Overview

Linearization: given a bag of words, order them into a grammatical sentence.
- Traditional approach uses statistical models
- Recent approaches use LSTMs [1]
 - With or without syntactic linearization (building syntax trees) [2]
- Syntax-free linearizer avoids parsing error and is more lightweight

Project Goal: Improve syntax-free neural linearizer using encoders and attention.

Dataset and Approach

1) **Dataset = three NLTK corpora**
 - Gutenberg, Brown, Reuters
 - multiple genres & time periods
 - omit sentences with > 20 tokens
 - 96,805 sentences
 - dataset sizes:
 - 1000/10,000/96,805
2) **Input Generation**
 - Split into tokens
 - words + punctuation
 - Randomize order
3) **Run through model**
 - embedding lookup
 - optional encoder
 - with or without attention
 - greedy or beam search
 - with or without random <unk> replacement

Results and Analysis

Experiments:
- baseline LSTM
- n-layer bidirectional LSTM encoder
- n-layer CNN encoder
- greedy vs. beam search
- w/ vs. w/o <unk> replacement
- w/ vs. w/o attention
- w/ vs. w/o highway layer

Optimal # of Layers:
- LSTM: 2
- CNN: 3

Follow-up Experiments:
(5 trials on 970 samples)
- CNN Highway: 6.57
- CNN No Highway: 7.51

CNN-3 yields highest BLEU scores
- Attention decreases BLEU score on full dataset
- Challenges for the model:
 - rare vocabulary
 - very long sentences

Summary

- CNN-3 yields highest BLEU scores
- Attention leads to poorer performance
- LSTM encoder performs similarly to baseline

Figure 6. Comparison of different models on datasets of varying sizes. CNN-3 without attention performs best.

<table>
<thead>
<tr>
<th>Data Size</th>
<th>Baseline LSTM</th>
<th>LSTM-2 Encoder</th>
<th>CNN-3 Encoder</th>
<th>CNN-3 Encoder + Bag Attention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>8.46</td>
<td>9.59</td>
<td>8.89</td>
<td>9.59</td>
</tr>
<tr>
<td>Med</td>
<td>12.42</td>
<td>10.95</td>
<td>15.38</td>
<td>5.65</td>
</tr>
<tr>
<td>Full</td>
<td>20.4</td>
<td>20.19</td>
<td>25.06</td>
<td>4.29</td>
</tr>
</tbody>
</table>

Future Work

- Char-LSTM for handling <unk>s
- Transformer model
- Pointer-generator networks

References