Plan for Today

- Intro to Python
- Installing Python
- Python Syntax
- Numpy
- Python Demo
Intro to Python
What is Python?

- General-purpose, high-level scripting language
- Used for a wide variety of purposes including networking and web applications
- Most popular in the scientific community for its ease of use
Pros vs Cons

● Pros:
 ○ Easy to understand and write, very similar to English
 ○ Works across systems (Windows, Mac, Linux)
 ○ Object Oriented
 ○ Really great standard library
 ○ Dynamically typed?

● Cons:
 ○ Python can be slow
 ○ Not great for mobile development
 ○ Dynamically typed?
Installing Python
Installing and Running Python

● Download from Anaconda: https://www.anaconda.com/distribution/
 ○ Includes Python, as well as several packages for scientific computing

● In your terminal, start up the Anaconda installation of Python:
 ○ conda activate

● Because Python is a scripting language, you can try it out right in the terminal; just type: python

● Follow instructions on Assign1 to create ‘environments’
 ○ Help keep your projects separated so there aren’t conflicting installations!
Check Your Installation

Which environment I am using (this is the default)

Python in the terminal! This will be helpful for Numpy when you want to test broadcasting (more on this later)
Writing Programs

● For longer tasks, probably want to write in a program that you can run on command
● To write programs, people often use IDEs
 ○ Pycharm (can get professional version for free since you are a student!)
 ○ Sublime (after modification with plugins)
 ○ VSCode (after modification with plugins)
● IDEs include lots of nice bells and whistles like code completion, syntax checking and a debugger
● If you choose to just use a text editor, you can run your program from the terminal by using the command:
 python <filename>.py
Basic Python
Basic data structures

```python
example_list = [1, 2, '3', 'four']
example_set = set([1, 2, '3', 'four', 'four'])
exmaple_dictionary = {
    '1': 'one',
    '2': 'two',
    '3': 'three'
}
```

- None of these types have a fixed type: can contain anything
- Sets will remove duplicates; only one copy of ‘four’
More on Lists

- Can easily create 2D arrays and then index into them
- List comprehensions are a slick way to create lists

```python
list_of_lists = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
three = list_of_lists[0][2]
four = list_of_lists[1][0]

my_list = [i for i in range(10)]
my_list2 = [i**2 for i in range(10)]
initialize_2d_list = [[i + j for i in range(5)] for j in range(10)]
```
Sorting Lists

- Sorted function lets you sort a list
- Has additional ‘key’ parameter to which you can pass a function that tells sorted how to compare
- For more details, look up ‘lambda functions’

```python
random_list = [3, 12, 5, 6]
sorted_list = sorted(random_list)

random_list = [(3, 'A'), (12, 'D'), (5, 'M'), (6, 'B')]
sorted_list = sorted(random_list, key=lambda x: x[1])
```
Functions, Loops and Control Flow

Integers in \([0, a)\)

Boolean statements

Integers from 1 (inclusive) to \(b\) (exclusive), counting by 2

If called from command line
Initialize the class to get an instance using some parameters

Instance variable

Does something with the instance

```python
class Vehicle:
    def __init__(self, make, name, year,
                 is_electric=False, price=100):
        self.name = name
        self.make = make
        self.year = year
        self.is_electric = is_electric
        self.price = price
        self.odometer = 0

    def drive(self, distance):
        self.odometer += distance

    def compute_price(self):
        if self.is_electric:
            price = self.price / (self.odometer * 0.8)
        else:
            price = self.price / self.odometer
        return price
```
To use a class

Instantiate a class,
get an instance
Call an instance method
Numpy & Scipy
What is Numpy? What is Scipy?

- Numpy – package for vector and matrix multiplication
- Scipy – package for scientific and technical computing
- The main advantage of numpy and scipy are their speed
- Speed comes from efficient memory representation and low-level machine instructions
Ndarray

- Most important structure in numpy
- Can only contain one type of value
- Extremely fast
- Used to represent vectors, matrices, tensors
- Calling `myArray.shape` will return a tuple of integers that represent the shape of the ndarray – very important!

```python
ones = np.ones(10)
randomMatrix = np.random.rand(5, 10)
fromPythonList = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
```
Ndarray – Addition (same shape)

- When two Ndarrays are the same shape, addition acts exactly as you would expect: component wise!
- We will discuss the case when they are not the same shape later
Ndarray – Addition (same shape, example 1)

```python
>>> x = np.array([1, 0, 0, 1])
>>> y = np.array([-1, 5, 10, -1])
>>> x
array([1, 0, 0, 1])
>>> y
array([-1, 5, 10, -1])
>>> x + y
array([ 0,  5, 10,  0])
```
Ndarray – Addition (same shape, example 2)

```python
>>> A = np.array([[1, 0], [0, 1]])
>>> B = np.array([[0, 1], [1, 0]])
>>> A
array([[1, 0],
       [0, 1]])
>>> B
array([[0, 1],
       [1, 0]])
>>> A + B
array([[1, 1],
       [1, 1]])
```
Ndarray – Component-Wise Multiplication (same shape)

- When two ndarrays are the same dimension and you use the python multiplication operator (*) you get component-wise multiplication, not matrix multiplication!
- When we get to neural networks, we will see that this Hadamard product is very important
Ndarray – Component-Wise Multiplication (same shape, example 1)

```python
>>> A = np.array([[5, 10], [3, 4]])
>>> B = np.array([[6, 20], [-4, -5]])
>>> A
array([[ 5, 10],
       [ 3,  4]])
>>> B
array([[ 6, 20],
       [-4, -5]])
>>> A * B
array([[ 30, 200],
       [-12, -20]])
```
Ndarray – np.dot

- Vector-Vector, Matrix-Vector and Matrix-Matrix products are calculated using `np.dot()`
- As with most numpy functions, they behave differently depending on the shapes of the input; we will look at the most common uses
Ndarray – np.dot with two vectors

- When the two inputs to np.dot() are both 1d vectors, then the result is the standard dot product

```python
>>> x = np.array([1, 2, 3, 4])
>>> y = np.array([5, 10, 15, 20])
>>> np.dot(x, y)
150
>>> sum([i * j for (i, j) in zip(x, y)])
150
```
Ndarray – np.dot with matrix and vector

- In this case, np.dot() acts as matrix-vector multiplication
- Note that dimensions matter!

```python
>>> A = np.array([[1, 10], [2, 5], [3, 3]])
>>> A
array([[ 1,  10],
       [ 2,   5],
       [ 3,   3]])
>>> x
array([3, 4])
>>> np.dot(A, x)
array([43, 26, 21])
```
Ndarray – np.dot with two matrices

- Here, we have standard matrix multiplication
- However, numpy documentation says that it is preferable to use `np.matmul()`
Ndarray – np.dot with two matrices (example)

```python
>>> A = np.array([[1, 5], [2, 3], [3, 10]])
>>> B = np.array([[3, 4], [4, 5]])
>>> A
array([[ 1,  5],
       [ 2,  3],
       [ 3, 10]])
>>> B
array([[3, 4],
       [4, 5]])
>>> np.dot(A, B)
array([[23, 29],
       [18, 23],
       [49, 62]])
>>> np.matmul(A, B)
array([[23, 29],
       [18, 23],
       [49, 62]])
```
Broadcasting

- In math, operations like dot products and matrix addition require the same dimensions. In numpy, this is not the case.
- Up until now, we have used 1d and 2d ndarrays, representing vectors and matrices, and numpy acts as we would expect.
- However, the operations we have described work even when the two inputs do not have ‘standard’ shapes, given by a set of very specific rules.
General Broadcasting Rules

- Write out the shapes of each ndarray
- Starting from the back, that dimension has compatible values if either:
 - They are the same value, or
 - One of them is a 1
- The size of the resulting array is the maximum along each dimension
- Note: the two ndarrays do not need to have the same number of dimensions
Broadcasting – Example 1 (easiest)

- In this case, we add a scalar to an ndarray
- Numpy automatically adds the scalar to every single element

```python
>>> x = np.array([1, 10, 15, 100])
>>> x + 10
array([ 11,  20,  25, 110])
```
Broadcasting – Example 2

```python
>>> A = np.array([[1, 10], [15, 20], [25, 50]])
>>> x = np.array([5, 100])
>>> A.shape
(3, 2)
>>> x.shape
(2,)
>>> A
array([[ 1, 10],
       [15, 20],
       [25, 50]])
>>> x
array([ 5, 100])
>>> A + x
array([[ 6, 110],
       [20, 120],
       [30, 150]])
```
Broadcasting – Example 3 (hardest)

- From the `np.matmul()` documentation:
 - If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the last two indexes and broadcast accordingly.

- What will be the dimension of the output for a call with the following shapes?
 - (1, 5, 6), (6, 7)
 - (3, 5, 6), (3, 6, 7)
 - (3, 4, 5, 6), (6, 7)
 - (3, 4, 5, 6), (4, 6, 7)
 - (3, 4, 5, 6), (1, 4, 6, 7)
Broadcasting – Example 3 (hardest, one answer)

- Take the fifth example, the shapes are (3, 4, 5, 6) and (4, 6, 7)
- According to the documentation, the last two dimensions represent matrices, so we take those out and broadcast the rest: (3, 4) and (4,)
- Using our broadcasting rules, the result of broadcasting these shapes will be (3, 4)
- Matrix multiplication results in a matrix of shape (5, 7)
- Our output will have shape (3, 4, 5, 7)
Mathematical Functions on Ndarrays

- Numpy has a wide array of mathematical functions that you can apply to arrays

```python
>>> x = np.array([0, np.pi / 4, np.pi / 2, np.pi, 3 * np.pi / 2, 2 * np.pi])
>>> x
array([ 0.        ,  0.78539816,  1.57079633,  3.14159265,  4.71238898,
        6.28318531])
>>> np.sin(x)
array([ 0.00000000e+00,  7.07106781e-01,  1.00000000e+00,  1.22464680e-16,
        -1.00000000e+00, -2.44929360e-16])
```
Mathematical Functions on Ndarrays – cont.

- Some functions, like sum and max, can be applied along a given axis
- Applying along that dimension gets rid of that dimension, and replaces it with the function applied across that dimension

```python
>>> A = np.array([[1, 3], [2, 4], [3, 5]])
>>> A
array([[1, 3],
       [2, 4],
       [3, 5]])
>>> np.sum(A, axis=0)
array([6, 12])
>>> np.sum(A, axis=1)
array([4, 6, 8])
```
Numpy Speed – Dot Product

```python
import numpy as np

a = np.array([[i for i in range(10000)]])
b = np.array([[i for i in range(10000)]])

tic = time.time()
dot = 0.0
for i in range(len(a)):
    dot += a[i] * b[i]
toc = time.time()

print("dot_product = "+ str(dot));
print("Computation time = " + str(1000*(toc - tic )) + "ms")

n_tic = time.time()
n_dot_product = np.array(a).dot(np.array(b))
n_toc = time.time()

print("\nn_dot_product = "+str(n_dot_product))
print("Computation time = "+str(1000*(n_toc - n_tic ))+"ms")
```

dot_product = 333283335000.0
Computation time = 5.955934524536133ms

n_dot_product = 333283335000
Computation time = 0.0591278076171875ms
Numpy Speed – Applying a Function

```python
myListFor = [i for i in range(100000)]
tic = time.time()
for i in range(len(myListFor)):
    myListFor[i] = np.sin(myListFor[i])
toc = time.time()

myListMap = [i for i in range(100000)]
mtic = time.time()
myListMap = list(map(np.sin, myListMap))
mtoc = time.time()

myListNumpy = [i for i in range(100000)]
numpytic = time.time()
myListNumpy = np.sin(myListNumpy)
numpytoc = time.time()

print("for_loop = " + str(1000*(toc - tic)) + "ms")
print("map = " + str(1000*(mtoc - mtic)) + "ms")
print("numpy = " + str(1000*(numpytoc - numpytic)) + "ms")
```

for_loop = 107.09214210510254ms
map = 83.14704895019531ms
numpy = 7.506370544433594ms
<table>
<thead>
<tr>
<th>Python Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>scipy.linalg.inv</td>
<td>Inverse of matrix (numpy as equivalent)</td>
</tr>
<tr>
<td>scipy.linalg.eig</td>
<td>Get eigen value (Read documentation on eigh and numpy equivalent)</td>
</tr>
<tr>
<td>scipy.spatial.distance</td>
<td>Compute pairwise distance</td>
</tr>
<tr>
<td>np.matmul</td>
<td>Matrix multiply</td>
</tr>
<tr>
<td>np.zeros</td>
<td>Create a matrix filled with zeros (Read on np.ones)</td>
</tr>
<tr>
<td>np.arange</td>
<td>Start, stop, step size (Read on np.linspace)</td>
</tr>
<tr>
<td>np.identity</td>
<td>Create an identity matrix</td>
</tr>
<tr>
<td>np.vstack</td>
<td>Vertically stack 2 arrays (Read on np.hstack)</td>
</tr>
</tbody>
</table>
Your friend for debugging

<table>
<thead>
<tr>
<th>Python Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>array.shape</td>
<td>Get shape of numpy array</td>
</tr>
<tr>
<td>array.dtype</td>
<td>Check data type of array (for precision, for weird behavior)</td>
</tr>
<tr>
<td>type(stuff)</td>
<td>Get type of a variable</td>
</tr>
<tr>
<td>import pdb; pdb.set_trace()</td>
<td>Set a breakpoint (https://docs.python.org/3/library/pdb.html)</td>
</tr>
<tr>
<td>print(f''My name is {name}'))</td>
<td>Easy way to construct a message</td>
</tr>
</tbody>
</table>
Advice

- If you are unsure how an operation will work on ndarrays of a certain shape, try it out!
- Create random matrices that have the shape you are looking at, do the operation, and check the shape of the output
- Python scripting in the terminal is great for this!
Plotting
More Tools

- Scatter plot
- Line plot
- Bar plot (Histogram)
- 3D plot
Plotting Functions

```python
import numpy as np
import matplotlib.pyplot as plt

# Compute the x and y coordinates for points
x = np.arange(0, 3 * np.pi, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x)

# Plot the points using matplotlib
plt.plot(x, y_sin)
plt.plot(x, y_cos)
plt.xlabel('x axis label')
plt.ylabel('y axis label')
plt.title('Sine and Cosine')
plt.legend(['Sine', 'Cosine'])
plt.show()
```
Calculate the eigenvector associated with the dominant eigenvalue

Use the power iteration method:

\[b_{k+1} = \frac{A b_k}{||A b_k||} \]

(If not at live session, can download the code from course website)
Links

Python Documentation

Numpy Reference

CS 231N Python Tutorial

Download Pycharm