Reinforcement Learning for NLP

Caiming Xiong
Salesforce Research
CS224N/Ling284
Outline

Introduction to Reinforcement Learning

Policy-based Deep RL

Value-based Deep RL

Examples of RL for NLP
Many Faces of RL

By David Silver
What is RL?

- RL is a general-purpose framework for sequential decision-making
- Usually describe as agent interacting with unknown environment
- Goal: select action to maximize a future cumulative reward
Motor Control

- Observations: images from camera, joint angle
- Actions: joint torques
- Rewards: navigate to target location, serve and protect humans
Business Management

- Observations: current inventory levels and sales history
- Actions: number of units of each product to purchase
- Rewards: future profit

Similarly, there also are resource allocation and routing problems
Games
State

- Experience is a sequence of observations, actions, rewards
- The state is a summary of experience

\[s_t = f(o_1, r_1, a_1, \ldots, a_{t-1}, o_t, r_t) \]
RL Agent

Major components:

- Policy: agent’s behavior function
- Value function: how good would be each state and/or action
- Model: agent’s prediction/representation of the environment
Policy

A function that maps from state to action:

- Deterministic policy:
 \[a = \pi(s) \]

- Stochastic policy:
 \[\pi(a|s) = P[a|s] \]
Value Function

- **Q-value function** gives expected future total reward
 - from state and action \((s, a)\)
 - under policy \(\pi\)
 - with discount factor \(\gamma \in (0, 1)\)
 \[
 Q^\pi(s, a) = \mathbb{E} \left[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \ldots \mid s, a \right]
 \]
 - Show how good current policy

- Value functions can be defined using Bellman equation
 \[
 Q^\pi(s, a) = \mathbb{E}_{s', a'} [r + \gamma Q^\pi(s', a') \mid s, a]
 \]

- **Bellman backup operator**
 \[
 B^\pi Q(s, a) = \mathbb{E}_{s', a'} [r + \gamma Q^\pi(s', a') \mid s, a]
 \]
 \(Q, B^\pi Q, (B^\pi)^2 Q, (B^\pi)^3 Q, \ldots \rightarrow Q^\pi\)
Value Function

- For optimal Q-value function $Q^*(s, a) = \max_{\pi} Q^\pi(s, a)$, then policy function is deterministic, the Bellman equation becomes:

\[
Q^*(s, a) = \mathbb{E}_{s'} \left[r + \gamma \max_{a'} Q^*(s', a') \mid s, a \right]
\]

\[
B^\pi Q(s, a) = \mathbb{E}_{s'} \left[r + \gamma \max_{a'} Q^\pi(s', a') \mid s, a \right]
\]

\[Q, \ BQ, \ B^2Q, \ \cdots \rightarrow Q^*\]
What is Deep RL?

- Use deep neural network to approximate
 - Policy
 - Value function
 - Model

- Optimized by SGD
Approaches

- Policy-based Deep RL
- Value-based Deep RL
- Model-based Deep RL
Deep Policy Network

- Represent policy by deep neural network that

\[
\max_\theta E_{a \sim p(a|\theta, s)}[r(a)|\theta, s]
\]

- Ideas: given a bunch of trajectories,
 - Make the good trajectories/action more probable
 - Push the actions towards good actions
Policy Gradient

How to make high-reward actions more likely:

\[\nabla_\theta \mathbb{E}_a[r(a)] = \nabla_\theta \int da \ p(a|\theta, s)r(a) \]

\[= \int da \ \nabla_\theta p(a|\theta, s)r(a) \]

\[= \int da \ p(a|\theta, s) \frac{\nabla_\theta p(a|\theta, s)}{p(a|\theta, s)} r(a) \]

\[= \int da \ p(a|\theta, s) \nabla_\theta \log p(a|\theta, s)r(a) \]

\[= \mathbb{E}_a[\nabla_\theta \log p(a|\theta, s)r(a)] \]
Let's say $r(a)$ measures how good the sample is.

Moving in the direction of gradient pushes up the probability of the sample, in proportion to how good it is.

$$
\hat{g} = r(a) \nabla_\theta \log p(a|\theta, s)
$$
Deep Q-Learning

- Represent value function by Q-network

\[Q(s, a, w) \approx Q^*(s, a) \]
Deep Q-Learning

- Optimal Q-values should obey Bellman equation

\[Q^*(s, a) = \mathbb{E}_{s'} \left[r + \gamma \max_{a'} Q(s', a')^* \mid s, a \right] \]

- Treat right-hand side as target network, given \((s, a, r, s')\), optimize MSE loss via SGD:

\[l = \left(r + \gamma \max_{a} Q(s', a', w) - Q(s, a, w) \right)^2 \]

- Converges to optimal Q using table lookup representation
Deep Q-Learning

But diverges using neural networks due to:

- Correlations between samples
- Non-stationary targets
Deep Q-Learning

Experience Replay: remove correlations, build data-set from agent's own experience

<table>
<thead>
<tr>
<th>s_1, a_1, r_2, s_2</th>
<th>s_2, a_2, r_3, s_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_3, a_3, r_4, s_4</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>$s_t, a_t, r_{t+1}, s_{t+1}$</td>
<td></td>
</tr>
</tbody>
</table>

$\rightarrow s, a, r, s'$

- Sample experiences from data-set and apply update

$$l = \left(r + \gamma \max_{a'} Q(s', a', w^-) - Q(s, a, w) \right)^2$$

- To deal with non-stationarity, target parameters is fixed
Deep Q-Learning in Atari

Network architecture and hyperparameters fixed across all games

By David Silver
If you want to know more about RL, suggest to read:

Reinforcement Learning: An Introduction. Richard S. Sutton and Andrew G. Barto
Second Edition, in progress
MIT Press, Cambridge, MA, 2017
RL in NLP

- Article summarization
- Question answering
- Dialogue generation
- Dialogue System
- Knowledge-based QA
- Machine Translation
- Text generation
RL in NLP

- Article summarization
- Question answering
- Dialogue generation
- Dialogue System
- Knowledge-based QA
- Machine Translation
- Text generation
Article Summarization

Text summarization is the process of automatically generating natural language summaries from an input document while retaining the important points.

- extractive summarization
- abstractive summarization
A Deep Reinforced Model for Abstractive Summarization

Given $x = \{x_1, x_2, \cdots, x_n\}$ represents the sequence of input (article) tokens, $y = \{y_1, y_2, \cdots, y_m\}$, the sequence of output (summary) tokens.
A Deep Reinforced Model for Abstractive Summarization

The maximum-likelihood training objective:

$$L_{ml} = - \sum_{t=1}^{n'} \log p(y_t^* | y_1^*, \ldots, y_{t-1}^*, x)$$

Training with teacher forcing algorithm.

Paulus et. al.
There is discrepancy between training and test performance, because

- exposure bias
- potentially valid summaries
- metric difference
A Deep Reinforced Model for Abstractive Summarization

Using reinforcement learning framework, learn a policy that maximizes a specific discrete metric.

Action: $u_t \in [\text{copy}, \text{generate}]$ and word y^s_t

State: hidden states of encoder and previous outputs

Reward: ROUGH score

$$L_{rl} = (r(\hat{y}) - r(y^s)) \sum_{t=1}^{n'} \log p(y^s_t | y^s_1, \ldots, y^s_{t-1}, x)$$

Where $p(y^s_t | y^s_1, \ldots, y^s_{t-1}, x) = p(u_t = \text{copy})p(y^s_t | y^s_1, \ldots, y^s_{t-1}, x, u_t = \text{copy}) + p(u_t = \text{generate})p(y^s_t | y^s_1, \ldots, y^s_{t-1}, x, u_t = \text{generate})$

Paulus et. al.
A Deep Reinforced Model for Abstractive Summarization

<table>
<thead>
<tr>
<th>Model</th>
<th>ROUGE-1</th>
<th>ROUGE-2</th>
<th>ROUGE-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>words-1vt2k-temp-att (Nallapati et al., 2016)</td>
<td>35.46</td>
<td>13.30</td>
<td>32.65</td>
</tr>
<tr>
<td>ML, no intra-attention</td>
<td>37.86</td>
<td>14.69</td>
<td>34.99</td>
</tr>
<tr>
<td>ML, with intra-attention</td>
<td>38.30</td>
<td>14.81</td>
<td>35.49</td>
</tr>
<tr>
<td>RL, with intra-attention</td>
<td>41.16</td>
<td>15.75</td>
<td>39.08</td>
</tr>
<tr>
<td>ML+RL, with intra-attention</td>
<td>39.87</td>
<td>15.82</td>
<td>36.90</td>
</tr>
</tbody>
</table>

Table 1: Quantitative results for various models on the CNN/Daily Mail test dataset

<table>
<thead>
<tr>
<th>Model</th>
<th>ROUGE-1</th>
<th>ROUGE-2</th>
<th>ROUGE-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML, no intra-attention</td>
<td>44.26</td>
<td>27.43</td>
<td>40.41</td>
</tr>
<tr>
<td>ML, with intra-attention</td>
<td>43.86</td>
<td>27.10</td>
<td>40.11</td>
</tr>
<tr>
<td>RL, no intra-attention</td>
<td>47.22</td>
<td>30.51</td>
<td>43.27</td>
</tr>
<tr>
<td>ML+RL, no intra-attention</td>
<td>47.03</td>
<td>30.72</td>
<td>43.10</td>
</tr>
</tbody>
</table>

Table 2: Quantitative results for various models on the New York Times test dataset

Paulus et. al.
A Deep Reinforced Model for Abstractive Summarization

Human readability scores on a random subset of the CNN/Daily Mail test dataset

<table>
<thead>
<tr>
<th>Model</th>
<th>Readability</th>
<th>Relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML</td>
<td>6.76</td>
<td>7.14</td>
</tr>
<tr>
<td>RL</td>
<td>4.18</td>
<td>6.32</td>
</tr>
<tr>
<td>ML+RL</td>
<td>7.04</td>
<td>7.45</td>
</tr>
</tbody>
</table>

Paulus et. al.
RL in NLP

- Article summarization
- **Question answering**
- Dialogue generation
- Dialogue System
- Knowledge-based QA
- Machine Translation
- Text generation
 -
 -
 -
Text Question Answering

Passage: Tesla later approached Morgan to ask for more funds to build a more powerful transmitter. *When asked where all the money had gone, Tesla responded by saying that he was affected by the Panic of 1901* which he (Morgan) had caused. Morgan was shocked by the reminder of his part in the stock market crash and by Tesla’s breach of contract by asking for more funds. Tesla wrote another plea to Morgan, but it was also fruitless. Morgan still owed Tesla money on the original agreement, and Tesla had been facing foreclosure even before construction of the tower began.

Question: On what did Tesla blame for the loss of the initial money?

Answer: Panic of 1901

Example from SQuaD dataset
Text Question Answering

- Loss function layer
- Decoder Pointer
 - Attention Layer
 - Encoder Layer
 - P
 - Encoder Layer
 - Q

Cross Entropy
- LSTM + MLP
- GRU + MLP
- Self-attention
- biAttention
- Coattention
- LSTM,
- GRU
Constraints of Cross-Entropy loss:

P: “Some believe that the Golden State Warriors team of 2017 is one of the greatest teams in NBA history,…”

Q: “which team is considered to be one of the greatest teams in NBA history”

GT: “the Golden State Warriors team of 2017”

Ans1: “Warriors”
Ans2: “history”

Xiong et. al.
To address this, we introduce F1 score as extra objective combining with traditional cross entropy loss:

\[
l_{rl} (\Theta) = -E_{\tau \sim p_{\tau}} [R(s, e, \hat{s}_T, \hat{e}_T; \Theta)] \\
\approx -E_{\tau \sim p_{\tau}} [F_1(\text{ans}(\hat{s}_T, \hat{e}_T), \text{ans}(s, e)) - F_1(\text{ans}(s_T, e_T), \text{ans}(s, e))] \]

\[
\nabla_{\Theta} l_{rl} (\Theta) = -\nabla_{\Theta} (E_{\tau \sim p_{\tau}} [R]) \\
= -E_{\tau \sim p_{\tau}} [R \nabla_{\Theta} \log p_{\tau} (\tau; \Theta)]
\]

Not necessary for variable length.

Xiong et. al.
RL in NLP

- Article summarization
- Question answering
- **Dialogue generation**
- Dialogue System
- Knowledge-based QA
- Machine Translation
- Text generation
Deep Reinforcement Learning for Dialogue Generation

To generate responses for conversational agents.

A: Where are you going? (1) A: how old are you? (1)
B: I’m going to the restroom. (2) B: I’m 16. (2)

The LSTM sequence-to-sequence (SEQ2SEQ) model is one type of neural generation model that maximizes the probability of generating a response given the previous dialogue turn. However,

- One concrete example is that SEQ2SEQ models tend to generate highly generic responses
- stuck in an infinite loop of repetitive responses

Li et. al.
Deep Reinforcement Learning for Dialogue Generation

To solve these, the model needs:

- integrate developer-defined rewards that better mimic the true goal of chatbot development
- model the long term influence of a generated response in an ongoing dialogue

Baseline mutual information model (Li et al. 2015)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Where are you going? (1)</td>
<td>B: I’m going to the restroom. (2)</td>
</tr>
<tr>
<td>A: See you later. (3)</td>
<td>B: See you later. (4)</td>
</tr>
<tr>
<td>A: See you later. (5)</td>
<td>B: See you later. (6)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>A: how old are you? (1)</td>
<td>B: I’m 16. (2)</td>
</tr>
<tr>
<td>A: 16? (3)</td>
<td>B: I don’t know what you are talking about. (4)</td>
</tr>
<tr>
<td>A: You don’t know what you are saying. (5)</td>
<td>B: I don’t know what you are talking about. (6)</td>
</tr>
<tr>
<td>A: You don’t know what you are saying. (7)</td>
<td></td>
</tr>
</tbody>
</table>

Li et. al.
Deep Reinforcement Learning for Dialogue Generation

Definitions:

Action: infinite since arbitrary-length sequences can be generated.

State: A state is denoted by the previous two dialogue turns \([p_i, q_i]\).

Reward: Ease of answering, Information Flow and Semantic Coherence

Li et al.
Deep Reinforcement Learning for Dialogue Generation

- Ease of answering: avoid utterance with a dull response.

\[
r_1 = -\frac{1}{N_S} \sum_{s \in S} \frac{1}{N_s} \log p_{\text{seq2seq}}(s|a)
\]

The \(S \) is a list of dull responses such as “I don’t know what you are talking about”, “I have no idea”, etc.
Deep Reinforcement Learning for Dialogue Generation

- Information Flow: penalize semantic similarity between consecutive turns from the same agent.

\[r_2 = -\log \cos(h_{p_i}, h_{p_{i+1}}) = -\log \cos \frac{h_{p_i} \cdot h_{p_{i+1}}}{\|h_{p_i}\| \|h_{p_{i+1}}\|} \]

Where \(h_{p_i} \) and \(h_{p_{i+1}} \) denote representations obtained from the encoder for two consecutive turns \(p_i \) and \(p_{i+1} \)

\[Li \ et\ al. \]
Deep Reinforcement Learning for Dialogue Generation

- Semantic Coherence: avoid situations in which the generated replies are highly rewarded but are ungrammatical or not coherent

\[r_3 = \frac{1}{N_a} \log p_{\text{seq2seq}}(a|q_i, p_i) + \frac{1}{N_{q_i}} \log p_{\text{seq2seq}}^{\text{backward}}(q_i|a) \]

- The final reward for action \(a \) is a weighted sum of the rewards

\[r(a, [p_i, q_i]) = \lambda_1 r_1 + \lambda_2 r_2 + \lambda_3 r_3 \]

Li et. al.
Deep Reinforcement Learning for Dialogue Generation

- Simulation of two agents taking turns that explore state-action space and learning a policy
 - Supervised learning for Seq2Seq models
 - Mutual Information for pretraining policy model
 - Dialogue Simulation between Two Agents
Deep Reinforcement Learning for Dialogue Generation

- Simulation of two agents taking turns that explore state-action space and learning a policy
 - Supervised learning for Seq2Seq models
 - Mutual Information for pretraining policy model
 - Dialogue Simulation between Two Agents
Deep Reinforcement Learning for Dialogue Generation

- Mutual Information for previous sequence S and response T

\[\log \frac{p(S, T)}{p(S)p(T)} \]

- MMI objective

\[\hat{T} = \arg \max_T \{ \log p(T|S) - \log p(T) \} \]

\[\hat{T} = \arg \max_T \{ \log p(T|S) - \lambda \log p(T) \} \]

λ : controls the penalization for generic response

Li et. al.
Deep Reinforcement Learning for Dialogue Generation

\[
\hat{T} = \arg \max_T \{ \log p(T|S) - \lambda \log p(T') \}
\]

\[
\log p(T) = \log p(T|S) + \log p(S) - \log p(S|T)
\]

\[
\hat{T} = \arg \max_T \left\{ (1 - \lambda) \log p(T|S) + \lambda \log p(S|T) - \lambda \log p(S) \right\}
\]

\[
= \arg \max_T \left\{ (1 - \lambda) \log p(T|S) + \lambda \log p(S|T) \right\}
\]

Consider \(S \) as \((q_i, p_i)\), \(T \) as \(a \), we can have

\[
r_3 = \frac{1}{N_a} \log p_{\text{seq2seq}}(a|q_i, p_i) + \frac{1}{N_{q_i}} \log p_{\text{seq2seq}}^{\text{backward}}(q_i|a)
\]
Deep Reinforcement Learning for Dialogue Generation

- Simulation
 - Supervised learning for Seq2Seq models
 - Mutual Information for pretraining policy model
 - Dialogue Simulation between Two Agents
Deep Reinforcement Learning for Dialogue Generation

- Dialogue Simulation between Two Agents

- Using the simulated turns and reward, maximize the expected future reward.

- Training trick: Curriculum Learning
Deep Reinforcement Learning for Dialogue Generation

<table>
<thead>
<tr>
<th>Model</th>
<th># of simulated turns</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEQ2SEQ</td>
<td>2.68</td>
</tr>
<tr>
<td>mutual information</td>
<td>3.40</td>
</tr>
<tr>
<td>RL</td>
<td>4.48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input Message</th>
<th>Mutual Information Model</th>
<th>RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>How old are you?</td>
<td>I’m 16.</td>
<td>I’m 16, why are you asking?</td>
</tr>
<tr>
<td>What’s your full name?</td>
<td>I have no idea.</td>
<td>What’s yours?</td>
</tr>
<tr>
<td>I don’t want to go home tonight.</td>
<td>Really?</td>
<td>Why?</td>
</tr>
<tr>
<td>Do you have any feelings for me?</td>
<td>I don’t know what you are talking about.</td>
<td>I don’t want to hurt your feelings.</td>
</tr>
<tr>
<td>How much time do you have here?</td>
<td>Not long enough. Sorry, sir.</td>
<td>Ten seconds.</td>
</tr>
<tr>
<td>Shall we get started?</td>
<td>Of course!</td>
<td>Yes. We’ve got a lot of work to do here.</td>
</tr>
<tr>
<td>Do you play football?</td>
<td>No, i don’t</td>
<td>Yes. I love football!</td>
</tr>
<tr>
<td>We’d have to talk to him.</td>
<td>I mean, he’s a good guy</td>
<td>About what?</td>
</tr>
<tr>
<td>How come you never say it?</td>
<td>Because I don’t want to hurt you.</td>
<td>I don’t think it’s a good idea to say it.</td>
</tr>
</tbody>
</table>

Li et. al.
Summary

● The introduction of Reinforcement Learning
● Deep Policy Learning
● Deep Q-Learning
● Applications on NLP
 ○ Article summarization
 ○ Question answering
 ○ Dialogue generation