
[draft] Note 1: Introduction and Word2Vec 1 2 3
1 Course Instructors: Christopher
Manning, John Hewitt
2 Author: John Hewitt
johnhew@cs.stanford.edu
3 Contributors to past notes: Francois
Chaubard, Michael Fang, Guillaume
Genthial, Rohit Mundra, Richard Socher

CS 224n: Natural Language Processing with Deep Learning

Winter 2023

Summary. This note introduces the field of Natural Language Pro-
cessing (NLP) briefly, and then discusses word2vec and the funda-
mental, beautiful idea of representing words as low-dimensional
real-valued vectors learned from distributional signal.

1 Introduction to Natural Language Processing

Natural language processing is a field of science and engineering
focused on the development and study of automatic systems that
understand and generate natural (that is, human,) languages.

1.1 Humans and language

Human languages are communicative devices enabling the effi-
cient sharing and storage of complex ideas, facts, and intents. As
[Manning, 2022] argues, the complexity of communication enabled
by language is a uniquely human intelligence among species. As
scientists and engineers interested in the creation and study of intel-
ligent systems, human language is to us both a fascinating object of
study—after all, it has evolved to be learnable and useful—and a great
enabler for interacting with humans even in contexts where other
modalities (e.g., vision) are also of interest.

1.2 Language and machines

Human children, interacting with a rich multi-modality world and
various forms of feedback, acquire language with exceptional sample
efficiency (not observing that much language) and compute efficiency
(brains are efficient computing machines!) With all the (impressive!)
advances in NLP in the last decades, we are still nowhere close to
developing learning machines that have a fraction of acquisition
ability of children. One fundamental (and still quite open) problem
in building language-learning machines is the question of representa-
tion; how should we represent language in a computer such that the
computer can robustly process and/or generate it? This is where this
course focuses on the tools provided by deep learning, a highly effec-
tive toolkit for representing both the wild variety of natural language

johnhew@cs.stanford.edu

[draft] note 1: introduction and word2vec cs 224n: natural language processing with

deep learning 2

and some of the rules and structures it sometimes adheres to. Much
of this course will be dedicated to this question of representation,
and the rest of this note will talk about a basic subquestion: how do
we represent words? Before that, though, let’s briefly discuss some
of the applications you can hope to build after learning modern NLP
techniques.

1.3 A few uses of NLP

Natural language processing algorithms are increasingly useful
and deployed, but their failures and limitations are still largely
opaque and sometimes hard to detect. Here are a few of the major
applications; this list is intended to pique your interest, not to be
exhaustive:

Machine translation. Perhaps one of the earliest and most successful
applications and driving uses of natural language processing, MT
systems learn to translate between languages and are ubiquitous
in the digital world. Still, failures of these systems for most of the
world’s 7000 languages, difficulties in translating long text, and
ensuring contextual correctness of translations make this still a
fruitful field of research.

Question answering and information retrieval. The concept of “question
answering” should seem overly broad—can’t we express any
problem as question answering?—but in NLP, question answering
has tended to be related to information-seeking questions (“Who is
the emir of Abu Dhabi?”, “What is the process by which I can get
an intern visa for the United Kingdom?”). Continually broadening
the scope of answerable questions, providing provenance for
answers, answering questions in an interactive dialogue—this is
one of the fastest-evolving research directions.

Summarization and analysis of text. There are myriad reasons to want
to understand (1) what people are talking about and (2) what they
think about those things. Companies want to do market research,
politicians want to know peoples’ opinions, individuals want
summaries of complex topics in digestible form. NLP tools can
be powerful for both the increase of access to information to the
public, as well as surveillance, corporate or governmental. Bear
this aspect of “dual use” in mind as you progress and decide what
you are building.

Note: speech(or sign)-to-text. The process of automatic transcription of
spoken or signed language (audio or video) to textual represen-
tations is a massive and useful application, but one we’ll largely

[draft] note 1: introduction and word2vec cs 224n: natural language processing with

deep learning 3

avoid in this course. Partly, this is historical and methodological;
the raw signal processing methods and expertise are generally
covered in other courses (224s!) and other research communities,
though there has been some convergence of techniques of late.

In all aspects of NLP, most existing tools work for precious few (usu-
ally one, maybe up to 100) of the world’s roughly 7000 languages,
and fail disproportionately much on lesser-spoken and/or marginal-
ized dialects, accents, and more. Beyond this, recent successes in
building better systems have far outstripped our ability to charac-
terize and audit these systems. Biases encoded in text, from race to
gender to religion and more, are reflected and often amplified by
NLP systems. With these challenges and considerations in mind, but
with the desire to do good science and build trustworthy systems
that improve peoples’ lives, let’s take a look at a fascinating first
problem in NLP.

2 Representing words

2.1 Signifier and signified

Consider the sentence

Zuko makes the tea for his uncle.

The word Zuko is a sign, a symbol that represents an entity Zuko in
some (real of imagined) world. The word tea is also a symbol that
refers to a signified thing—perhaps a specific instance of tea. If one
were instead to say Zuko likes to make tea for his uncle, note that the
symbol Zuko still refers to Zuko, but now tea refers to a broader
class—tea in general, not a specific bit of hot delicious water. Consider
the two following sentences:

Zuko makes the coffee for his uncle.
Zuko makes the drink for his uncle.

Which is “more like” the sentence about tea? The drink may be tea
(or it may be quite different!) and coffee definitely isn’t tea, but is yet
similar, no? And is Zuko similar to uncle because they both describe
people? And is the similar to his because they both pick out specific
instances of a class?

Word meaning is endlessly complex, deriving from humans’ goals
of communicating with each other and achieving goals in the world.
People use continuous media—speech, signing—but produce signs
in a discrete, symbolic structure—language—to express complex
meanings. Expressing and processing the nuance and wildness of
language—while achieving the strong transfer of information that

[draft] note 1: introduction and word2vec cs 224n: natural language processing with

deep learning 4

language is intended to achieve—makes representing words an
endlessly fascinating problem. Let’s move to some methods.

2.2 Independent words, independent vectors

What is a word? I cannot define a word for you, but I can give some
examples in English: tea, coffee, abbreviate, gumption. The word anti-
radate I hereby define to mean the action of looking wistfully at an
inedible decoration, wishing it were as tasty as it looked. If I use this
sign to communicate with others my longing, that’s good enough to
me to be a word.

Perhaps the simplest way to represent words is as independent,
unrelated entities. You might think of this as a set,

{. . . , tea, . . . , coffee, . . . , antiridate}.

Here let’s introduce a bit of terminology. We will refer to a word
type as an element of a finite vocabulary, independent of actually
observing the word in context. So, we’ve just written a set of types. A
word token is an instance of the type, e.g., observed in some context. A (word) type is an element of a

vocabulary; a word in abstract. A
(word) token is an instance of a type in
context.

Our word representations right now provides a single representation
for each word type, and we might use that same representation for
any occurence of the word token in context.

We will often be working with vectors in this course; the conven-
tional vector representation of independent components is the set of
1-hot, or standard basis, vectors. Thus, maybe

vtea =

0
0
1
...
0

 vcoffee =

...
0
0
1
...

(1)

where vtea = e3, the third standard basis vector, and vcoffee = ej, the
jth standard basis vector.

Why do we represent words as vectors? To better compute with
them. And when computing with 1-hot vectors, we do achieve the
crucial fact that different words are different, but alas, we encode
no meaningful notion of similarity or other relationship. This is
because, for example, if we take the dot product as a notion of simi-
larity (or the L2 distance, or the L1 distance, or. . .) we compute:

v⊤teavcoffee = v⊤teavthe = 0, (2)

all words are equally dissimilar from each other. Note as well that
in the diagram, words are not ordered, e.g., alphabetically—this is

[draft] note 1: introduction and word2vec cs 224n: natural language processing with

deep learning 5

an important note; there is no (explicit) character-level information
in these strings, beyond the strict notion of identity (is this word the
same sequence of characters/bytes as this other word. If so, they
have the same vector; if not, they have independent vectors.)

Since it is of course not the case that all words are equally dissimi-
lar from each other, we’ll move to some alternatives.

2.3 Vectors from annotated discrete properties.

Should we represent word semantics not as one-hot vectors, but
instead as a collection of features and relationships to linguistic
categories and other words?

For any word, say runners, there is a wealth of information we
can annotate about that word. There is grammatical information,
like plurality, there’s derivational information, like how the
runners is something like the verb to run plus a notion of “doer”, or
agent (think one who runs.) There’s also semantic information, like
how runners might be a hyponym of humans, or animals, or entities.
(A hyponym is a member of an is-a relationship; e.g., a runner is a
human.)

There are substantial existing resources in English and a few other
languages for various kinds of annotated information about words.
WordNet [Miller, 1995] annotates for synonyms, hyponyms, and
other semantic relations; UniMorph [Batsuren et al., 2022] annotates
for morphology (subword structure) information across many lan-
guages. With such resources, one could build word vectors that look
something like

vtea =

0
0
1
...
1

(plural noun)

(3rd singular verb)
(hyponym-of-beverage)

...
(synonym-of-chai)

(3)

In 2023, word vectors resulting from these methods are not the
norm, and they won’t be the focus of this course. One main failure
is that human-annotated resources are always lacking in vocabulary
compared to methods that can draw a vocabulary from a naturally
occuring text source—updating these resources is costly and they’re
always incomplete. Another failure is a tradeoff between dimension-
ality and utility of the embedding—it takes a very high-dimensional
vector (think much larger than the vocabulary size) to represent all
of these categories, and modern neural methods that tend to operate
on dense vectors do not behave well with such vectors. Finally, a
continual theme we’ll see in this course is that human ideas of what

[draft] note 1: introduction and word2vec cs 224n: natural language processing with

deep learning 6

the right representations should be for text tend to underperform
methods that allow data to determine more aspects—at least when
one has a lot of data to learn from.

3 Distributional semantics and Word2vec

A promise of deep learning is to learn rich representations of com-
plex objects from data. Increasingly relevant in NLP is the idea that
we can unsupervisedly learn rich representations from data. Unsuper-
vised (or lately, “self-supervised”) learning takes data and attempts
to learn learn properties of the elements of that data, often by taking
part of the data (maybe a word in a sentence) and attempting to pre-
dict other parts of the data (other words) with it. In language, this
idea was captured well years ago by Firth [Firth, 1957], who famously
said

You shall know a word by the company it keeps.

At a high level, you can think of the distribution of words that show
up around the word tea as a way to define the meaning that word.
So, tea shows up around drank, the, pot, kettle, bag, delicious, oolong,
hot, steam,. . . , It should become clear that words similar to tea (like
coffee) will have similar distributions of surrounding words. While
simple, this is one of the most influential and successful ideas in
all of modern NLP, and analogues of it have taken hold in myriad
learning-related fields. The distributional hypothsis: the

meaning of a word can be derived from
the distribution of contexts in which it
appears.

That’s the high level. But as always, the details matter. What
does it mean for a word to be near another word? (Right next to it?
Two away? In the same document?) How does one represent this
encoding, and learn it? Let’s go through some options.

3.1 Co-occurrence matrices and document contexts

If you were asked to code up the idea “represent a word by the
distribution of words it appears near”, you might immediately have
the following idea:

1. Determine a vocabulary V .

2. Make a matrix of size |V| × |V| of zeros.

3. Walk through a sequence of documents. For each document, for
each word w in the document, add all the counts of the other
words w′ in the document to the row corresponding to w at the
column corresponding to w′.

4. Normalize the rows by the sum.

[draft] note 1: introduction and word2vec cs 224n: natural language processing with

deep learning 7

You’ve just made a document-level co-occurrence matrix for your
vocabulary! Call this matrix X. The word embedding Xtea ∈ R|V| (a
row of X) is substantially more immediately useful than the old 1-hot
etea that we had.

One decision we made was document-level co-occurrence. We
could instead say that a word w′ is only co-occurring with w if that
w′ appears much closer, say, within a few words. Here’s an example,
where a few relevant windows for co-occurrence are labeled: Larger notions of co-occurrence (e.g.,

large windows or documents) lead to
more semantic or even topic-encoding
representations; shorter windows lead
to more syntax-encoding representa-
tions

[It’s hot and delicious. [I poured [the tea︸︷︷︸
center word

for]1 my uncle]3.]document

In brief, shorter windows (like the one word window above, labeled
1) seem to encode syntactic properties. For example, nouns tend to
appear right next to the or is. Plural nouns don’t appear right next to
a. Larger windows tend to encode more semantic (and at extremes,
topic-like) properties. Note how poured or delicious may occur farther
from tea but still be relevant. Document-level windows, for large
documents (1000s of words) intuitively represent words by what
kinds of documents they appear in (sports, law, medicine, etc.)

Another design decision we made was to represent explicit counts
of words in |V|-sized vectors. This ends up being a big mistake.
We’ve already stated that high-dimensional vectors tend to be un-
wieldy in today’s neural systems. But another issue is that raw
counts of words end up over-emphasizing the importance of very
common words like the. Taking the log token frequency ends up
being much more useful. A very influential paper on word repre-
sentation taught us much more about what is wrong with the raw
co-occurrence method by introducing GloVe (Pennington et al., 2014)
a co-occurence-based word representation algorithm that works as
well as word2vec, the method we’ll introduce in the next section.
However, many of the details of word2vec will hold true in methods
that we’ll proceed to further in the course, so we’ll focus our time on
that.

3.2 Word2vec model and objective

The word2vec model represents each word in a fixed vocabulary as a
low-dimensional (much smaller than vocabulary size) vector. It learns
the value of each word’s vector to be predictive via a simple function
of the distribution of words in a (usually short; 2-4 words) context.
The model we’ll describe here is called the skipgram word2vec algo-
rithm.

Skipgram word2vec. As usual, we have a finite vocabulary V . Let C, O
be random variables representing an (unknown) pair of C ∈ V (a

[draft] note 1: introduction and word2vec cs 224n: natural language processing with

deep learning 8

center word), and O ∈ V (an outside word, appearing in the context
of the center word). We’ll use c, o to refer to specific values of the
random variables. Let U ∈ R|V|×d and V ∈ R|V|×d. Note that
each word in V is associated with a single row of U and one of V;
we think of this as resulting from an arbitrary ordering of V . The
word2vec model is a probabilistic model specified as follows, where
uw refers to the row of U corresponding to word w ∈ V (and likewise
for V):

pU,V(o|c) =
exp u⊤

o vc

∑w∈V exp u⊤
w vc

(4)

This may be familiar to you as the softmax function, which takes
arbitrary scores (here, one for each word in the vocabulary, resulting
from dot products) and produces a probability distribution where
larger-scored things get higher probability. Note that the vector of
probabilities over all words given a center word pU,V(· | c) ∈ R|V| is a
lot like a row of our old co-occurrence matrix Xc.

The story isn’t over yet; this is just a model. How do we estimate
the values of the parameters U, V? We learn to minimize the cross-
entropy loss objective with the true distribution P∗(O | C):

min
U,V

Eo,c
[
− log pU,V(o | c)

]
. (5)

This equation should be read as “minimize with respect to param-
eters U and V the expectation over values of o and c drawn from
the distributions of O and V the negative-log probability under the
(U, V)-model of that value of o given that value of c”.

There is so much rich detail to get into here. How do we perform
the min operation? How do we “get” the random variables O and C?
Why the negative-log of the probability? Why is this so much better
than co-occurrence counting? Can you tell why not all distributions
over o given c can be represented by this model? (Should this be good?
Bad? Surprising? Obvious?) For now, let’s go through a few details
about how to implement this in practice.

3.3 Estimating a word2vec model from a corpus

How do we train word2vec in practice? Specifying the word2vec
model is relatively transparent from the math we’ve given above:
one constructs matrices U and V and can write out the math of the
probability. However, it may not yet be evident how to estimate the
parameters: (1) how to calculate the expectation in Eqn 5 for a given
value of U and V, and then (2) how to perform the minimization
operation. Let’s start with 1.

[draft] note 1: introduction and word2vec cs 224n: natural language processing with

deep learning 9

Word2vec empirical loss. Let D be a set of documents {d} where
each document is a sequence of words w(d)

1 , . . . , w(d)
m , with all w ∈

V . Let k ∈ N++ be a positive-integer window size. Let’s define
how our center word random variable C and outside word r.v. O
relate to this concrete dataset. O takes on the value of each word
wi in each document, and for each such wi, the outside words are
{wi−k, . . . , wi−1, wi+1, . . . , wi+k}. So, our Eqn 5 objective becomes:

L(U, V) = ∑
d∈D

m

∑
i=1

k

∑
j=1

− log pU,V(w
(d)
i−j | w(d)

i), (6)

where you’ll note we’re taking the sum over (1) all documents of the
sum over (2) all words in the document of the sum over (3) all words
occuring in the window of the likelihood of the outside word given
the center word.

Now, how do we do the minimization?

Gradient-based estimation At a high level, we try to find “good” U
and V for the objective we’ve specified by starting with a relatively
uninformed guess, and iteratively moving in the direction that locally
best-improves the guess. This is done by gradient-based methods, a
full description of which is out of scope for this note. Briefly, the
gradient (think: derivative) ∇U f of a scalar function f with respect
to a parameter matrix U represents the direction to (locally) move
U in in order to maximally increase the value of f . So, in practice,
we do something like drawing the initial U(0) and V(0) randomly
as U, V ∼ N (0, 0.001)|V|×d (matrices of independent draws from a
zero-centered normal distribution with small variance), and then
perform some number of iterations of the following process:

U(i+1) = U(i) − α∇U L(U(i), V(i)). (7)

This should be read as setting the value of U at iteration i + 1 as the
value of U at the previous iteration, plus a small (α small) step in the
direction that locally-best improves U with respect to the objective
L(U, V) we specified in Eqn 6.

Stochastic gradients. There’s a crucial detail remaining here (beyond
how to compute the gradient function ∇U(·), which we’ll discuss
later): computing L(U, V) is exceptionally expensive, as it walks over
the entire dataset. Instead of computing the objective exactly, we in-
stead perform stochastic gradient-based optimization, approximating
L(U, V) using a few samples for each step of Eqn 7. We might do this

[draft] note 1: introduction and word2vec cs 224n: natural language processing with

deep learning 10

by sampling documents d1, . . . , dℓ ∼ D and computing

L̂(U, V) = ∑
d1,...,dℓ

m

∑
i=1

k

∑
j=1

− log pU,V(w
(d)
i−j | w(d)

i), (8)

3.4 Working through a gradient.

How does a word2vec gradient step affect the parameters? Let’s
work out the math and build some intuition. In particular, we’ll write
out the partial gradient of the loss with respect to the parameter vc

for a single instance of a center word c. We start by writing out the
gradient and passing the gradient operator through the sums:

∇vc L̂(U, V) = ∑
d∈D

m

∑
i=1

k

∑
j=1

−∇vc log pU,V

(
w(d)

i−j | w(d)
i

)
, (9)

intuitively, the gradient of all these terms in the sum is just the sum
of their gradients. Let’s work out the gradient of the probability, and
for concision of notation we’ll write w(d)

i−j as o again, and w(d)
i as c.

So let’s take a single term of the sum and break it up with loga-
rithm rules:

∇vc log pU,V(o | c) = ∇vc log
exp u⊤

o vc

∑n
i=1 u⊤

w vc
(10)

= ∇vc log exp u⊤
o vc︸ ︷︷ ︸

PartA

−∇vc log
n

∑
i=1

exp u⊤
w vc︸ ︷︷ ︸

PartB

(11)

Part A. Let’s differentiate Part A first, since it’s easier.

∇vc log exp u⊤
o vc = ∇vc u⊤

o vc inverse operations (12)

= uo why? (13)

To see why the last equality (marked “why?”) holds, consider each
individual dimension of vc. The partial derivative of the output of
u⊤

o vc is ∇vc,i u
⊤
o vc = ∇vc,i ∑i uo,ivc,i = uo,i. This is in turn because only

one term of the sum depends on vc,i, and ∇vc,i uo,ivc,i = uo,i by single-
variable calculus. When we stack a bunch of these single variable
derivatives together, we get [uo,1. . . . , uo,d] = uo, as written. The shape
of the gradient is uo, not u⊤

o because of convention; by convention,
we set the gradient of any object to be the shape of that object, which
may involve some re-shaping.

[draft] note 1: introduction and word2vec cs 224n: natural language processing with

deep learning 11

Part B. Now let’s differentiate Part B.

−∇vc log
n

∑
w=1

exp u⊤
w vc =

1
∑n

w=1 exp u⊤
w vc

∇vc

n

∑
x=1

exp u⊤
x vc derivative of log; chain rule

=
1

∑n
w=1 exp u⊤

w vc

n

∑
x=1

∇vc exp u⊤
x vc linearity of derivative

=
1

∑n
w=1 exp u⊤

w vc

n

∑
x=1

exp(u⊤
x vc)∇vc u⊤

w vc derivative of exponential; chain rule

=
1

∑n
w=1 exp u⊤

w vc

n

∑
x=1

exp(u⊤
x vc)uw derivative of dot product

Now we’ll use this to come to a bit of insight. Let’s put Part A and
Part B together, and do a little bit of algebra:

uo −
1

∑n
w=1 exp u⊤

w vc︸ ︷︷ ︸
pull this under the sum

n

∑
x=1

exp(u⊤
x vc)uw = uo −

n

∑
x=1

exp(u⊤
x vc)

∑n
w=1 exp u⊤

w vc︸ ︷︷ ︸
This is pU,V(x | c)

uw

= uo −
n

∑
x=1

pU,V(x | c)︸ ︷︷ ︸
This is an expectation

uw

= uo − E[uw]

= “observed” - “expected”,

Intuitively, this all comes down to the last equation here; we have the
vector for the word actually observed: uo. We subtract from that the
vector, intuitively, that the model expected—in the sense that it’s the
sum over all the vocabulary of the probability the model assigned to
that word, multiplied by the vector that was assigned to that word.
So, the vc vector is updated to be “more like” the word vector that
was actually observed than the word vector it expected.

If you didn’t follow the math above, don’t fear; I’d suggest going
through it a few times and not rushing yourself. And if this was all
dreadfully boring to you because you understood it quickly, use your
newfound free time to help teach others!

3.5 Skipgram-negative-sampling

Now that we’re doing stochastic estimates of our gradients, one re-
maining bottleneck of efficiency in estimating our word2vec model
is computing the exact model probability − log p(U, V)(o | c) when
computing L̂(U, V). For a given word, it is cheap to compute the un-
normalized score exp(uc⊤vo). However, it is expensive to compute
the partition function (sum of scores for all words) in the denomina-
tor, since it requries a term for each word in the vocabulary.

[draft] note 1: introduction and word2vec cs 224n: natural language processing with

deep learning 12

Intuitively, what is the partition function doing, such that we
might understand how to remove it? Let’s repeat the softmax here:

pU,V(o|c) =
exp u⊤

o vc

∑w∈V exp u⊤
w vc

(14)

Affinity of word c for context o

Partition function, or, normalization

From a probabilistic perspective, the partition function guarantees
a probability by normalizing the scores to sum to 1. (The exponen-
tial guarantees that the scores are non-negative.) From a learning
perspective, the partition function “pushes down” on all the words
other than the observed words. Put another way, the numerator of
this equation encourages the model to make uo more like vc; the
denominator encourages all the other uw for w ̸= o less like vc. The
intuition of negative sampling is that we don’t need to push down
on all the uw all the time, since that’s where most of the cost comes
from.

However, the actual skip-gram with negative sampling (SGNS)
objective ends up being a bit more different; we’ll write it here:

log σ(u⊤
o vc) +

k

∑
ℓ=1

[
log σ(−u⊤

ℓ vc)
]

(15)

Affinity of word c for context o

Push down everything else in expectation (replacement for partition fn)

where, where σ is the logistic function, and uℓ ∼ pneg, which
means uℓ is drawn from a distribution we haven’t defined, called
pneg, Think of this for now like the uniform distribution over V .
What is this objective doing? It has two terms, just like how we’ve
described the orginal skipgram. The first term encourages vc and uo

to be more like each other, and the second term encourages vc and uℓ

for k random samples from the vocabulary to be less like each other.
The intuition here is that if we randomly push down a few words
at each step, then on average, things will work out sort of as if we
always pushed down every word.

[draft] note 1: introduction and word2vec cs 224n: natural language processing with

deep learning 13

A Extra notes

A.1 Continuous Bag-of-Words

A.2 Singular Value Decomposition

References

[Batsuren et al., 2022] Batsuren, K., Goldman, O., Khalifa, S., Habash, N., Kieraś, W.,
Bella, G., Leonard, B., Nicolai, G., Gorman, K., Ate, Y. G., Ryskina, M., Mielke, S.,
Budianskaya, E., El-Khaissi, C., Pimentel, T., Gasser, M., Lane, W. A., Raj, M., Coler,
M., Samame, J. R. M., Camaiteri, D. S., Rojas, E. Z., López Francis, D., Oncevay,
A., López Bautista, J., Villegas, G. C. S., Hennigen, L. T., Ek, A., Guriel, D., Dirix,
P., Bernardy, J.-P., Scherbakov, A., Bayyr-ool, A., Anastasopoulos, A., Zariquiey,
R., Sheifer, K., Ganieva, S., Cruz, H., Karahóǧa, R., Markantonatou, S., Pavlidis,
G., Plugaryov, M., Klyachko, E., Salehi, A., Angulo, C., Baxi, J., Krizhanovsky,
A., Krizhanovskaya, N., Salesky, E., Vania, C., Ivanova, S., White, J., Maudslay,
R. H., Valvoda, J., Zmigrod, R., Czarnowska, P., Nikkarinen, I., Salchak, A., Bhatt,
B., Straughn, C., Liu, Z., Washington, J. N., Pinter, Y., Ataman, D., Wolinski, M.,
Suhardijanto, T., Yablonskaya, A., Stoehr, N., Dolatian, H., Nuriah, Z., Ratan, S.,
Tyers, F. M., Ponti, E. M., Aiton, G., Arora, A., Hatcher, R. J., Kumar, R., Young,
J., Rodionova, D., Yemelina, A., Andrushko, T., Marchenko, I., Mashkovtseva, P.,
Serova, A., Prud’hommeaux, E., Nepomniashchaya, M., Giunchiglia, F., Chodroff, E.,
Hulden, M., Silfverberg, M., McCarthy, A. D., Yarowsky, D., Cotterell, R., Tsarfaty,
R., and Vylomova, E. (2022). UniMorph 4.0: Universal Morphology. In Proceedings of
the Thirteenth Language Resources and Evaluation Conference, pages 840–855, Marseille,
France. European Language Resources Association.

[Baum and Petrie, 1966] Baum, L. E. and Petrie, T. (1966). Statistical inference for
probabilistic functions of finite state markov chains. The Annals of Mathematical
Statistics, 37(6):1554–1563.

[Bengio et al., 2003] Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A
neural probabilistic language model. J. Mach. Learn. Res., 3:1137–1155.

[Collobert et al., 2011] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu,
K., and Kuksa, P. P. (2011). Natural language processing (almost) from scratch. CoRR,
abs/1103.0398.

[Firth, 1957] Firth, J. R. (1957). Applications of general linguistics. Transactions of the
Philological Society, 56(1):1–14.

[Manning, 2022] Manning, C. D. (2022). Human Language Understanding & Reasoning.
Daedalus, 151(2):127–138.

[Mikolov et al., 2013] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient
estimation of word representations in vector space. CoRR, abs/1301.3781.

[Miller, 1995] Miller, G. A. (1995). Wordnet: a lexical database for english. Communica-
tions of the ACM, 38(11):39–41.

[Rong, 2014] Rong, X. (2014). word2vec parameter learning explained. CoRR,
abs/1411.2738.

[Rumelhart et al., 1988] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988).
Neurocomputing: Foundations of research. chapter Learning Representations by
Back-propagating Errors, pages 696–699. MIT Press, Cambridge, MA, USA.

	Introduction to Natural Language Processing
	Representing words
	Distributional semantics and Word2vec
	Extra notes

