Comparing NLP Methods to Understand Clinical Text to Improve Outcomes in Septic patients

Gowri Nayar
PhD Candidate in Biomedical Informatics

Problem statement

- Patients at risk for sepsis are given a SOFA score to determine risk level and degree
- SOFA score is slow, dependent on vitals
- Can utilize nurse and clinician notes through NLP techniques

Background

- Clinical notes are seen as unstructured data that is difficult to use for automation within the biomedical community
- The increase of NLP tools that are pre-trained for medical applications can dramatically increase the utility of clinical notes
- Data is from critically ill visits, excluding patients who were diagnosed within the first 3 hours
- More than 40,000 patients were included with a large imbalance towards notes without a sepsis diagnosis, needs to be accounted for during training

Methods

- Pre-process clinical notes to remove stop words, punctuation, and numbers
- In both methods, remove the high frequency and low frequency words
- Trained two networks for comparison, one based on a continuous bag of words method and the second on a Word2Vec embedding

Analysis

- Bag of Words model performs well on recall, particularly in the cases where there are distinctive, infrequent words, as in the case with Sepsis and Septic Shock.
 - But it ignores the context and is difficult to train given the sparsity
- The Paragraph Vectors embedding allows for a more specific training space, which is especially important in specialized domains such as medicine
 - The overall performance could reflect the bias and noise in the data, as more tuning would be able to further remove words that are not differentiating.
 -Upsampling sepsis samples would impact the embedding as they are not distributed across the vector space
- Using a CNN or Embedding layer improves training speed by quickly aggregating words and reducing the weight of non-relevant words. This is especially important with verbose text

Experiments

- Using the clinical notes and the models described above, we train and test each model using a 70/30 split for training and testing data (learning rate 0.01)
- To combat the bias in data, we use upsampling, by probabilistically augmenting the data with perturbed sepsis samples.
- Each model is compared against the true patient outcome and the clinically predicted outcome (SOFA score method)
- Both models outperform SOFA score, with accuracy of

Conclusion

- Both methods provide an improvement in accuracy in determining the outcome of a patient from standard clinical methods
- This ultimately shows the usefulness of free-from clinical text, which was previously excluded from automation systems

References