than correct structure-description pairs. Fine-tuning with human guidance
can then be feasible once a non-trivial fraction of generated samples contain mostly truths which can
form the “preferred” subset of finetuning data.
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8 Ethics Statement

The development and deployment of a protein structure-to-text model present significant ethical
considerations that must be carefully addressed. These considerations primarily revolve around the
following two perspectives:

1. Lowering the barrier for non experts
By translating complex protein structures into easily interpretable language, our model could
significantly lower the knowledge barrier in structural biology and protein design. While
this can drive scientific progress and innovation, it can also introduce substantial risks. The
simplifications and accessibility of protein data might enable the design and production of
novel proteins without the necessary expertise to understand their full implications. This
could lead to the creation of proteins with harmful biological activities, which could pose
significant dangers to human health. Furthermore, the combination of our model with
advanced protein design generative models could facilitate the exploration of vast protein
spaces, which could increase the likelihood of inadvertently generating hazardous proteins
such as viral components. Implementing access controls to ensure that only qualified
individuals can use the model and establishing robust monitoring systems to track the usage
could help with identifying potentially harmful applications.

2. Potential for hallucinating misleading information
The model’s ability to generate textual descriptions of protein structures, while powerful, also
carries the risk of producing misleading or inaccurate information. Such inaccuracies could
misguide scientists, leading to flawed experimental designs, and potentially detrimental
conclusions. Therefore, ensuring the fidelity and reliability of the model’s output is crucial
to maintaining the integrity of scientific research. Continuous validation, peer review, and
cross-referencing with established databases are essential to mitigate this risk.

By addressing these ethical concerns proactively, we aim to leverage the transformative potential of
our protein structure-to-text model while safeguarding against its misuse and ensuring that it serves
as a valuable tool for the advancement of science and human health.

9 Appendix

9.1 Greedy vs. multinomial sampling

All results are from giving PDB 7UEK as input which we confirmed is not in the training data. The
random seed is fixed to 1 in all generations.

ProteinMPNN Title Greedy

crystal structure of protein at 1. 8 a resolution from archaeoglobus fulgidus

ProteinMPNN Title Greedy 0.001 Gaussian Noise

crystal structure of apo protein from escherichia coli

ProteinMPNN Title Greedy 0.01 Gaussian Noise

crystal structure of psest3 from thermus thermophilus hb8

ProteinMPNN Title Greedy 0.1 Gaussian Noise

structural studies of the non - ribose 5 - phosphate hydrolase from streptococcus pyogenes

ProteinMPNN Title Multinomial

crystal structure of soluble biotin protein from escherichia coli

ProteinMPNN Full Text Greedy

the crystal structure of recombinant aspartate kinase from salmonella typhimurium has been deter-
mined at 2. 0 a resolution. in this paper we present the structure of the aspartate chaperone bound
to the active site of the enzyme, a noncleavable atp analogue of the natural substrate, mg2 +, and a
noncleavable atp analogue. the overall structure is similar to that of the previously published crystal
structure of the wild - type protein, except for two loops, that are disordered in the crystal. in addition,
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a hydrophobic trough located at the center of the dimer is observed in the crystal. the hydrophobic
trough is surrounded by helices that is surrounded by helices. the hydrophobic trough is surrounded
by helices that are similar to those of other known structures. the hydrophobic trough is surrounded by
helices 3, 5, 6, and 5. the hydrophobic trough is surrounded by helices 3, 5, 5, and 5. the hydrophobic
trough is surrounded by helices 4, 5, 5, 6, and 5. the hydrophobic trough is surrounded by helices 4,
5, 5, 6, and 8. the hydrophobic trough is surrounded by helices 4, 5, 5, 6, and 8. the hydrophobic
trough is surrounded by helices 4, 5, 5, 6, and 8. the hydrophobic trough is formed by residues 5, 5, 6,
8, and 8. the hydrophobic trough is surrounded by helices 4, 5, 5, 8, and 8. the hydrophilic binding is
facilitated by a network of conserved residues, phe ( 9 ), phe ( 9 ), and tyr ( 9 ).

ProteinMPNN Full Text Multinomial

in the quest for new potent inhibitors to treat protein tyrosine phosphorylation, the crystal structures
of wild - type and two double mutant forms of escherichia coli typhospholipase d ( 2s, z3 + ) were
determined and refined to 1. 92 and 2. 75 a, respectively, for the first time both structures have been
refined against data of the same crystal form ( 1. 65 a resolution ) and a crystallographic r - factor
of 18. 9 % for both models. however, only two of these conformations are observed, confirming
that this is a structural feature of the molecule. in the second structure, two differences are seen in
the monomeric form. the conformation of the active site is different from those of the wild - type
enzyme, in our structure, indicating that the effect of the mutations is not conserved. this is a key step
in the catalysis of atp synthesis and subsequent transfer of atp to the catalytic site. furthermore, the
absence of important residues suggests that residues in the second monomer are essential for correct
positioning of the phosphate group. the conformational differences between the two structures may
be related to its functional importance.

ProteinMPNN Full Text Multinomial 0.001 Gaussian Noise

in the quest to identify new potent inhibitors of protein tyrosine phosphatases, we previously reported
two crystal structures of wild - type and mutated forms of the enzyme involving two mutations. the
crystal structure of the c166s mutant of protein yscum in complex with the physiological substrates
tyr and trp was solved at 1. 9 - a resolution. however, the precise mode of the enzyme - protein
interactions are unknown. however, the precise interactions between yscum and wild - type were not
conserved between both wild - type and wt. consequently, our data set is becoming nearly equivalent
to the whole protein. in the wt protein, only three mg2 + ions have been shown to be required for
efficient catalysis. while the ability of yscum is essential, the precise nature of the effect of this
mutation is unknown. the precise nature of the contacts between yscum and wild - type enzyme has
not been elucidated, and the structural basis for this and functional investigation has not been fully
elucidated. these results provide a foundation for further mechanistic studies aimed at the future
design of inhibitors as potential antipodial agents.

ProteinMPNN Full Text Multinomial 0.01 Gaussian Noise

in the present paper we report the 2. 0 a crystal structure of the universal sequence - selective tyrosine
phosphorylase ( cdp - plcp ) from escherichia coli which crystallizes in a 1 : 1 stoichiometry. in the
presence of atp and mg ( 2 + ), the crystal structure reveals a prenylated molecule in the asymmetric
unit. in the initial model, two copies of the protein are closely associated in the crystal, in a similar
arrangement to the monoclinic crystal form. the exact conformation of the chalcone ring and the
mode of atp binding are similar to those of the wild - type enzyme. in addition, in the crystal structure
at 2. 4 - a resolution, all of the molecules make extensive contacts to the active site, indicating a novel
mechanism for the operation of the physiological enzyme. the results provide a new foundation for
the future design of new cdp - plcps inhibitors.

ProteinMPNN Full Text Multinomial 0.1 Gaussian Noise

in eukaryotes, the synthesis and signal ( or gtp ) signals by a conserved transmembrane motor domain
( tmrec ) that delivers the key lipids to the cell, is a key player in this process. purified recombinant
full - length human recombinant full - length recombinant full - length recombinant recombinant
recombinant full - length recombinant recombinant recombinant full - length recombinant full - length
recombinant full - length recombinant full - length recombinant full - length recombinant full - length
recombinant recombinant full - length recombinant full - length recombinant full - length recombinant
full - length recombinant full - length recombinant full - length recombinant full - length recombinant
recombinant full - length recombinant recombinant full - length recombinant full - length recombinant
recombinant full - length recombinant full - length recombinant full - length recombinant full - length
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recombinant recombinant full - length recombinant recombinant full - length recombinant full - length
recombinant recombinant full - length recombinant full - length recombinant recombinant full - length
recombinant full - length recombinant recombinant recombinant full - length recombinant full - length
recombinant full - length recombinant full - length recombinant full - length recombinant recombinant
full - length recombinant full - length recombinant full - length recombinant recombinant full - length
recombinant recombinant recombinant recombinant recombinant full - length recombinant full -
length recombinant full - length recombinant full - length recombinant recombinant full - length
recombinant recombinant recombinant full - length recombinant full - length recombinant full -
length recombinant full - length recombinant full - length recombinant recombinant recombinant full
- length rec

LigandMPNN-SC Greedy

the crystal structure of the pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep
pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep
pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep
pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep
pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep
pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep
pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep
pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep
pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep
pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep
pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep
pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep
pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep
pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep
pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep
pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep
pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep
pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep
pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep
pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep
pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep pep
pep pep pep pep pep pep pep pep

LigandMPNN-SC Multinomial

peptostreptoma toxin, from the gram - negative bacterium bacillus subtilis, encodes the three pep-
tidomimerases that cleave peptidic substrates into peptidomimetic membranes. crystal structures
of apo - peptidomimetic and the catalytic mechanism of three peptidomimetic peptidomimetic pep-
tidomimetic inhibitors were solved to 2. 0 and 1. 5 a resolution, respectively. the peptidomimetic
inhibitors were used in specific docking into the peptidomimetic peptidomimetic enzyme and com-
pared to the peptidomimetic peptidomimetic inhibitors. the peptidomimetic inhibitors bind with its
carbon - carbon group pointing into the active site. the peptidomimetic inhibitors in two structures
were found to bind into the active site. the peptidomimetic inhibitors bind to the active site in a
fashion similar to those previously reported for peptidomimetic inhibitors.

9.2 Sampling strategy for example proteins

PDB ID 9BKP

Text generated from greedy sampling strategy The crystal structures of a new crystal form of a new
crystal form of a new crystal form are reported at 1. 5 a resolution. this is the first report of a study of
a new crystal form of a diheme protein. this is the smallest known solution structure, and the smallest
form reported to date. a simple four - residue disulfide bridge protein, such as disulfide bonds, is
formed by the four - residue clusters in the 3 - fold region of a3b, and the polypeptide chain of the
small and the 3 - fold symmetry - related molecule is found in the crystallographic asymmetric unit.
the protein is more ’ ’compact and more compact than the typical 3 - fold symmetry. the disulfide ’
’bonds are formed in the crystallographic asymmetric unit, but there are some ’ ’minor differences
in the positions of the disulfide bonds. the positions of ’ ’the four residues in the protein molecule
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Figure 5: Protein structure for PDB ID 9BKP

are similar to those found in the ’ ’crystal structures of other known crystal forms. however, there is
no ’ ’evidence of the pattern of conformational changes in the crystal as well as ’ ’in solution. these
changes have been found to be important in the crystal ’ ’packing and to be caused by thermodynamic
and kinetic studies of proteins.’

Multinomial sampling strategy setting

Figure 6: Sampling stragety for PDB ID 9BKP

PDB ID 8U9G

Figure 7: Protein structure for PDB ID 8U9G
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Text generated from greedy sampling strategy ’the t cell receptor ( tcr ) of the major histocom-
patibility complex ( mhc ) ’ ’class i molecule hla - a2 is presented by the hla - a2 - restricted t cell
’ ’receptor ( tcr ). the tcr recognizes the hla - a2 - restricted peptide ( hla ’ ’- a2 ) and the hla - a2 -
restricted t cell receptor ( tcr ), which is ’ ’recognized by the hla - a2 - restricted tcr. the tcr recognizes
the peptides ’ ’presented by hla - a2 and hla - a2. the tcr recognizes the peptide with a k ’ ’( d ) of -
fold greater affinity than the hla - a2 - peptide. the tcr ’ ’recognizes the peptide with a k ( d ) of - fold
greater than that of hla - ’ ’a2. the tcr is accommodated by the peptide - mhc, which is accommodated
in ’ ’the hla - a2 - peptide complex. the tcr recognizes the peptide - mhc, but ’ ’not the peptide - mhc,
in the hla - a2 - peptide complex. the tcr recognizes ’ ’the peptide - mhc, but is not restricted in the
hla - a2 - peptide complex. ’ ’the tcr recognizes the peptide - mhc, but is not restricted in the hla - a2 ’
’- peptide - mhc complex. the tcr is accommodated in the hla - a2 - peptide - ’ ’mhc complex, where
the mhc peptide - mhc complex binds with a k ( d ) of - ’ ’fold greater than that of hla - a2. the tcr
- peptide - mhc complex is bound ’ ’in the hla - a2 - peptide - mhc complex, but the tcr - peptide -
mhc complex ’ ’is bound in a similar orientation to the hla - a2 - peptide - mhc complex. ’ ’the tcr -
peptide - mhc complex is bound in the hla - a2 - peptide - mhc ’ ’complex and is bound in a similar
orientation to the hla - a2 - peptide - ’ ’mhc complex. the tcr - peptide - mhc complex is bound in a
similar ’ ’orientation to the hla - a2 - peptide - mhc complex, but the tcr - peptide - ’ ’mhc complex
is bound in a similar orientation to the hla - a2 - peptide - ’ ’mhc complex. the tcr - peptide - mhc
complex is bound in a similar ’ ’orientation to the hla - a2 - peptide - mhc complex. the tcr - peptide -
mhc ’ ’complex is bound in a’

Multinomial sampling strategy setting

Figure 8: Sampling stragety for PDB ID 8U9G
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