
A Deep Learning Approach for Identification of
Confusion in Unstructured Crowdsourced

Annotations

Rachel Gardner
Stanford University

rachel0@stanford.edu

Maya Varma
Stanford University

mvarma2@stanford.edu

Clare Zhu
Stanford University

clarezhu@stanford.edu

Abstract

Large, densely-labeled datasets have catalyzed the creation of effective deep learn-
ing methods for text and image analysis, leveraging the power of natural language
data found in massive online forums such as Reddit. While this form of social
media-based crowdsourced data comes at a lower cost than hiring annotators, it
is also more prone to the pitfalls of natural language answering, since data is un-
structured and respondents might not answer the provided questions correctly. To
address these issues, we present a deep learning approach to systematically identify
confusion and extract answers from unstructured crowdsourced annotations of data
collected from Instagram. Each annotation contains an image, a machine-generated
question, and a crowd-sourced response: we use a top-down bottom-up visual
attention model based on Facebook AI Research’s Pythia architecture to 1) classify
whether the response is an example of confusion, and 2) extract the ground-truth an-
swer from the natural-language response. We repeat these tasks with a BERT-based
classifier, using text features from the question and the response (excluding image
features). Our results show that surprisingly, the BERT-based model (classification
AUC-ROC=0.84, answer prediction F1=0.77) outperforms the modified Pythia
architecture (classification AUC-ROC=0.79, answer prediction F1=0.46) , despite
the lack of image features. Furthermore, a multi-task BERT-based model trained
simultaneously on tasks (1) and (2) is able to outperform task-specific models (clas-
sification AUC-ROC=0.84, answer prediction F1=0.78). The method presented
in this work holds potential for reducing the need for manual quality analysis of
crowdsourced data as well as enabling the use of annotations from unstructured
environments such as social media platforms.

1 Introduction

The recent revolution in the development of deep learning methods for automated analysis of text
and images has mandated the creation of large, densely-annotated training datasets, which are often
labeled by paid workers on Amazon Mechanical Turk. Although obtaining dataset annotations
through crowdsourcing enables the creation of gold standard labels that have been vetted by humans,
it is a time-consuming and expensive process; for example, the Visual Genome dataset, which includes
dense annotations on over 100k images, involved more than 33,000 paid workers over a six-month
time period (13). As the demand for large, labeled datasets continues to increase, there is a pressing
need for accurate and efficient evaluation of crowdsourced annotations. In this project, we explore
the use of deep learning and natural language processing techniques to automatically identify user
confusion in unstructured crowdsourced data labels. Our dataset contains images, computer-generated
questions referring to each image, and responses from social media users. We determine that a user
response shows confusion if (1) the response contains an incorrect or irrelevant answer or (2) the
question is impossible to answer from the given image.

A preliminary analysis of the data showed that human evaluators can often accurately identify
confusion in responses without consulting the corresponding image 1. Thus, to investigate the role of
image features in classifier performance, we divide our confusion detection problem into two subtasks:
(1) Visual Question Response (VQR), which involves the analysis of questions, user responses, and
image features, and (2) Question Response (QR), which relies solely on questions and responses. For
each task, we first perform a binary classification of confusion by predicting a binary label (with 0
representing the presence of a correct answer and 1 representing confusion as defined above); then,
we identify the correct answer from the unstructured response text.

The creation of automated methods for evaluating accuracy of crowdsourced labels will greatly
improve the modern deep learning workflow paradigm by reducing the need for manual quality
analysis of crowdsourced data as well as enabling the use of annotations from users on social media
platforms.

2 Related Work

To the best of our knowledge, no previous studies have attempted to utilize deep learning approaches
for identifying confusion in unstructured user responses. In this section, we discuss related approaches
that involve the use of image features and text embeddings for classifying data.

2.1 Visual Question Response (VQR) Task

A 2017 study conducted by Microsoft Research proposes a combined bottom-up and top-down
attention mechanism to extract features from images: (1) a Faster R-CNN model is used to identify
salient features (bottom-up), and (2) the question text is used as context to weight these features
(top-down) (1). Features from the question text are extracted and combined with the image features,
generating a joint embedding of the image and question.

Pythia, a model designed by Facebook AI Research, was an entry to the 2018 Visual Question
Answering (VQA) Challenge, where it achieved the top performance (accuracy 72.27%) on the
vqa_v2.0 dataset (18; 12; 2; 19; 8). Pythia uses the bottom-up and top-down attention model as a
baseline, making a series of key modifications, such as changes to attention mechanisms and the
utilization of detectors based on Feature Pyramid Networks from Detectron to extract features. (7).

Since the Pythia model presents an effective method of combining features across images and text
data, we found it to be a suitable starting point for our VQR task; however, significant modifications
were necessary due to the nature of our task, as detailed in subsection 4.2.

2.2 Question Response (QR) Task

Pretrained contextual word representations have been shown to improve machine understanding of
language (16; 10). A 2018 study conducted at Google AI proposes a novel transfer learning method
called BERT (Bidirectional Encoder Representations for Transformers) for generating contextual
encodings of words (5). The BERT approach is an unsupervised learning method that involves
training a deep bidirectional language model with transformers and then using the learned encodings
in other NLP tasks.

The QR task relies on text-based features from the question and user response, so we found the
BERT method to be an appropriate starting point. Since the QR task differs from standard NLP
tasks like question-answer prediction, customization was necessary. Our modifications to the BERT
architecture are outlined in subsection 4.3.

3 Data

The data for this project includes 50,628 Image-Question-Response trios, which were obtained from
social media. Users who uploaded public photos on Instagram were asked questions by a bot based

1Respondents often specifically point out why the question asked was incorrect. In such cases, human
evaluators can identify confusion without examining the image.

2

on the features of the images, and the user responses were collected for inclusion in this dataset 2.
User responses come in the form of unstructured natural language data with colloquial language,
spelling errors, and emojis; the mean length of a response is 35.9 characters or 6.8 words. All trios in
our dataset were manually annotated with the ground truth answer by Amazon Turk workers.

We first assigned binary labels to indicate the presence of confusion in user responses, assigning a
label of 1 if the Amazon Turk annotator could not identify a correct answer in the user response, and
assigning a label of 0 otherwise.

We then added additional annotations to all examples with accurate user responses (label=0) in order
to facilitate identification of the correct answer phrase in the unstructured responses. We designed a
custom, emoji-aware tokenizer to extract tokens from responses; then, we annotated all examples
with the answer span, consisting of the starting and ending index of the ground truth answer with
respect to the response tokenization. Since the ground truth answers in our dataset were manually
composed by human annotators, there is considerable noise; in many cases, the ground truth answers
are not an exact match or substring of the user response. Thus, span identification was performed with
a fuzzy string matching algorithm. Significant development effort went into designing tokenization
and span extraction methods to account for a variety of edge cases (which are extremely common
in unstructured responses)In some cases, the ground truth answer could not be found in the user
response despite having been labelled as not confused (label=0) in the previous step; these examples
were removed from our dataset. 3

We randomly split our dataset into train (80%), validation (10%), and held-out test sets (10%), The
dataset shows substantial class imbalance, with nearly twice as many examples assigned labels of 0
as those assigned labels of 1. Table 4 (in the supplementary material) shows the distribution of our
dataset.

4 Approach

4.1 Baseline Models

We devised two baseline models to identify confusion in user responses to questions. Both baselines
make binary predictions by evaluating text-based features from questions and responses, without
considering image features.

For our initial baseline approach, we designed a bag-of-words model. Naïve tokenization of questions
and responses was performed based on whitespace characters, and a fixed vocabulary was generated
from the 10,000 most frequent words appearing in the training set. All questions and responses were
then encoded as bag-of-words frequency vectors of size 10,000. The question vector and response
vector were individually passed through separate fully-connected layers and ReLU nonlinearities,
before being concatenated and passed through a final fully-connected layer and sigmoid nonlinearity.
This resulted in a single value representing a probability of confusion.

Our second baseline model involved the use of a more complex neural model as well as a different
method for encoding the input. Again, naïve tokenization was performed. Each token in the question
and user response was represented with either a 300-dimensional GloVe vector or a 300-dimensional
emoji2vec representation (15; 6). Then, the encoded question and user response were passed
through separate single-layer, unidirectional LSTMs (9). The final hidden states of the LSTMs were
concatenated and passed through a fully-connected layer and a dropout layer (p=0.5); finally, we
applied a sigmoid nonlinearity to the output to obtain a probability of confusion.

4.2 Visual Question Response (VQR)

The Pythia model served as an effective starting point, but major changes to the architecture were
necessary to perform the VQR task. Whereas Pythia predicts answer labels given the image and
the question, our model utilizes an image-question-response trio to predict whether the response
contains a correct answer to the question based on an image. Another important issue is the distinction

2It is important to note that since questions were asked by a bot, some questions were impossible to answer
3On manual inspection, these turned out to be cases where the annotator provided a summary/translation of

the ground truth answer or invented an answer to the question that was not present in the original response.

3

between natural-language and formatted inputs. The Pythia model and standard visual question
answer datasets are built to handle formatted answers only (such as "table"). The VQR dataset, on
the other hand, uses natural language responses, such as "yes, it’s my grandmother’s table."

Our first modification to the Pythia architecture is the mapping of input data. We converted our dataset
to the COCO format, adding fields for labels and responses (shown in Figure 1). We developed a
custom tokenizer to handle our unstructured input, which helps address a variety of edge cases that
are typically not present in formatted text data. For example, many responses contain emojis and
punctuation used without separating whitespaces; our tokenizer handles these cases to avoid the
unnecessary use of <UNK> word embeddings. Next, we explored two types of word embeddings
to encode questions and responses: (1) a combination of 300-dimensional GLoVe and emoji2vec
embeddings, and (2) 300-dimensional FastText embeddings (15; 6; 3; 14). A pretrained Faster
R-CNN model from Facebook’s Detectron software package was used to extract features from all
images; this model computes bottom-up attention by identifying salient objects in images (11; 7).

Figure 1: VQR Dataset Format The custom format used by the VQR dataset in a single JSON entry,
modeled after the Microsoft COCO dataset (4).

Next, in order to handle the user response, we added a significant extension to the Pythia architecture,
as shown in Figure 2a. A word embedding of the user response is first generated. Then, the encoding
is passed through an LSTM with hidden states of size 1028, followed by a dropout layer, two
convolutional layers, and a final softmax layer. After obtaining this encoding of the user response,
we generated a joint embedding of image, question, and response embeddings by passing each
representation through separate linear layers and ReLU nonlinearities and then computing a weighted
Hadamard product. In the following equation, e represents the joint embedding, f represents a linear
layer, i represents the image representation, and q and r represent question and response embeddings.

e = (2 ∗ fi(i)) ○ (0.5 ∗ fq(q)) ○ (0.5 ∗ fr(r))

The question embedding (q) and response embedding (r) are also used to compute top-down attention
on images.

For binary classification, the Pythia model was modified to produce a single class output. We passed
the joint embedding through three linear layers, combined outputs, and applied a sigmoid nonlinearity
to the result; this tensor was then passed through a linear layer and a second sigmoid nonlinearity. The
output of the classifier is a value 0 ≤ ŷ ≤ 1, representing the probability of user confusion. Weighted
BCE loss was computed, with weightings assigned by class ratios.

For answer prediction, the Pythia model was modified to predict the start and end index of the true
answer within the user response. The joint embedding was passed through three separate nonlinear
layers (each consisting of a linear layer and ReLU nonlinearity) and three linear layers. Then, outputs
were combined and passed through two additional linear layers; finally, a softmax activation function
was applied to the output. The two resulting tensors are of size 30, representing the maximum number
of tokens in a response; the first tensor represents a probability distribution across indices likely to
be the start of the answer span, and likewise, the second tensor represents a probability distribution
across indices likely to be the end of the answer span. Finally, the BCE loss was computed over the
predicted spans.

4.3 Question Response (QR)

The BERT architecture served as an effective starting point for the QR task; our model builds on
Google AI’s pretrained BERT base uncased model. For binary classification, pooled outputs from the
BERT model were passed through a dropout layer and a fully connected layer, resulting in two output
classes. Then, a softmax activation function was applied. The resulting value of the first output class

4

(a) VQR Model for Binary Classification

(b) VQR Model for Answer Prediction

Figure 2: Model architecture for VQR binary classification and answer prediction The original
Pythia architecture is shown in blue, with our customizations in orange

represents the probability that the user reported a correct answer, while the value of the second class
represents the likelihood of user confusion. This was done to mimic the existing structure of BERT
for classification; in practice AUC-ROC is computed on the output of the second class only.

For answer prediction, encoded hidden states corresponding to the last attention block are passed
through a single fully connected layer. This results in two output classes, representing indices in the
response tokens; the first value represents the start index of the answer span and the second represents
the end index. Since BERT performs subword tokenization, we had to perform an alignment between
predicted output indices and our word-level response tokens.

We also designed a multi-task model based on the BERT architecture, which is simultaneously trained
on both tasks. For each example in our dataset, the model identifies user confusion and predicts an
answer span, combining loss values from both tasks; however, in the case where the user response
demonstrates confusion (and consequently doesn’t have an associated answer span), the loss for
span extraction is manually set to zero. Thus, the answer extraction head is only updated for valid
responses.

(a) QR Model for Binary Classification (b) QR Model for Answer Prediction

Figure 3: Model architecture for QR binary classification and answer prediction Our modifica-
tions to the BERT architecture are in orange.

5

5 Experiments

5.1 Evaluation Method

We evaluated performance on the binary classification task by computing precision, recall, F1 scores,
and AUC-ROC scores. Performance on the answer extraction task was evaluated with F1 and exact
match (EM) scores, following the standard established by the SQuAD challenge (17). Qualitatively,
we explore both correct and incorrect predictions made by the model; we also explore examples
where our model produces surprising results.Since this dataset has not been previously released, our
scores are the first existing performer on this dataset.

5.2 Experimental Details

For the bag of words baseline, we trained the model over three epochs with batches of size 16,
utilizing the Adam optimizer with a learning rate of 0.001 and default parameters (β1=0.9, β2=0.99).
The total training time for the model was 10 hours. For the baseline with pretrained GloVe word
embeddings, we trained the model over five epochs with batches of size 32, again utilizing the Adam
optimizer with a learning rate of 0.001 and default parameters (β1=0.9, β2=0.99). The model took
approximately 18 hours to train.

For the VQR approach based on Pythia, we first preprocessed all images by using a Faster R-CNN
model to extract features; this process took four days to complete. We trained the model over 12000
iterations with a batch size of 32, using the Adamax optimizer with a learning rate of 0.0001. After
significantly optimizing the code base and preprocessing input data, we accomplished a 4x reduction
in total training time to just 88 minutes.

For the QR approach based on BERT, we trained the model over 10 epochs with a batch size of 32,
which took approximately an hour. We used the default BERT learning rate of 5e-5 for the Adam
optimizer. Since BERT requires a maximum sequence length, we implemented a custom trimming
method to suit our dataset. We set the combined maximum sequence length to 50; however since this
represents the combined total of tokens after subword tokenization, several examples exceeded the
maximum length. In these cases, our trimming method randomly chooses a window of the response
such that the ground truth answer is included, discarding the rest of the response. If the user response
does not contain the true answer, a random window is selected.

5.3 Results

Binary Classification Answer Prediction

Model AUC-ROC Precision Recall F1 EM F1

Baseline - Bag of Words 0.50 0.37 0.18 0.24 N/A N/A
Baseline - GloVe Embeddings 0.74 0.62 0.46 0.53 N/A N/A

VQR Model 0.79 0.68 0.59 0.61 0.23 0.46
QR Model 0.84 0.73 0.67 0.70 0.60 0.77

Multi-Task QR Model 0.84 0.73 0.68 0.71 0.61 0.78

Table 1: Model Performance Comparison of model performance on held-out test set for binary
classification and answer prediction tasks

The bag-of-words baseline model achieved an AUC-ROC of 0.50 (precision=0.37, recall=0.18) on
the test set. The baseline with pretrained GloVe word embeddings resulted in an AUC-ROC of 0.74
(precision=0.62, recall=0.46) on the test set. However, this baseline model achieved an AUC-ROC of
only 0.774 on the training set, which indicates that the model is not powerful enough to model all of
the complexities of the data. Further, both baselines took significantly longer to train than the VQR
and QR models.

Interestingly, the BERT-based QR model achieved higher performance than the Pythia-based VQR
model on both the binary classification and answer prediction tasks, with the Multi-Task QR model
achieving an even higher performance than the single-task QR model. It is possible that including

6

image features diverted the VQR model’s attention away from the text features of the response that
were likely to represent confusion.

6 Analysis

6.1 Model Experiments

Model AUC-ROC Precision Recall F1
VQR Model - Response Attention, GloVe Embeddings 0.79 0.68 0.59 0.61
VQR Model - No Response Attention 0.78 0.71 0.52 0.58
VQR Model - FastText Embeddings 0.78 0.66 0.59 0.60

Table 2: Binary Classification Model Experiments Results from VQR model experimentation

Experimental results show that using text features from responses to compute attention on images led
to slight improvements in model performance.

We also compared the VQR binary classification model based on GLoVe embeddings with a model
based on FastText embeddings trained on Common Crawl (3; 14). Since the FastText embeddings
encode subword information, we were able to generate a 300-D FastText embedding for all words in
the natural-language response vocabulary, even for words that were misspelled and would normally
not have a corresponding GLoVe embedding. This allowed for the removal of many <UNK>s in
the dataset. Despite this improvement in encoding responses, model performance was similar to the
results obtained from the VQR model trained on GLoVe embeddings. A possible explanation is that
spurious relationships may exist at the character-level between word embeddings from the original
Common Crawl vocabulary and word embeddings outside of the vocabulary (that were computed
using subword information), 4 resulting in similar FastText embeddings for words with completely
different meanings. Additionally, our data analysis revealed that many of the <UNK> tokens were
concentrated in few examples, so improving those examples did little to affect the overall score;
others, such as misspelled words, occurred a handful of times in a few examples, and were not always
necessary for characterizing the overall confusion of a response.

6.2 Qualitative Evaluation

Analyzing individual examples is important for understanding model performance. Table 3 lists
several illustrative examples for our best performing model. Note that answers are only predicted if
the response is classified as correct (label = 0).

Question/Response Answer Label Predicted
Label

Predicted
Answer

1. What is on top of the cake?
chilli, that is not cake that’s chicken N/A 1 1 N/A

2. What is on the table?
beet and carrot juice,, juice 0 0 beet and carrot juice

3. What is on the building?
it’s a kindergarten,, N/A 1 0 kindergarten

4. Where is the picture taken?
in Vienna, Austria,, N/A 1 0 Vienna, Austria

5. Where is the dog?
sat next to me on the sofa N/A 1 0 sofa

Table 3: Multi-Task Model Evaluation Examples of model performance on various edge cases

4For example, between "false friends" of two languages: "estimated," in English, has a similar sequence of
characters to "estimado" in Spanish, even though the meaning of "estimado" is closer to that of "esteemed" in
English.

7

In example 1, the original question was unanswerable given the content of the image. Annotators
were inconsistent with determining accuracy of responses to unanswerable questions; however, the
model still learned to predict that the user is confused. In this case, the multi-task model predicted
"chilli" as the answer, but this prediction was not reported since the binary classification assigned a
label of 1. In example 2, the model correctly identifies the answer, though it is slightly more verbose
than the ground truth. While annotators varied widely in the level of detail provided, it seems that
the model tends to provide longer answers in general. On the other hand, in example 3, the model
appears to perform poorly on cases of subtle confusion since the model is unable to determine that
the response doesn’t quite match the question. In example 4, the model incorrectly predicts that the
response contains a correct answer. Although the model appears to be correct, one could argue that
the model should learn to reject answers that are not deducible from image features alone. In practice,
this issue was not handled consistently by the annotators, so the model is often confused by these
cases. Finally, in example 5, the model appears to be correct relative to the question and response,
but in reality, the original image depicts a dog in a field. This is one of the relatively rare cases where
the original image is necessary to accurately identify confusion, so the QR model makes an incorrect
prediction.

7 Conclusion

In this paper, we describe two deep learning approaches for evaluating the quality of crowdsourced
data labels and extracting correct answers from unstructured response text. To the best of our
knowledge, this project marks the first time that a model has been designed to identify confusion in
this way. Results show that our customizations of Pythia are effective in addressing the VQR task.
We were able to design a model that could effectively identify confusion in responses (AUC-ROC =
0.79) and extract answers (F1=0.46).

Our second task, QR, was motivated by our initial finding that we, as humans, could often detect
confusion in the responses from text features alone. The QR model implements a customized
version of the BERT architecture to identify confusion solely from question and response text.
Surprisingly, QR results are slightly better than those of the VQR models, which were provided
with image features. Furthermore, the multi-task QR model showed better performance than the
single-task model, achieving an an AUC-ROC score of 0.84 on the binary classification task and an
F1 score of 0.78 on answer prediction. Thus, since extraction and analysis of image features is an
extremely compute-intensive task, the QR model can be utilized to identify crowdworker confusion
in resource-constrained settings, helping accelerate deep learning research.

A key limitation of this work is the presence of noisy ground truth answer labels, which likely
influenced model performance. As discussed in section 3, ground truth answers were manually
labeled by annotators, who examined the image, question, and user response to extract the true correct
answer. We noticed several discrepancies in labels. For example, when questions were impossible to
answer based on the image, some users still managed to provide a correct response; in these cases,
annotators were often inconsistent as to whether or not the response should be regarded as valid.
In addition, since the VQR dataset was constructed to train visual deep learning models to identify
relevant features in images, questions were primarily focused on salient objects appearing in the
image. However, many users misinterpreted questions and responded with irrelevant details, which
were helpful to humans but not to the model.5

One future direction of this work is to train the model to identify such examples by determining when
respondents provide information unrelated to image features. Another avenue is to use this data to
improve the generation of the questions themselves. We could use our models to identify the types
of questions likely to confuse crowdworkers; by adding a "possibility for confusion" feature to the
question-generation model, we could encourage the original bot to ask better questions.

Overall, we believe that the techniques described in this project hold great potential for improving
deep learning workflows by enabling automated quality evaluation of natural language data.

5For example, one user who posted a picture of their cat was asked "Where is the cat?"; an appropriate
response would have provided location-specific information, such as "on the sofa." However, the user responded
with "the cat died in 2016." To further compound the problem, manual annotators wrote the answer was "dead"
for this example, rather than marking the response as confused.

8

8 Additional Information

Our mentor for this project is Sahil Chopra. We also have an external collaborator, Ranjay Krishna
(from the Stanford AI Lab), who has graciously provided the dataset for this project.

References
[1] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang. Bottom-up and top-down

attention for image captioning and visual question answering. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 6077–6086, 2018.

[2] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh. VQA: Visual Question
Answering. In International Conference on Computer Vision (ICCV), 2015.

[3] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with subword information.
Transactions of the Association for Computational Linguistics, 5:135–146, 2017.

[4] X. Chen, H. Fang, T.-Y. Lin, R. Vedantam, S. Gupta, P. Dollár, and C. L. Zitnick. Microsoft coco captions:
Data collection and evaluation server. arXiv preprint arXiv:1504.00325, 2015.

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers
for language understanding, 2018.

[6] B. Eisner, T. Rocktäschel, I. Augenstein, M. Bosnjak, and S. Riedel. emoji2vec: Learning emoji represen-
tations from their description. CoRR, abs/1609.08359, 2016.

[7] R. Girshick, I. Radosavovic, G. Gkioxari, P. Dollár, and K. He. Detectron. https://github.com/
facebookresearch/detectron, 2018.

[8] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh. Making the V in VQA matter: Elevating
the role of image understanding in Visual Question Answering. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

[9] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997.
[10] J. Howard and S. Ruder. Universal language model fine-tuning for text classification, 2018.
[11] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe:

Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.
[12] Y. Jiang, V. Natarajan, X. Chen, M. Rohrbach, D. Batra, and D. Parikh. Pythia. https://github.com/

facebookresearch/pythia, 2018.
[13] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalantidis, L.-J. Li, D. A. Shamma,

et al. Visual genome: Connecting language and vision using crowdsourced dense image annotations.
International Journal of Computer Vision, 123(1):32–73, 2017.

[14] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin. Advances in pre-training distributed word
representations. In Proceedings of the International Conference on Language Resources and Evaluation
(LREC 2018), 2018.

[15] J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for word representation. In Proceedings
of the 2014 conference on empirical methods in natural language processing (EMNLP), pages 1532–1543,
2014.

[16] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer. Deep contextualized
word representations. Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), 2018.

[17] P. Rajpurkar, R. Jia, and P. Liang. Know what you don’t know: Unanswerable questions for squad. CoRR,
abs/1806.03822, 2018.

[18] Yu Jiang*, Vivek Natarajan*, Xinlei Chen*, M. Rohrbach, D. Batra, and D. Parikh. Pythia v0.1: the
winning entry to the vqa challenge 2018. arXiv preprint arXiv:1807.09956, 2018.

[19] P. Zhang, Y. Goyal, D. Summers-Stay, D. Batra, and D. Parikh. Yin and Yang: Balancing and answering
binary visual questions. In Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

9 Appendix

Group Correct Answer (0) Confusion (1)
Train 26,153 14,496
Validation 3242 1795
Test 3169 1773
Total 32,564 18,064

Table 4: Split breakdown by label.

9

https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/pythia
https://github.com/facebookresearch/pythia

	Introduction
	Related Work
	Visual Question Response (VQR) Task
	Question Response (QR) Task

	Data
	Approach
	Baseline Models
	Visual Question Response (VQR)
	Question Response (QR)

	Experiments
	Evaluation Method
	Experimental Details
	Results

	Analysis
	Model Experiments
	Qualitative Evaluation

	Conclusion
	Additional Information
	Appendix

