DeepDoc: NLP with Deep Neural Networks for the American Board of Internal Medicine Certification Exam

Jonathan X. Wang, Britni Chau, Kinbert Chou
[jonwang1, britnic, kichou]@stanford.edu

Prediction Task

- No system currently exists that assists physicians through natural language queries and direct answers.
- Rapidly growing amount of literature makes it harder for physicians to find relevant information for treatment [1].
- As a first pass, can we train a neural network to answer review questions for a physician certification exam?

Data

- 3564 examples were scraped from 2012, 2015, and 2018 review questions.
- Each question is comprised of a question, accompanying context passage, and 4 or 5 answer choice selections.
- We do a time split to capture ability to generalize on future problems.
- Dev: 600 examples (1/2 of 2018).
- Test: 600 examples (1/2 of 2018).

Example of a question:

Passage: A 76-year-old woman is evaluated... rapid ventricular rate.

Question: Which of the following is the most appropriate acute treatment?

Answer Options:
- A. Adenosine
- B. Amiodarone
- C. Cardioversion
- D. Diltiazem
- E. Metoprolol

Correct answer: C. Cardioversion.

Explanation: This patient with atrial fibrillation is hemodynamically unstable and should undergo immediate cardioversion...or diltiazem could worsen the pulmonary edema.

Approach and Results

- DrQA used to extract relevant explanations from training set when evaluating on dev/test. Top 3 explanations are used as input.
- Models include GA, SAR adapted from RACE [2]. And a modified BiDAF baseline.

Analysis

<table>
<thead>
<tr>
<th>Group</th>
<th>Relevant Explanation (%)</th>
<th>Helpful Explanation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top 5</td>
<td>0.266</td>
<td>0.133</td>
</tr>
<tr>
<td>Bottom 5</td>
<td>0.200</td>
<td>0.066</td>
</tr>
</tbody>
</table>

Figure 1. Flow diagram of prediction task.

Figure 2. Prediction Results demonstrate strong performance of GA model for this task.

Figure 3. Ensembled model with correct explanations vs. with DrQA explanations show little difference, suggesting difficulties in reading comprehension or lack of signal.

Figure 4. ROC models for top-performing models and baselines.

Figure 5. Precision-Recall curve for top-performing models and baselines.

Figure 6. Looked at the top and bottom 5 scoring explanations (30 explanations total) and found that only 7-13% of cases had helpful explanations.

- Tuning didn’t perform well, likely due to searching too wide of a space.
- Our model could benefit from different comprehension architectures, or a better search corpus.

Conclusion & Next Steps

- Demonstrate relatively good performance of the GA model, especially compared to RACE (MC task dataset) baseline of 40%, and a 50-60% passing score on the exam.
- Next steps include:
 - Character embeddings
 - Longer hyperparameter search
 - Validation on an official released exam
 - Try DrQA on wikipedia or UpToDate

Acknowledgments & References

Thank you to Jonathan H. Chen and Yuhao Zhang for their assistance and advising of this project.
