Lecture 4: Backpropagation and computation graphs
Lecture Plan

Lecture 4: Backpropagation and computation graphs

1. Matrix gradients for our simple neural net and some tips [15 mins]
2. Computation graphs and backpropagation [40 mins]
3. Stuff you should know [15 mins]
 a. Regularization to prevent overfitting
 b. Vectorization
 c. Nonlinearities
 d. Initialization
 e. Optimizers
 f. Learning rates
1. Derivative wrt a weight matrix

- Let’s look carefully at computing $\frac{\partial s}{\partial W}$.
 - Using the chain rule again:

$$\frac{\partial s}{\partial W} = \frac{\partial s}{\partial h} \frac{\partial h}{\partial z} \frac{\partial z}{\partial W}$$

$s = u^T h$

$h = f(z)$

$z = Wx + b$

$x = [x_{\text{museums}}, x_{\text{in}}, x_{\text{Paris}}, x_{\text{are}}, x_{\text{amazing}}]$
Deriving gradients for backprop

• For this function (following on from last time):

\[
\frac{\partial s}{\partial W} = \delta \frac{\partial z}{\partial W} = \delta \frac{\partial}{\partial W} WX + b
\]

• Let’s consider the derivative of a single weight \(W_{ij} \)

\(W_{ij} \) only contributes to \(z_i \)

• For example: \(W_{23} \) is only used to compute \(z_2 \) not \(z_1 \)

\[
\frac{\partial z_i}{\partial W_{ij}} = \frac{\partial}{\partial W_{ij}} W_i.x + b_i
\]

\[
= \frac{\partial}{\partial W_{ij}} \sum_{k=1}^{d} W_{ik}x_k = x_j
\]
Deriving gradients for backprop

- So for derivative of single W_{ij}:
 \[
 \frac{\partial s}{\partial W_{ij}} = \delta_i x_j
 \]

- We want gradient for full W – but each case is the same

- Overall answer: Outer product:
 \[
 \frac{\partial s}{\partial W} = \delta^T x^T
 \]
 \[
 [n \times m] \times [n \times 1] \times [1 \times m]
 \]
Deriving gradients: Tips

- **Tip 1**: Carefully define your variables and keep track of their dimensionality!
- **Tip 2**: Chain rule! If \(y = f(u) \) and \(u = g(x) \), i.e., \(y = f(g(x)) \), then:
 \[
 \frac{\partial y}{\partial x} = \frac{\partial y}{\partial u} \cdot \frac{\partial u}{\partial x}
 \]
 Keep straight what variables feed into what computations
- **Tip 3**: For the top softmax part of a model: First consider the derivative wrt \(f_c \) when \(c = y \) (the correct class), then consider derivative wrt \(f_c \) when \(c \neq y \) (all the incorrect classes)
- **Tip 4**: Work out element-wise partial derivatives if you’re getting confused by matrix calculus!
- **Tip 5**: Use Shape Convention. Note: The error message \(\delta \) that arrives at a hidden layer has the same dimensionality as that hidden layer
Deriving gradients wrt words for window model

- The gradient that arrives at and updates the word vectors can simply be split up for each word vector:

 Let $\nabla_x J = W^T \delta = \delta_{x_{window}}$

- With $x_{window} = [x_{museums} \ x_{in} \ x_{Paris} \ x_{are} \ x_{amazing}]$

- We have

\[
\delta_{window} = \begin{bmatrix}
\nabla x_{museums} \\
\nabla x_{in} \\
\nabla x_{Paris} \\
\nabla x_{are} \\
\nabla x_{amazing}
\end{bmatrix} \in \mathbb{R}^{5d}
\]
Updating word gradients in window model

• This will push word vectors around so that they will (in principle) be more helpful in determining named entities.

• For example, the model can learn that seeing x_{in} as the word just before the center word is indicative for the center word to be a location.
A pitfall when retraining word vectors

- **Setting:** We are training a logistic regression classification model for movie review sentiment using single words.
- In the training data we have “TV” and “telly”
- In the testing data we have “television”
- The pre-trained word vectors have all three similar:

 - **Question:** What happens when we update the word vectors?
A pitfall when retraining word vectors

• **Question:** What happens when we update the word vectors?

• **Answer:**
 • Those words that are in the training data **move around**
 • “TV” and “telly”
 • Words **not** in the training data **stay where they were**
 • “television”

This can be bad!
So what should I do?

• **Question:** Should I use available “pre-trained” word vectors
 Answer:
 • Almost always, yes!
 • They are trained on a huge amount of data, and so they will know about words not in your training data and will know more about words that are in your training data
 • Have 100s of millions of words of data? Okay to start random

• **Question:** Should I update (“fine tune”) my own word vectors?
 Answer:
 • If you only have a small training data set, don’t train the word vectors
 • If you have have a large dataset, it probably will work better to train = update = fine-tune word vectors to the task
Backpropagation

We’ve almost shown you backpropagation

It’s taking derivatives and using the (generalized) chain rule

Other trick: we **re-use** derivatives computed for higher layers in computing derivatives for lower layers so as to minimize computation
2. Computation Graphs and Backpropagation

- We represent our neural net equations as a graph
 - Source nodes: inputs
 - Interior nodes: operations

\[s = u^T h \]
\[h = f(z) \]
\[z = Wx + b \]
\[x \ (\text{input}) \]
Computation Graphs and Backpropagation

• We represent our neural net equations as a graph
 • Source nodes: inputs
 • Interior nodes: operations
 • Edges pass along result of the operation

\[s = u^T h \]
\[h = f(z) \]
\[z = Wx + b \]
\[x \quad \text{(input)} \]
Computation Graphs and Backpropagation

- Representing our neural net equations as a graph

```
s = u^T h
h = f(z)
z = c + b
```

"Forward Propagation"

- x
 - W
 - b
 - x
 +
 - z
 +
 - f
 - h
 +
 - s

15
Backpropagation

- Go backwards along edges
 - Pass along gradients

\[s = u^T h \]
\[h = f(z) \]
\[z = Wx + b \]
\[x \text{ (input)} \]
Backpropagation: Single Node

- Node receives an “upstream gradient”
- Goal is to pass on the correct “downstream gradient”

\[h = f(z) \]
Backpropagation: Single Node

- Each node has a **local gradient**
- The gradient of its output with respect to its input

\[h = f(z) \]

\[\frac{\partial s}{\partial z}, \quad \frac{\partial s}{\partial h} \]

- **Downstream gradient**
- **Local gradient**
- **Upstream gradient**
Backpropagation: Single Node

- Each node has a **local gradient**
- The gradient of its output with respect to its input

\[h = f(z) \]

\[
\frac{\partial s}{\partial z} = \frac{\partial s}{\partial h} \frac{\partial h}{\partial z}
\]

Chain rule!
Backpropagation: Single Node

- Each node has a **local gradient**
 - The gradient of its output with respect to its input

- \([\text{downstream gradient}] = [\text{upstream gradient}] \times [\text{local gradient}]\)

\[
h = f(z)
\]

\[
\frac{\partial s}{\partial z} = \frac{\partial s}{\partial h} \frac{\partial h}{\partial z}
\]

Downstream gradient **Local gradient** **Upstream gradient**
Backpropagation: Single Node

- What about nodes with multiple inputs?

\[z = Wx \]
Backpropagation: Single Node

- Multiple inputs \rightarrow multiple local gradients

$$z = Wx$$
An Example

\[f(x, y, z) = (x + y) \max(y, z) \]
\[x = 1, y = 2, z = 0 \]
An Example

\[f(x, y, z) = (x + y) \max(y, z) \]
\[x = 1, y = 2, z = 0 \]

Forward prop steps

\[a = x + y \]
\[b = \max(y, z) \]
\[f = ab \]
An Example

\[f(x, y, z) = (x + y) \max(y, z) \]
\[x = 1, y = 2, z = 0 \]

Forward prop steps

\[a = x + y \]
\[b = \max(y, z) \]
\[f = ab \]
An Example

Forward prop steps

\[a = x + y \]
\[b = \max(y, z) \]
\[f = ab \]

Local gradients

\[\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1 \]

\[f(x, y, z) = (x + y) \max(y, z) \]
\[x = 1, y = 2, z = 0 \]
An Example

Forward prop steps

\[a = x + y \]
\[b = \max(y, z) \]
\[f = ab \]

Local gradients

\[\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1 \]
\[\frac{\partial b}{\partial y} = 1(y > z) = 1 \quad \frac{\partial b}{\partial z} = 1(z > y) = 0 \]

\[f(x, y, z) = (x + y) \max(y, z) \]
\[x = 1, y = 2, z = 0 \]
An Example

Forward prop steps

\[a = x + y \]

\[b = \max(y, z) \]

\[f = ab \]

Local gradients

\[\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1 \]

\[\frac{\partial b}{\partial y} = 1(y > z) = 1 \quad \frac{\partial b}{\partial z} = 1(z > y) = 0 \]

\[\frac{\partial f}{\partial a} = b = 2 \quad \frac{\partial f}{\partial b} = a = 3 \]

\[f(x, y, z) = (x + y) \max(y, z) \]

\[x = 1, y = 2, z = 0 \]
An Example

Forward prop steps

\[a = x + y \]

\[b = \max(y, z) \]

\[f = ab \]

Local gradients

\[\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1 \]

\[\frac{\partial b}{\partial y} = \mathbf{1}(y > z) = 1 \quad \frac{\partial b}{\partial z} = \mathbf{1}(z > y) = 0 \]

\[\frac{\partial f}{\partial a} = b = 2 \quad \frac{\partial f}{\partial b} = a = 3 \]

\[f(x, y, z) = (x + y) \max(y, z) \]

\[x = 1, y = 2, z = 0 \]
An Example

Forward prop steps

\[
a = x + y \\
b = \max(y, z) \\
f = ab
\]

Local gradients

\[
\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1 \\
\frac{\partial b}{\partial y} = 1(y > z) = 1 \quad \frac{\partial b}{\partial z} = 1(z > y) = 0
\]

\[
\frac{\partial f}{\partial a} = b = 2 \quad \frac{\partial f}{\partial b} = a = 3
\]

\[
f(x, y, z) = (x + y) \max(y, z)
\]

\[
x = 1, y = 2, z = 0
\]
An Example

Forward prop steps

\[a = x + y \]

\[b = \max(y, z) \]

\[f = ab \]

Local gradients

\[\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1 \]

\[\frac{\partial b}{\partial y} = 1(y > z) = 1 \quad \frac{\partial b}{\partial z} = 1(z > y) = 0 \]

\[\frac{\partial f}{\partial a} = b = 2 \quad \frac{\partial f}{\partial b} = a = 3 \]

\[f(x, y, z) = (x + y) \max(y, z) \]

\[x = 1, y = 2, z = 0 \]

upstream * local = downstream
An Example

Forward prop steps

\[a = x + y \]

\[b = \max(y, z) \]

\[f = ab \]

Local gradients

\[\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1 \]

\[\frac{\partial b}{\partial y} = 1(y > z) = 1 \quad \frac{\partial b}{\partial z} = 1(z > y) = 0 \]

\[\frac{\partial f}{\partial a} = b = 2 \quad \frac{\partial f}{\partial b} = a = 3 \]

\[f(x, y, z) = (x + y) \max(y, z) \]

\[x = 1, y = 2, z = 0 \]

upstream * local = downstream
An Example

Forward prop steps

\[a = x + y \]
\[b = \max(y, z) \]
\[f = ab \]

Local gradients

\[\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1 \]
\[\frac{\partial b}{\partial y} = \mathbf{1}(y > z) = 1 \quad \frac{\partial b}{\partial z} = \mathbf{1}(z > y) = 0 \]
\[\frac{\partial f}{\partial a} = b = 2 \quad \frac{\partial f}{\partial b} = a = 3 \]

\[
f(x, y, z) = (x + y) \max(y, z) \]
\[
x = 1, y = 2, z = 0
\]
Gradients sum at outward branches
Gradients sum at outward branches

\[a = x + y \]
\[b = \max(y, z) \]
\[f = ab \]

\[\frac{\partial f}{\partial y} = \frac{\partial f}{\partial a} \frac{\partial a}{\partial y} + \frac{\partial f}{\partial b} \frac{\partial b}{\partial y} \]
Node Intuitions

\[f(x, y, z) = (x + y) \max(y, z) \]
\[x = 1, y = 2, z = 0 \]

- + “distributes” the upstream gradient

```
\[ \begin{align*}
  x & \quad 1 \\
  y & \quad 2 \\
  z & \quad 0 \\
\end{align*} \]
```

```
\[ \begin{align*}
  2 & \quad + \\
  2 & \quad + \\
  2 & \quad \max \\
  1 & \quad * \\
\end{align*} \]
```

```
\[ \begin{align*}
  3 & \quad + \\
  2 & \quad + \\
  2 & \quad \max \\
  6 & \quad * \\
\end{align*} \]
```
Node Intuitions

\[f(x, y, z) = (x + y) \max(y, z) \]
\[x = 1, y = 2, z = 0 \]

- + “distributes” the upstream gradient to each summand
- max “routes” the upstream gradient
Node Intuitions

\[
f(x, y, z) = (x + y) \max(y, z)
\]
\[
x = 1, y = 2, z = 0
\]

- + “distributes” the upstream gradient
- max “routes” the upstream gradient
- * “switches” the upstream gradient
Efficiency: compute all gradients at once

- Incorrect way of doing backprop:
 - First compute $\frac{\partial s}{\partial b}$

\[
s = u^T h \\
h = f(z) \\
z = Wx + b \\
x \text{ (input)}
\]
Efficiency: compute all gradients at once

- Incorrect way of doing backprop:
 - First compute $\frac{\partial s}{\partial b}$
 - Then independently compute $\frac{\partial s}{\partial W}$
 - Duplicated computation!

\[
\begin{align*}
 s &= u^T h \\
 h &= f(z) \\
 z &= W x + b \\
 x & \text{ (input)}
\end{align*}
\]
Efficiency: compute all gradients at once

- Correct way:
 - Compute all the gradients at once
 - Analogous to using δ when we computed gradients by hand

\[
\begin{align*}
 s &= u^T h \\
 h &= f(z) \\
 z &= Wx + b \\
 x &\text{ (input)}
\end{align*}
\]
1. **Fprop**: visit nodes in topological sort order
 - Compute value of node given predecessors
2. **Bprop**:
 - initialize output gradient = 1
 - visit nodes in reverse order:
 Compute gradient wrt each node using gradient wrt successors

\[
\{y_1, y_2, \ldots y_n\} = \text{successors of } x
\]

\[
\frac{\partial z}{\partial x} = \sum_{i=1}^{n} \frac{\partial z}{\partial y_i} \frac{\partial y_i}{\partial x}
\]

Done correctly, big O() complexity of fprop and bprop is **the same**

In general our nets have regular layer-structure and so we can use matrices and Jacobians...
Automatic Differentiation

• The gradient computation can be automatically inferred from the symbolic expression of the fprop

• Each node type needs to know how to compute its output and how to compute the gradient wrt its inputs given the gradient wrt its output

• Modern DL frameworks (Tensorflow, PyTorch, etc.) do backpropagation for you but mainly leave layer/node writer to hand-calculate the local derivative
Backprop Implementations

class ComputationalGraph(object):
 #...
 def forward(inputs):
 # 1. [pass inputs to input gates...]
 # 2. forward the computational graph:
 for gate in self.graph.nodes_topologically_sorted():
 gate.forward()
 return loss # the final gate in the graph outputs the loss
 def backward():
 for gate in reversed(self.graph.nodes_topologically_sorted()):
 gate.backward() # little piece of backprop (chain rule applied)
 return inputs_gradients
Implementation: forward/backward API

\[(x, y, z \text{ are scalars}) \]

```
class MultiplyGate(object):
    def forward(x, y):
        z = x*y
        return z
    def backward(dz):
        # dx = ... #todo
        # dy = ... #todo
        return [dx, dy]
```
Implementation: forward/backward API

(x, y, z are scalars)

```python
class MultiplyGate(object):
    def forward(x, y):
        z = x * y
        self.x = x  # must keep these around!
        self.y = y
        return z
    def backward(dz):
        dx = self.y * dz  # [dz/dx * dL/dz]
        dy = self.x * dz  # [dz/dy * dL/dz]
        return [dx, dy]
```
Gradient checking: Numeric Gradient

• For small $h (\approx 1e^{-4})$, $f'(x) \approx \frac{f(x + h) - f(x - h)}{2h}$

• Easy to implement correctly

• But approximate and **very** slow:
 • Have to recompute f for **every parameter** of our model

• Useful for checking your implementation
 • In the old days when we hand-wrote everything, it was key to do this everywhere.
 • Now much less needed, when throwing together layers
Summary

- We’ve mastered the core technology of neural nets!!!

- Backpropagation: recursively apply the chain rule along computation graph
 - \([\text{downstream gradient}] = [\text{upstream gradient}] \times [\text{local gradient}]\)

- Forward pass: compute results of operations and save intermediate values

- Backward pass: apply chain rule to compute gradients
Why learn all these details about gradients?

- Modern deep learning frameworks compute gradients for you
- But why take a class on compilers or systems when they are implemented for you?
 - Understanding what is going on under the hood is useful!
- Backpropagation doesn’t always work perfectly.
 - Understanding why is crucial for debugging and improving models
 - See Karpathy article (in syllabus):
 - https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
 - Example in future lecture: exploding and vanishing gradients
3. We have models with many params! Regularization!

- Really a full loss function in practice includes regularization over all parameters θ, e.g., L2 regularization:

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} - \log \left(\frac{e^{f_{y_i}}}{\sum_{c=1}^{C} e^{f_{c}}} \right) + \lambda \sum_{k} \theta_{k}^2$$

- Regularization (largely) prevents overfitting when we have a lot of features (or later a very powerful/deep model, ++)
“Vectorization”

- E.g., looping over word vectors versus concatenating them all into one large matrix and then multiplying the softmax weights with that matrix.

```python
from numpy import random
N = 500  # number of windows to classify
d = 300  # dimensionality of each window
C = 5    # number of classes
W = random.rand(C,d)
wordvectors_list = [random.rand(d,1) for i in range(N)]
wordvectors_one_matrix = random.rand(d,N)

%timeit [W.dot(wordvectors_list[i]) for i in range(N)]
%timeit W.dot(wordvectors_one_matrix)
```

- 1000 loops, best of 3: 639 µs per loop
- 10000 loops, best of 3: 53.8 µs per loop
“Vectorization”

```python
from numpy import random
N = 500  # number of windows to classify
d = 300  # dimensionality of each window
C = 5    # number of classes
W = random.rand(C, d)
wordvectors_list = [random.rand(d, 1) for i in range(N)]
wordvectors_one_matrix = random.rand(d, N)

%timeit [W.dot(wordvectors_list[i]) for i in range(N)]
%timeit W.dot(wordvectors_one_matrix)
```

- The (10x) faster method is using a C x N matrix
- Always try to use vectors and matrices rather than for loops!
- You should speed-test your code a lot too!!
- tl;dr: Matrices are awesome!!!
Non-linearities: The starting points

logistic (”sigmoid”)

\[f(z) = \frac{1}{1 + \exp(-z)} \]

\[f(z) = \tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}} \]

Hard tanh

\[\text{HardTanh}(x) = \begin{cases}
-1 & \text{if } x < -1 \\
\ x & \text{if } -1 \leq x \leq 1 \\
1 & \text{if } x > 1
\end{cases} \]

tanh is just a rescaled and shifted sigmoid (2 \times as steep, [-1,1]):

\[\tanh(z) = 2 \logistic(2z) - 1 \]

Both logistic and tanh are still used in particular uses, but are no longer the defaults for making deep networks
Non-linearities: The new world order

ReLU (rectified linear unit) hard tanh

\[\text{rect}(z) = \max(z, 0) \]

Leaky ReLU

Parametric ReLU

- For building a feed-forward deep network, the first thing you should try is ReLU — it trains quickly and performs well due to good gradient backflow
Parameter Initialization

- You normally must initialize weights to small random values
 - To avoid symmetries that prevent learning/specialization
- Initialize hidden layer biases to 0 and output (or reconstruction) biases to optimal value if weights were 0 (e.g., mean target or inverse sigmoid of mean target)
- Initialize all other weights \(\sim \) Uniform(\(-r, r\)), with \(r \) chosen so numbers get neither too big or too small
- Xavier initialization has variance inversely proportional to fan-in \(n_{in} \) (previous layer size) and fan-out \(n_{out} \) (next layer size):

\[
\text{Var}(W_i) = \frac{2}{n_{in} + n_{out}}
\]
Optimizers

- Usually, plain SGD will work just fine
 - However, getting good results will often require hand-tuning the learning rate (next slide)
- For more complex nets and situations, or just to avoid worry, you often do better with one of a family of more sophisticated “adaptive” optimizers that scale the parameter adjustment by an accumulated gradient.
 - These models give per-parameter learning rates
 - Adagrad
 - RMSprop
 - Adam ← A fairly good, safe place to begin in many cases
 - SparseAdam
 - ...
Learning Rates

- You can just use a constant learning rate. Start around $lr = 0.001$?
 - It must be order of magnitude right – try powers of 10
 - Too big: model may diverge or not converge
 - Too small: your model may not have trained by the deadline
- Better results can generally be obtained by allowing learning rates to decrease as you train
 - By hand: halve the learning rate every k epochs
 - An epoch = a pass through the data (shuffled or sampled)
 - By a formula: $lr = l_{r0} e^{-kt}$, for epoch t
 - There are fancier methods like cyclic learning rates (q.v.)
- Fancier optimizers still use a learning rate but it may be an initial rate that the optimizer shrinks – so may be able to start high