Natural Language Processing with Deep Learning
CS224N/Ling284

Richard Socher
Lecture 2: Word Vectors
Organization

• PSet 1 is released. Coding Session 1/22: (Monday, PA1 due Thursday)

• Some of the questions from Piazza:
 • sharing the choose-your-own final project with another class seems fine --> Yes*
 • But how about the default final project? Can that also be used as a final project for a different course? --> Yes*
 • Are we allowing students to bring one sheet of notes for the midterm? --> Yes

• Azure computing resources for Projects/PSet4. Part of milestone
Lecture Plan

1. Word meaning (15 mins)
2. Word2vec introduction (20 mins)
3. Word2vec objective function gradients (25 mins)
4. Optimization refresher (10 mins)
1. How do we represent the meaning of a word?

Definition: **meaning** (Webster dictionary)

- the idea that is represented by a word, phrase, etc.
- the idea that a person wants to express by using words, signs, etc.
- the idea that is expressed in a work of writing, art, etc.

Commonest linguistic way of thinking of meaning:

signifier (symbol) ↔ signified (idea or thing)

= denotation
How do we have usable meaning in a computer?

Common solution: Use e.g. WordNet, a resource containing lists of synonym sets and hypernyms ("is a" relationships).

ee.g. synonym sets containing "good":

```python
from nltk.corpus import wordnet as wn
for synset in wn.synsets("good"):
    print "({s}) % synset.pos()
    print ", ".join([l.name() for l in synset.lemmas()])
```

(adj) full, good
(adj) estimable, good, honorable, respectable
(adj) beneficial, good
(adj) good, just, upright
(adj) adept, expert, good, practiced, proficient, skillful
(adj) dear, good, near
(adj) good, right, ripe
...
(adj) well, good
(adv) thoroughly, soundly, good
(n) good, goodness
(n) commodity, trade good, good

ee.g. hypernyms of "panda":

```python
from nltk.corpus import wordnet as wn
panda = wn.synset("panda.n.01")
hyper = lambda s: s.hypernyms()
list(panda.closure(hyper))
```

[Synset('procyonid.n.01'),
 Synset('carnivore.n.01'),
 Synset('placental.n.01'),
 Synset('mammal.n.01'),
 Synset('vertebrate.n.01'),
 Synset('chordate.n.01'),
 Synset('animal.n.01'),
 Synset('organism.n.01'),
 Synset('living_thing.n.01'),
 Synset('whole.n.02'),
 Synset('object.n.01'),
 Synset('physical_entity.n.01'),
 Synset('entity.n.01')]
Problems with resources like WordNet

• Great as a resource but missing nuance
 • e.g. “proficient” is listed as a synonym for “good”. This is only correct in some contexts.

• Missing new meanings of words
 • e.g. wicked, badass, nifty, wizard, genius, ninja, bombest
 • Impossible to keep up-to-date!

• Subjective

• Requires human labor to create and adapt

• Hard to compute accurate word similarity
Representing words as discrete symbols

In traditional NLP, we regard words as discrete symbols: hotel, conference, motel

Means one 1, the rest 0s

Words can be represented by one-hot vectors:

motel = [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]

Vector dimension = number of words in vocabulary (e.g. 500,000)
Problem with words as discrete symbols

Example: in web search, if user searches for “Seattle motel”, we would like to match documents containing “Seattle hotel”.

But:

motel = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]

These two vectors are orthogonal.
There is no natural notion of similarity for one-hot vectors!

Solution:

• Could rely on WordNet’s list of synonyms to get similarity?
• Instead: learn to encode similarity in the vectors themselves
Representing words by their context

- **Core idea:** A word’s meaning is given by the words that frequently appear close-by
 - “You shall know a word by the company it keeps” (J. R. Firth 1957: 11)
 - One of the most successful ideas of modern statistical NLP!

- When a word w appears in a text, its **context** is the set of words that appear nearby (within a fixed-size window).

- Use the many contexts of w to build up a representation of w

...government debt problems turning into **banking** crises as happened in 2009...
...saying that Europe needs unified **banking** regulation to replace the hodgepodge...
...India has just given its **banking** system a shot in the arm...

These **context words** will represent **banking**
Word vectors

We will build a dense vector for each word, chosen so that it is similar to vectors of words that appear in similar contexts.

\[
\text{linguistics} = \begin{pmatrix}
0.286 \\
0.792 \\
-0.177 \\
-0.107 \\
0.109 \\
-0.542 \\
0.349 \\
0.271
\end{pmatrix}
\]

Note: word vectors are sometimes called word embeddings or word representations.
2. Word2vec: Overview

Word2vec (Mikolov et al. 2013) is a framework for learning word vectors. Idea:

- We have a large corpus of text
- Every word in a fixed vocabulary is represented by a vector
- Go through each position t in the text, which has a center word c and context (“outside”) words o
- Use the similarity of the word vectors for c and o to calculate the probability of o given c (or vice versa)
- Keep adjusting the word vectors to maximize this probability
Word2Vec Overview

- Example windows and process for computing $P(w_{t+j} \mid w_t)$
Word2Vec Overview

- Example windows and process for computing $P(w_{t+j} | w_t)$
Word2vec: objective function

For each position \(t = 1, \ldots, T \), predict context words within a window of fixed size \(m \), given center word \(w_j \).

\[
L(\theta) = \prod_{t=1}^{T} \left(\prod_{-m \leq j \leq m, \ j \neq 0} P(w_{t+j} \mid w_t; \theta) \right)
\]

Likelihood = \(\theta \) is all variables to be optimized

The **objective function** \(J(\theta) \) is the (average) negative log likelihood:

\[
J(\theta) = -\frac{1}{T} \log L(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m, \ j \neq 0} \log P(w_{t+j} \mid w_t; \theta)
\]

Minimizing objective function \(\iff \) Maximizing predictive accuracy
Word2vec: objective function

• We want to minimize the objective function:

\[J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m \atop j \neq 0} \log P(w_{t+j} \mid w_t; \theta) \]

• Question: How to calculate \(P(w_{t+j} \mid w_t; \theta) \)?

• Answer: We will use two vectors per word \(w \):
 • \(v_w \) when \(w \) is a center word
 • \(u_w \) when \(w \) is a context word

• Then for a center word \(c \) and a context word \(o \):

\[
P(o \mid c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}
\]
Word2Vec Overview with Vectors

- Example windows and process for computing $P(w_{t+j} | w_t)$
- $P(u_{problems} | v_{into})$ short for $P(problems | into ; u_{problems}, v_{into}, \theta)$
Word2Vec Overview with Vectors

• Example windows and process for computing $P(w_{t+j} | w_t)$
Word2vec: prediction function

\[P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)} \]

Dot product compares similarity of \(o \) and \(c \). Larger dot product = larger probability

After taking exponent, normalize over entire vocabulary

- This is an example of the softmax function \(\mathbb{R}^n \rightarrow \mathbb{R}^n \)

\[\text{softmax}(x_i) = \frac{\exp(x_i)}{\sum_{j=1}^{n} \exp(x_j)} = p_i \]

- The softmax function maps arbitrary values \(x_i \) to a probability distribution \(p_i \)
 - “max” because amplifies probability of largest \(x_i \)
 - “soft” because still assigns some probability to smaller \(x_i \)
 - Frequently used in Deep Learning
To train the model: Compute all vector gradients!

- Recall: θ represents all model parameters, in one long vector.
- In our case with d-dimensional vectors and V-many words:

$$\theta = \begin{bmatrix}
v_{aardvark} \\
v_a \\
\vdots \\
v_{zebra} \\
u_{aardvark} \\
u_a \\
\vdots \\
u_{zebra} \\
\end{bmatrix} \in \mathbb{R}^{2dV}$$

- Remember: every word has two vectors
- We then optimize these parameters
3. Derivations of gradient

- Whiteboard – see video if you’re not in class ;)
- The basic Lego piece
- Useful basics: \(\frac{\partial x^T a}{\partial x} = \frac{\partial a^T x}{\partial x} = a \)
- If in doubt: write out with indices

- Chain rule! If \(y = f(u) \) and \(u = g(x) \), i.e. \(y = f(g(x)) \), then:
 \[
 \frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}
 \]
Chain Rule

- Chain rule! If \(y = f(u) \) and \(u = g(x) \), i.e. \(y = f(g(x)) \), then:

\[
\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = \frac{df(u)}{du} \frac{dg(x)}{dx}
\]

- Simple example:

\[
\frac{dy}{dx} = \frac{d}{dx} 5(x^3 + 7)^4
\]

\[
y = f(u) = 5u^4 \quad u = g(x) = x^3 + 7
\]

\[
\frac{dy}{du} = 20u^3 \quad \frac{du}{dx} = 3x^2
\]

\[
\frac{dy}{dx} = 20(x^3 + 7)^3 \cdot 3x^2
\]
Interactive Whiteboard Session!

\[J(\theta) = \frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m, j \neq 0} \log p(w_{t+j} | w_t) \]

Let’s derive gradient for center word together
For one example window and one example outside word:

\[\log p(o | c) = \log \frac{\exp (u_o^T v_c)}{\sum_{w=1} \exp (u_w^T v_c)} \]

You then also need the gradient for context words (it’s similar; left for homework). That’s all of the parameters \(\theta \) here.
Calculating all gradients!

- We went through gradient for each center vector v in a window.
- We also need gradients for outside vectors u.
- Derive at home!
- Generally in each window we will compute updates for all parameters that are being used in that window. For example:

$$P(u_{\text{turning}} \mid v_{\text{banking}})$$

outside context words in window of size 2

$$P(u_{\text{into}} \mid v_{\text{banking}})$$

center word at position t

$$P(u_{\text{crises}} \mid v_{\text{banking}})$$

outside context words in window of size 2
Word2vec: More details

Why two vectors? → Easier optimization. Average both at the end.

Two model variants:

1. **Skip-grams (SG)**
 Predict context (“outside”) words (position independent) given center word

2. **Continuous Bag of Words (CBOW)**
 Predict center word from (bag of) context words

This lecture so far: **Skip-gram model**

Additional efficiency in training:

1. **Negative sampling**
 So far: Focus on **naïve softmax** (simpler training method)
Gradient Descent

- We have a cost function $J(\theta)$ we want to minimize
- **Gradient Descent** is an algorithm to minimize $J(\theta)$
- **Idea**: for current value of θ, calculate gradient of $J(\theta)$, then take small step in direction of negative gradient. Repeat.

Note: Our objectives are not convex like this :(
Intuition

For a simple convex function over two parameters.

Contour lines show levels of objective function

\[z = x^2 + 2y^2 \]
Gradient Descent

• Update equation (in matrix notation):

\[\theta^{new} = \theta^{old} - \alpha \nabla_\theta J(\theta) \]

\(\alpha = \text{step size or learning rate} \)

• Update equation (for single parameter):

\[\theta^{new}_j = \theta^{old}_j - \alpha \frac{\partial}{\partial \theta^{old}_j} J(\theta) \]

• Algorithm:

```python
while True:
    theta_grad = evaluate_gradient(J, corpus, theta)
    theta = theta - alpha * theta_grad
```
Stochastic Gradient Descent

- **Problem:** $J(\theta)$ is a function of all windows in the corpus (potentially billions!)
 - So $\nabla_\theta J(\theta)$ is very expensive to compute
- You would wait a very long time before making a single update!

- **Very** bad idea for pretty much all neural nets!
- **Solution:** Stochastic gradient descent (SGD)
 - Repeatedly sample windows, and update after each one.
- **Algorithm:**

```python
while True:
    window = sample_window(corpus)
    theta_grad = evaluate_gradient(J, window, theta)
    theta = theta - alpha * theta_grad
```
PSet1: The skip-gram model and negative sampling

- From paper: “Distributed Representations of Words and Phrases and their Compositionality” (Mikolov et al. 2013)

- Overall objective function (they maximize): \(J(\theta) = \frac{1}{T} \sum_{t=1}^{T} J_t(\theta) \)

\[
J_t(\theta) = \log \sigma \left(u_o^T v_c \right) + \sum_{i=1}^{k} \mathbb{E}_{j \sim P(w)} \left[\log \sigma \left(-u_j^T v_c \right) \right]
\]

- The sigmoid function! \(\sigma(x) = \frac{1}{1+e^{-x}} \)

 (we’ll become good friends soon)

- So we maximize the probability of two words co-occurring in first log
PSet1: The skip-gram model and negative sampling

- Simpler notation, more similar to class and PSet:

\[
J_{\text{neg-sample}}(\mathbf{o}, \mathbf{v}_c, \mathbf{U}) = -\log(\sigma(\mathbf{u}_o^\top \mathbf{v}_c)) - \sum_{k=1}^{K} \log(\sigma(-\mathbf{u}_k^\top \mathbf{v}_c))
\]

- We take k negative samples.
- Maximize probability that real outside word appears, minimize prob. that random words appear around center word

- \(P(w) = U(w)^{3/4}/Z\), the unigram distribution \(U(w)\) raised to the 3/4 power (We provide this function in the starter code).
- The power makes less frequent words be sampled more often
PSet1: The continuous bag of words model

- Main idea for continuous bag of words (CBOW): Predict center word from sum of surrounding word vectors instead of predicting surrounding single words from center word as in skip-gram model

- To make assignment slightly easier:

 Implementation of the CBOW model is not required (you can do it for a couple of bonus points!), but you do have to do the theory problem on CBOW.