Our main goal is to produce a question answering (QA) system that performs well on SQuAD 2.0 and improves upon the BiDAF baseline, through use of the BERT model. We fine-tune BERT and add two different attention mechanisms to BERT: Attention-over-Attention (AoA) and Dynamic Coattention Network (DCN). The fine-tuned BERT model achieves the highest scores: EM score of 73.69 and F1 score of 76.98 on the test dataset.

Data

- **Task**: create a QA system that performs well on SQuAD 2.0
 - Determine when no answer is available
 - Correctly return the span of text which answers the question when possible
- **Importance**: QA can automate reading comprehension, and extract useful information from massive amounts of text
- **Approaches**:
 - Linguistics techniques (e.g. NER, Parsing, POS)
 - Deep learning
 - Non-PCE (e.g. BiDAF)
 - PCE (e.g. ELMo, BERT)

We are using the custom SQuAD dataset provided.

- **train** (129,941 examples): All taken from the official SQuAD 2.0 training set
- **dev** (6078 examples): Roughly half of the official dev set, randomly selected
- **test** (5921 examples): Remaining examples from the official dev set, and hand-labeled examples.

Dataset Example:
C: The kilogram-force leads to an alternate, but rarely used unit of mass: the **metric slug**...
Q: What is a very seldom used unit of mass in the metric system?
A: {"slug","answer_start":274},{"text":"metric slug","answer_start":267}

Abstract

Approach

I. **BERT**
 - PCE (pretrained contextual embeddings)
 - Multi-layer bidirectional Transformer encoder
 - Pre-trained with two unsupervised prediction tasks: (1) Masked Language Modeling (MLM) (2) Next Sentence Prediction (NSP)
 - Input representations:

II. **BERT + AoA**
 - Split BERT output into queries & contexts
 - Query-to-context (Q2C) attention
 - Context-to-question (C2Q) attention
 - Append weighted sum of Q2C to BERT output

III. **BERT + DCN**
 - Split BERT output into queries & contexts
 - Compute attention both ways (Q2C, C2Q)
 - Use C2Q to take weighted sum of Q2C, and concatenate with C2Q attention → biLSTM

Analysis

Table 2: NA analysis

<table>
<thead>
<tr>
<th>Model</th>
<th>TP Rate</th>
<th>FP Rate</th>
<th>FN Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>BERT</td>
<td>0.3823</td>
<td>0.053</td>
<td>0.139</td>
</tr>
<tr>
<td>BERT + AoA</td>
<td>0.339</td>
<td>0.08</td>
<td>0.181</td>
</tr>
<tr>
<td>BERT + DCN</td>
<td>0.396</td>
<td>0.193</td>
<td>0.125</td>
</tr>
</tbody>
</table>

Conclusions

The BERT fine-tuned model performs best. We believe our additional attention mechanisms have potential to outperform this model, but require more hyperparameter fine-tuning to achieve better performance.

Future Work
- **Null_score_diff_threshold** tuning for NA problem
- Experiment with the bert-large-uncased model
- Ensembling.

References