The Right to Remain Plain: Summarization and Simplification of Legal Documents

Stanford CS224N Custom Project

Isabel Gallegos
Department of Computer Science
Stanford University
iogalle@stanford.edu

Kaylee George
Department of Computer Science
Stanford University
krgeorge@stanford.edu

Abstract

Legal documents are a critical tool for contractual agreements and protections, but legal jargon and document length can present a barrier to comprehension. Having a tool to summarize and simplify these texts can greatly improve understanding, which is key to ensuring fairness. While previous work has developed summarization and simplification models independently, this work seeks to build on these existing techniques to fine-tune a model for legal domain-specific tasks; understand how fine-tuning on one dataset generalizes to other datasets within the legal domain; and examine the impact of simplification as a pre- or post-processing step in summarization. We show that a large language model fine-tuned on legal data outperforms the model with no fine-tuning and other simple, unsupervised baseline methods, and we also demonstrate that it is possible to generalize across different sub-domains within law, training on a sub-domain dataset and applying the model to other sub-domains. Further, initial results show that simplification as a post-processing step preserves meaning and increases readability, and is promising for building a summarization and simplification pipeline. We conclude with a call for higher-quality legal datasets to improve large language models for the law domain.

1 Key Information to include

- Mentor: Lucia Zheng

2 Introduction

Legal jargon and document length can present a barrier to comprehension of legal agreements and protections. Having a tool to summarize and simplify these texts can greatly improve understanding, which is key to mitigating abuse in legal agreements. While there have been several advances in neural methods for summarization techniques, most of these models [1, 2, 3] have focused on the CNN/Daily Mail dataset [4]. We aim to build on these existing summarization techniques and apply them to a new domain: legal documents.

This task is challenging because the language used in legal contracts is very domain-specific, which is likely not included in the training data for large language models like BERT [5] and BART [1], such as BooksCorpus and Wikipedia, and the CNN/Daily Mail data for summarization models. Furthermore, because there is a lack of data for summarization tasks in the legal domain, many popular supervised methods that are used in broader summarization tasks (e.g., news) are not effective in the legal domain. Additionally, there is a lack of data that addresses the task of simplification of legal jargon. To address this challenge, Manor and Li [6] proposed a new dataset for the task of legal document summarization in plain English. Here, we extend their work by fine-tuning a large language model on this dataset and other similar legal-domain datasets. In particular, our work addresses
three goals: (1) domain-specific summarization: fine-tune a model for the legal domain-specific task of summarization; (2) generalization: understand how training on one dataset generalizes to other datasets within the legal domain; and (3) simplification: examine the impact of simplification as a pre- or post-processing step in the summarization task.

We show that a large language model for summarization, namely Facebook’s bart-large-cnn model [7], outperforms unsupervised summarization methods and improves performance on legal texts when fine-tuned on a large legal dataset, whereas the model’s performance is comparable or worse than these unsupervised methods and bart-large-cnn without legal-specific fine-tuning when fine-tuned on smaller legal datasets. We also show that it is possible to fine-tune bart-large-cnn on one dataset and evaluate it on a different legal set without sacrificing performance, demonstrating that generalization across datasets is feasible. Finally, we show that, while simplification as a pre-processing step decreases performance, simplification as a post-processing step is a promising direction for improving readability of summarizations. Taken together, our work also highlights the need for quality domain-specific data to improve summarization and simplification tasks for large language models.

3 Related Work

In this work, we examine two tasks, summarization and simplification, in the legal domain. There are two main classes of summarization tasks: extractive, which builds a summary using words in the original text; and abstractive, which generates new words for the summary. There have been several advancements in deep learning models for these tasks. HIBERT is an extractive summarization model that uses a hierarchical sentence and document encoders to generate representations of documents, and is pre-trained on masked sentence prediction and fine-tuned on the CNN/Daily Mail and a New York Times datasets [3]. See et al. presents an abstractive summarization model that copies words by sampling the attention distribution, a form of extractive summarization, and then generates new words from an extended vocabulary; this model is also applied to the CNN/Daily Mail dataset [2]. Facebook has also developed the bart-large-cnn model for summarization, which is used in this work. The original BART model, presented in [1], is a sequence-to-sequence Transformer-based model similar to BERT [5], pre-trained by corrupting and reconstructing documents and fine-tuned with various downstream tasks, including sequence classification and generation. The large-sized BART was fine-tuned on the CNN/Daily Mail dataset to produce bart-large-cnn.

Simplification is the process of removing complexity from a text, such as through restructuring a sentence or replacing a word, and can be framed as a machine translation problem, translating from complex to simple English. Facebook and Martin et al. [8] have developed ACCESS, a Transformer-based text simplification model that uses neural techniques to control compression, paraphrasing, complexity in text generation, and achieved state of the art performance on the WikiLarge test set of complex-simple sentence pairs. While we use ACCESS in this work, other simplification models also exist, including LSTM-based methods [9] and rule-based pipelines [10].

Finally, while prior work has shown that pre-training language models on domain-specific datasets shows substantial gains over general models pre-trained on generic corpora such as Wikipedia [11] [12] [13], Manor and Li [6] highlight the issues that lack of domain-specific training data can impose: the performance of the summarization methods on their legal dataset was noticeably lower than that of the non-legal datasets, so development of more resources for the legal domain is necessary for future work on the domain to improve.

4 Approach

While there have been several advances in neural methods for summarization, these models are not specific to legal language and can produce poor predictions given legal jargon rare in other contexts. We fine-tune several models to evaluate the efficacy of fine-tuning a large language model on legal documents.
4.1 Fine-tuning BART for legal summarization

To improve upon both non-neural summarization techniques and neural summarization models pre-trained and fine-tuned on non-legal data, we fine-tuned Facebook’s bart-large-cnn on a legal dataset by dividing the dataset into train, validation, and test sets with a random 70/15/15 split; determining optimal hyperparameters using the train and validation sets; and evaluating the final model on the test set. This fine-tuning procedure was implemented ourselves following Hugging Face’s summarization pipeline. This fine-tuning procedure is referred to as within-dataset, or within-dataset-<dataset-name> to denote which dataset the model was fine-tuned on.

The performance of our fine-tuned bart-large-cnn model was compared to five unsupervised, extractive baseline techniques used by: TextRank, which calculates similarity scores for sentences using the PageRank algorithm; KLSum, a greedy algorithm that minimizes the KL divergence between the predicted and reference summary; Lead-1 and Lead-K, which select the first one or k sentences in a text; and Random-K, which randomly selects k sentences. We used existing implementations for TextRank and KLSum, and implemented the others ourselves. Additionally, we included the original bart-large-cnn model with default Hugging Face hyperparameters and no fine-tuning as an additional baseline.

4.2 Generalization across legal datasets

Sub-areas of law may each have their own vocabularies and characteristics, and thus we sought to understand how generalizable a model fine-tuned on one legal dataset was to a separate legal dataset, including a dataset in a different sub-domain of law. We fine-tuned the bart-large-cnn model on one legal dataset split into training and validation set with a random 85/15 split, and then evaluated the model on the test set of a different dataset. We call this fine-tuning procedure across-dataset, or across-dataset-<dataset-name> to denote which dataset the model was fine-tuned on. Using the same test set in the within-dataset and across-dataset experiments, we compared the test set’s performance on the across-dataset models to that dataset’s within-dataset performance.

4.3 Simplification for pre- or post-processing

No legal datasets exist to our knowledge for both summarization and simplification, despite the importance of simplification in translating complex language to layman’s terms. To explore this area, we applied Facebook’s ACCESS model with default hyperparameters and no fine-tuning to the model input or output as a pre- or post-processing step. For pre-processing, referred to as pre-simplified, a simplified document was provided as input into the within-dataset model fine-tuned in Section 4.1, with no additional fine-tuning. For post-processing, referred to as post-simplified, we performed a forward pass of the within-dataset model, and simplified the predicted summary to produce the final output. We compared the results to the within-dataset experiments.

5 Experiments

5.1 Data

We used four datasets in this work:
1. **TLDR.** The TLDR dataset was developed by [6] for law-specific summarization tasks, and consists of 85 samples from the TL;DRLegal website, which contains software licenses.

2. **TOSDR.** The TOSDR dataset [19] has 361 samples from the “Terms of Service; Didn’t Read” (ToS;DR) website, which contains user data and privacy policy agreements.

3. **Billsum.** The Billsum dataset [20] consists of US Congressional and California state bills. We used a subset of the full dataset, taking 2,018 examples with document lengths in the bottom 10% to minimize truncation effects described in Section 5.3.

4. **Tiny Billsum.** The Tiny Billsum dataset was created by randomly sampling 59 training examples and 13 validation examples from the Billsum dataset to replicate the training and validation set sizes of TLDR. Tiny Billsum’s test set is identical to that of Billsum.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Train/Val/Test (Total) Examples</th>
<th>Mean Document Length (Std)</th>
<th>Mean Summary Length (Std)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLDR</td>
<td>59/13/13 (85)</td>
<td>127.24 (134.26)</td>
<td>11.56 (8.00)</td>
</tr>
<tr>
<td>TOSDR</td>
<td>252/54/55 (361)</td>
<td>40.90 (48.64)</td>
<td>9.41 (5.67)</td>
</tr>
<tr>
<td>Billsum</td>
<td>1412/303/303 (2018)</td>
<td>1135.95 (453.45)</td>
<td>140.55 (95.74)</td>
</tr>
<tr>
<td>Tiny Billsum</td>
<td>59/13/303 (377)</td>
<td>1147.12 (468.15)</td>
<td>143.45 (94.92)</td>
</tr>
</tbody>
</table>

Table 1: Dataset characteristics.

Each dataset provides a full-length document and reference summary for each example, which are the inputs and outputs of the model (see Tables 5 and 6 for examples). Following the methodology of [6], each dataset was pre-processed with lowercasing, stopword removal, and lemmatization.

5.2 Evaluation method

For summarization evaluation, we used Recall-Oriented Understudy for Gisting Evaluation (ROUGE), which is a set of metrics for evaluating machine-produced summarization of texts. ROUGE compares overlapping n-grams between machine-produced summaries against a set of reference summaries (usually human provided). The variations of ROUGE we used were: -1 and -2 for unigram and bigram overlap, and -L for Longest Common Subsequence overlap between machine-produced and reference summaries. We wrote our own script to produce ROUGE scores using the ROUGE library [21].

For simplification evaluation, we used Flesch-Kincaid Grade Level (FKGL) [22], which we computed using the EASSE Python package for sentence simplification [23]. FKGL is a commonly used metric for measuring readability and is computed as a linear combination of the number of words per simple sentence and the number of syllables per word. A limitation of FKGL is that it does not measure well-formedness or semantic preservation of predictions. To supplement FKGL, the ACCESS authors also include the SARI metric, which compares the predicted simplification with both the source and target references [8]. However, because there is no reference simplified data, we cannot draw strong conclusions from SARI scores and instead primarily rely on FKGL scores to measure readability.

Finally, to mitigate limitations of ROUGE and FKGL in assessing semantic quality, we developed two additional qualitative metrics, each calculated manually with a scale of “Bad”, “Moderate”, and “Good”:

1. **Quality.** Well-formedness and readability, independent of the reference or prediction summary. Highly-repetitive predictions and underscriptive references are penalized.

2. **Match.** How well the prediction matches the reference semantically. Predictions are penalized for lacking important or adding superfluous content compared to the reference.

5.3 Experimental details

For each within-dataset and across-dataset experiment, we performed a parameter sweep and chose the following optimal parameters: the epoch and learning rate with the highest average ROUGE performance across two seeds, and the seed with the highest overall ROUGE score on the evaluation set. We selected the maximum BATCH_SIZE and MAX_SOURCE_LENGTH possible, given computing
and model input length constraints. \texttt{MAX_SOURCE_LENGTH} is much shorter than the average document length for the Billsum dataset, which resulted in significant truncation for model inputs.

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline
Hyperparameter & Fixed & \texttt{within-dataset} & \texttt{across-dataset} & \\
\hline
\texttt{BATCH_SIZE} & 16 & - & - & - & - & - \\
\texttt{NUM_TRAIN_EPOCHS} & *[1, 2, 3, 4] & 4 & 4 & 4 & 4 & 4 \\
\texttt{LEARNING_RATE} & *[1e-5, 2e-5, 3e-5] & 3e-5 & 3e-5 & 3e-5 & 3e-5 & 3e-5 \\
\texttt{WEIGHT_DECAY} & 0.01 & - & - & - & - & - \\
\texttt{GRAD_ACCUMULATION_STEPS} & 8 & - & - & - & - & - \\
\texttt{SEED} & *[224, 161] & 161 & 161 & 161 & 161 & 224 \\
\texttt{MAX_SOURCE_LENGTH} & 128 & - & - & - & - & - \\
\texttt{MAX_TARGET_LENGTH} & 64 & - & - & - & - & - \\
\hline
\end{tabular}
\caption{Optimal hyperparameters used. * indicates parameters included in the parameter sweep.}
\end{table}

5.4 Results

5.4.1 within-dataset Models

The performance of the within-dataset models in comparison to the baseline methods can be seen in Table 3. First, we observe that the \texttt{bart-large-cnn} baseline with no fine-tuning did not outperform the other baseline techniques, likely due to the difference in the distribution and vocabularies between the CNN/Daily Mail data and legal datasets, thus highlighting the need for an improved neural model.

The within-dataset models fine-tuned on the TLDR and TOSDR datasets had comparable or worse performance to all baselines, where within-dataset-tldr had a ROUGE F-1 score on average 8.42 points below the best baseline across R-1, R-2, and R-L; within-dataset-tosdr was 5.94 points below. However, we saw significant improvement over the baselines, including bart-large-cnn with no fine-tuning, with the within-dataset-billsum model, which had a ROUGE F-1 score on average 9.49 points higher than the best baseline for R-1, R-2, and R-L. In the case of Billsum, this suggests that domain-specific fine-tuning provides drastic gains over general-domain language models, highlighting the need for domain-specific training data.

To understand whether TLDR and TOSDR’s poor performance can be explained by their small training set size, we compared within-dataset-tldr and within-dataset-billsum to within-dataset-tiny-billsum, where Tiny Billsum contains a subset of Billsum examples, but has the same training size as TLDR. As shown in Figure 5, evaluation on within-dataset-tiny-billsum resulted in a lower ROUGE F-1 score compared to within-dataset-billsum, but still significantly higher than within-dataset-tldr, which implies that TLDR and TOSDR’s poor performances may be due to in part, but not entirely, to their small size.

It is notable that within-dataset-tldr and within-dataset-tosdr had worse performance than the bart-large-cnn model with no fine-tuning for almost all ROUGE metrics. Because training set size does not fully explain this observation, we hypothesize that this may be due to the poor dataset quality of TLDR and TOSDR, which we explore in Section 6.

5.4.2 across-dataset Models

The across-dataset results can be seen in Figure 6 which shows the ROUGE metrics for each applicable across-dataset model for each dataset. Because the full dataset was used for training and validation to fine-tune the across-dataset models, we do not evaluate a dataset on its own across-dataset model but instead provide its within-dataset performance for comparison.

The TLDR and TOSDR datasets did not generalize well to the Billsum dataset, which is unsurprising given the poor within-dataset performances of TLDR and TOSDR, but TLDR and TOSDR did generalize well to each other, with the across-dataset-tldr and across-dataset-tosdr models performing similarly to within-dataset models for TOSDR and TLDR, respectively. The across-dataset-billsum appeared to generalize well to all datasets, achieving comparable
5.4.3 pre-simplified and post-simplified Pipelines

Neither simplification as a pre- nor post-processing step improved ROUGE performance, as seen in Figure 7. Using the pre-simplified pipeline worsened performance across all datasets more significantly than did the post-simplified pipeline. However, simplification often changes sentence structure or word choice, and these syntactic differences are penalized by any n-gram comparison metric, one major limitation assessing these results with ROUGE scores. While more qualitative analysis to better understand these results is presented in Section 6, it may be that the pre-simplified pipeline performed poorly because simplifying the input document resulted in removing important information, as observed in Tables 5 and 6. The post-simplified results are promising because the performance is only marginally worsened, while still potentially providing more readable output.

As seen in Table 4, FKGL scores improved for all three datasets regardless of whether simplification is applied as a pre- or post-processing step. Taken together with Figure 7 these results suggest that simplification as a post-processing step may be beneficial for the summarization and simplification task pipeline since readability increases and ROUGE scores are, more or less, preserved, compared to ROUGE scores without simplification.

It is worth noting that the TLDR and TOSDR datasets were intended to have reference summaries that were in plain English, while the Billsum dataset doesn’t particularly focus on simplification. Due to data availability constraints, we were unable to train or evaluate on only simplified legal data. Thus, more work must be done to more critically evaluate the simplified predictions of the ACCESS model. Additionally, as with the bart-large-cnn model, there were limitations for input size to the ACCESS model, requiring truncated document inputs that could also negatively impact results.
6 Analysis

6.1 Select Examples

A major limitation of ROUGE and other n-gram evaluation metrics is that they penalize semantically-similar sentences that are syntactically different. To mitigate this limitation, we selected two examples from each dataset’s test set, and manually examined the following inputs and outputs: original document, simplified document, reference summary, within-dataset summary, pre-simplified summary, post-simplified summary, and applicable across-dataset summaries. Two examples are shown in Tables 5 and 6 in Appendix A.1.

We observed several common cases for errors. Short original documents (approximately 10-20 words) often lead to very repetitive predictions longer in length. This may occur because the model repeats the original text to produce a summary with a length similar to the MAX_TARGET_LENGTH parameter. Some poor summaries also occur when the prediction “copies” the original document nearly word-for-word, instead of highlighting key phrases. Finally, occurring most often with Billsum, whose input documents were truncated significantly, some predictions matched the beginning portion of a reference, but cut off prematurely to produce an incomplete summary.

We also observed trends in the simplified documents and summaries. First, some of the simplified output predictions were very similar to the input document. This may occur because the ACCESS model is not trained on specific legal language data input, so it may be unable to handle legal jargon. Second, the simplification model may introduce new words that do not fit the context of the original document. This may occur when there are multiple meanings of a word that are context-dependent, and the model does not know which meaning to use. Finally, pre-simplified inputs may be prematurely truncated due to ACCESS input length constraints, which may delete key phrases important for summarization.

6.2 Manual Evaluation

We also hypothesized that the quality of the dataset used in fine-tuning affected model performance. Billsum had the most substantive documents and summaries, compared to low-quality reference summaries provided by TLDR and TOSDR (i.e., “hi.” or “blame google.”; see Appendix A.2). How-
ever, Billsum contained multiple instances of sub-headers (i.e., “section 1”), section code references, and miscellaneous numbers which may have impacted the model’s ability to parse. Examining a total of 30 summaries for five summary types (within-dataset, pre- and post-simplified, and two across-dataset) for six select examples, we manually determined Quality metrics for each reference, and Quality and Match metrics for each prediction. Figure 8 shows the distribution of Reference Quality for each value of Prediction Quality and Prediction Match. There appears to be a moderately-strong relationship between Reference Quality and Prediction Quality, where higher-quality predictions have a higher proportion of “Good”-quality references, and there is a weak relationship between Reference Quality and Prediction Match, where better matches have a lower proportion of “Poor”-quality references.

Figure 8: The quality of the prediction, and how well the prediction matches the reference, in comparison to the quality of the reference summary.

6.3 Attention Weights

Using the Bertviz visualization tool [24], we briefly explore the attention behavior of our fine-tuned bart-large-cnn model, which is a Transformer encoder-encoder sequence-to-sequence model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder [1].

Clark et al. [25] analyzed BERT’s attention mechanisms, and we follow a similar analysis here. One difference between the bart-large-cnn model and BERT is that in bart-large-cnn, each layer of the decoder additionally performs cross-attention over the final hidden layer of the encoder (as in
the Transformer sequence-to-sequence model), which we display in Figure 9. Here, we notice similar surface-level attention behaviors in our fine-tuned bart-large-cnn as that explored in [25].

1. **Delimiter-focused attention patterns** (Figures 9a, 9b, 9c): Attending to the sentence delimiter or period tokens. Clark et. al. [25] speculate that this pattern serves as a kind of “no-op”; an attention head focuses on the ‘<s>’ tokens when it can’t find anything else in the input sentence to focus on.

2. **Specific positional offsets** (Figures 9a:11-3, 9b): Attention is focused on either the previous, current, or next token. For example, the next word pattern is highlighted in Figure 9a:11-3, in which attention is focused on the next word in the input sequence.

3. **Broad attention** (rarer pattern, Figure 9a:9-11, i.e., ‘Facebook’): Attention is divided fairly evenly across all words in the same sentence for a particular word. bart-large-cnn is essentially computing a bag-of-words embedding by generally taking an (almost) unweighted average of the word embeddings in the same sentence.

7 Conclusion

Our results show that our fine-tuned bart-large-cnn model outperforms baselines by a significant margin for the Billsum dataset, but not the TLDR and TOSDR datasets. This suggests that large language models fine-tuned on the legal specific-domain perform well when there exists more and higher quality data. Thus, we emphasize the importance of, and need for, quality data in specific domains, both in length and prose, for substantial performance gains. Additionally, our data input was also limited in that both the bart-large-cnn and ACCESS models sometimes required significantly truncated inputs to accurately run.

For domain-specific tasks, our results suggest that generalization across different datasets within the legal domain but of different sub-domain types are comparable to performance of models trained within datasets. If higher-quality legal data is collected, our results suggest that it is possible to train a summarization and simplification pipeline on one type of data in a sub-domain within the legal field and deploy the model on other data types within the legal domain, such as court case citations, user policies, court case proceedings, parliamentary proceedings, and more. Thus, generalization across sub-domain tasks in a specific domain could be further explored in future work, which may contribute to helping overcome the challenge of specific-domain data scarcity. Finally, our preliminary results show that simplification as a post-processing step seems promising for preserving ROUGE accuracy and increasing readability, although more work must be done examining semantic preservation. A limitation we faced in this work, however, was lack of quality data for simplification. An avenue for future work may be to train simplification models on the legal specific-domain and test the impact on the summarization and simplification pipeline.

References

A Appendix

A.1 Example Inputs and Outputs

Example inputs and outputs for the within-dataset, across-dataset, and pre- and post-simplified experiments can be seen in Tables 5 and 6.

Original Document	minecraft end user licence agreement in order protect minecraft game member community need end user licence term set rule downloading using game. like rule tried keep short possible. break rule may stop using game. think necessary might even ask lawyer get touch. buy downloaded use play game agreeing stick rule end user licence term eula. want agree rule must buy download use play game. eula incorporates term use mojang com website account term brand asset usage guideline privacy policy. agreeing eula also agree part three document please read carefully.
Simplified Document	buy download use play game using stick rule end user licence term eula
Reference Summary	using minecraft agree end user licence agreement. break rule might keep playing minecraft
within-dataset Summary	buy download use play game agreeing stick rule end user licence term eula. want agree rule must buy download use play game. eula incorporates term use mojang com website account term brand asset usage guideline privacy policy. agreeing eula also agree part three document please read carefully.
Pre-Simplified within-dataset Summary	buy download use play game using stick rule end user licence term eula. want agree rule must buy download use play game. eula incorporates term use mojang com website account term brand asset usage guideline privacy policy. agreeing eula also agree part three document please read carefully.
Post-Simplified within-dataset Summary	buy download use play game agreeing stick rule end user licence term eula. want agree rule must buy download use play game. eula incorporates term use mojang com website account term brand asset usage guideline privacy policy. agreeing eula also agree part three document please read carefully.
across-dataset-tosdr Summary	buy use play game. buy use use game. eula incorporates term use mojang com website account term brand asset usage guideline privacy policy. agreeing eula also agree part three document please read carefully.
across-dataset-billsum Summary	megancraft end user licence agreement (eula) - amends minecraft game member community licence agreement require use use use game’s term use mojang com website account term brand asset usage guideline privacy policy. requires use use use mojangcom account account.

Table 5: Example inputs and outputs, with TLDR original document.

Original Document	section 1. short title. act may cited “ independent spent nuclear fuel storage act 1994 ”. sec. 2. table content. sec. 1. short title. sec. 2. table content. sec. 3. definition. sec. 4. finding. sec. 5. amendment nuclear waste policy act 1982. sec. 3. definition. purpose act – (1) term “ commission ” mean nuclear regulatory commission. (2) term “ secretary ” mean secretary department energy. sec. 4. finding. congress find – (1) 1998 , approximately forty-five thousand ton spent nuclear fuel stored commercial nuclear reactor across nation. (2) deep geologic high level radioactive waste spent nuclear fuel repository envisioned nuclear waste policy act 1982 (42 u.s.c. 10101 et seq.) constructed time permit secretary receive accept high level radioactive waste spent nuclear fuel contemplated section 123 302 act (42 u.s.c. 10143 , 10222).
Simplified Document	section 1. short title. however , it may be thought that the system may have spent nuclear fuel storage act 1994 ” , but sec. 2. short title. 1. short title. 2. table content. 3. definition. sec. 4. change nuclear waste policy act 1982 , and 3. definition purpose act – (1) term “ commission ” mean nuclear commission ” approximately 4 thousand people (1998) .
Reference Summary	independent spent nuclear fuel storage act 1994 - amends nuclear waste policy act 1982 provide secretary energy facility available accept high level radioactive waste spent nuclear fuel certain commercial nuclear facility specified deadline. facility may offset expense providing storage spent fuel generated date credit certain fee payment date secretary’s first acceptance authorized storage disposal facility
within-dataset Summary	independent spent nuclear fuel storage act 1994 - amends nuclear waste policy act 1982 authorize secretary department energy (dfe) receive accept high level radioactive waste high-level radioactive waste , including dry cask storage facility , high-grade radioactive waste (high-quality radioactive waste) .
Post-Simplified within-dataset Summary	independent spent nuclear fuel storage act 1994 - amends nuclear waste policy act 1982 allowing secretary department energy (dfe) receive accept high level radioactive waste high-level radioactive waste , including dry cask storage facility , high-grade radioactive waste (high-quality radioactive waste).
across-dataset-tosdr Summary	Section 1. short title. act may cited “ independent spent nuclear fuel storage act 1994 ”. sec. 2. finding. congress find – (1) 1998 , approximately forty-five thousand ton spent nuclearfuel stored commercial nuclear reactor across nation. (2) deep geologic high level radioactive waste spent nuclear fuel repository envisioned nuclear waste policy act 1982 (42 u.s.c. 10101 et seq.) constructed time permit secretary receive accept high level radioactive waste spent nuclear fuel contemplated section 123 302 act (42 u.s.c. 10143 , 10222).
across-dataset-tosdr Summary	Section 1. short title. act may cited “ independent spent nuclear fuel storage act 1994 ”. sec. 2. finding. congress find – (1) 1998 , approximately forty-five thousand ton spent nuclearfuel stored commercial nuclear reactor across nation. section 1. table content

Table 6: Example inputs and outputs, with Billsum original document.

A.2 Dataset Quality

We observed several examples of low-quality summaries in the TLDR and TOSDR datasets. We provide examples in Tables 7 and 8 with Billsum shown for comparison in Table 9.
welcome pokémon go video game service accessible via niantic inc niantic mobile device application app . make pokémon go term service term easier read video game service app website located http pokemongo nianticlabs com http www pokemongolive com site collectively called service . please read carefully term trainer guideline privacy policy govern use service .

agree engage activity sdk including development distribution application interferes disrupts damage access unauthorized manner server network property service google third party malware .

maximum extent permitted law agree defend indemnify hold harmless google affiliate respective director officer employee agent claim action suit proceeding well loss liability damage cost expense including reasonable attorney fee arising accruing use sdk b application develop sdk infringes intellectual property right person defames person violates right publicity privacy c non compliance license agreement .

Table 7: Three shortest summaries for TLDR dataset.

search encrypt track search history user identifiable way . popular search engine create search profile specific user order target ad based search query user navigates internet . search encrypt track search history user identifiable way .

cooky small data file commonly stored device browse use website online service . widely used make website work work efficiently well provide reporting information assist service advertising personalized . cooky type technology enable functionality also use similar type technology . see information example advertising identifier . advertising identifier similar cooky found many mobile device tablet example identifier advertiser idfa apple io device google advertising id android device certain streaming medium device . like cooky advertising identifier used make online advertising relevant . netflix use cooky advertising identifier . essential cooky cooky strictly necessary provide website online service . example service provider may use cooky authenticate identify member use website application provide service . also help u enforce term use prevent fraud maintain security service . performance...

cooky used far required technical working system never use track third party site .

Table 8: Three shortest summaries for TOSDR dataset.

section 1. charter . ukrainian american veteran , incorporated , organized incorporated law state new york , hereby recognized granted federal charter . sec . 2. power . corporation shall power granted bylaw article incorporation filed state incorporated subject law state . sec . 3. purpose . purpose corporation provided article incorporation include commitment , national basis , – (1) preserve , protect defend constitution united state ; (2) commemorate war , campaign , military action united state order reflect respect , honor , tribute dead surviving veteran ; (3) give individual throughout nation greater understanding appreciation sacrifice people participated military action behalf individual throughout united state ; (4) stimulate , highest degree possible , interest entire nation problem veteran...

section 1. administrative naturalization ceremony . section 337 immigration nationality act (8 u.s.c . 1448) amended adding end following : " (e) (1) ceremony described subsection () shall , minimum , contain following event : " () introduction consist preparatory remark explain nature significance ceremony well introduction department homeland security representative conducting ceremony special guest , participant , group . " (b) introduction new citizen may accomplished either department homeland security personnel individual . name country origin applicant included . practical include name applicant due size group naturalized . brief statement setting forth number person administered oath country origin made . " (c) oath allegiance administered department homeland security officer consistent section . " ()

section 1. report timeliness processing application naturalization . () general. – later january 31 , 1995 , commissioner immigration naturalization shall submit congress report timeliness processing application naturalization . report shall include – (1) information , described subsection () shall , minimum , contain following event : " (e) (1) ceremony described subsection () shall , minimum , contain following event : " () introduction consist preparatory remark explain nature significance ceremony well introduction department homeland security representative conducting ceremony special guest , participant , group . " (b) introduction new citizen may accomplished either department homeland security personnel individual . name country origin applicant included . practical include name applicant due size group naturalized . brief statement setting forth number person administered oath country origin made . " (c) oath allegiance administered department homeland security officer consistent section . " ()

directs commissioner immigration naturalization report timeliness processing naturalization application .

Table 9: Three shortest summaries for Billsum dataset.