Generating SQL queries from natural language questions to help people easily retrieve data from databases has long been an interesting but challenging problem. In this project we explore and evaluate different deep neural networks for this task.

Baseline: LSTM based seq-to-seq model.

SQLNet with GloVe and BERT embeddings.

Transformer and CNN based aggregator prediction

Dataset

- **Wiki SQL Dataset**
- Contains 80654 SQL queries extracted from 24241 HTML tables from Wikipedia

Text query:

```
Which school did Herb Williams go to?
```

Corresponding SQL query:

```
SELECT school_name
WHERE student_name = 'Herb Williams'
```

Result

Our results show that transformer and CNN performed similarly on this task on dev set and test set, and give comparable results with the original LSTM encoder. However, transformer performs really poor on selection clause prediction. It might be due to limited time of training.

References

Conclusion

- SQL syntax info helps neural network understand "text-to-SQL" task
- BERT embedding performs better than GloVe on existing models
- Transformer and CNN perform comparably with LSTM on AGG prediction
- Transformer fails to generate reasonable $SELECT_COL$ prediction temporarily

Error Analysis

Columns in table: "Year", "Álbum", "Charts", "Sales", "Certification"

Question: "How many tries against were there with 17 losses?"

Ground truth aggregator: No aggregator

Transformer encoder prediction: COUNT

Question: "What were the number of sales before 1991?"

Ground truth aggregator: No aggregator

Transformer encoder prediction: COUNT

The Aggregator predictor may lack understanding of column names that already have the aggregated results.