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Lecture Plan

Lecture 1: Introduction and Word Vectors
1. The course (10 mins)
2. Human language and word meaning (15 mins)
3. Word2vec introduction (15 mins)
4. Word2vec objective function gradients (25 mins)
5. Optimization basics (5 mins)
6. Looking at word vectors (10 mins or less)

Key learning today: The (astounding!) result that word meaning can be represented rather 
well by a (high-dimensional) vector of real numbers
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Course logistics in brief
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• Instructor: Diyi Yang, Tatsunori Hashimoto
• Head TA: Nelson Liu 
• Course Manager: John Cho
• TAs: Many wonderful people! See website
• Time: Tu/Th 4:30–5:50 Pacific time, Nvidia Aud. (à video)
• Email list: cs224n-win2324-staff@lists.stanford.edu
• We’ve put a lot of other important information on the class webpage. Please read it!
• http://cs224n.stanford.edu/

a.k.a., http://www.stanford.edu/class/cs224n/
• TAs, syllabus, help sessions/office hours, Ed (for all course questions/discussion)
• Office hours start Wednesday!
• Python/numpy and then PyTorch tutorials: First two Fridays. First is 4:30-5:20, Skilling Auditorium.

• Slide PDFs uploaded before each lecture

     

http://cs224n.stanford.edu/
http://www.stanford.edu/class/cs224n/
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What do we hope to teach?  (A.k.a. “learning goals”)
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1. The foundations of the effective modern methods for deep learning applied to NLP
• Basics first, then key methods used in NLP in 2023: Word vectors, feed-forward 

networks, recurrent networks, attention, encoder-decoder models, transformers, 
pretraining, post-training (RLHF, SFT), efficient adaptation, benchmarking and 
evaluation, human centered NLP, etc.

2. A big picture understanding of human languages and the difficulties in understanding 
and producing them via computers

3. An understanding of and ability to build systems (in PyTorch) for some of the major 
problems in NLP:
• Word meaning, dependency parsing, machine translation, question answering



Course work and grading policy

• 5 x 1-week Assignments: 6% + 4 x 12%: 54% 
• HW1 is released today! Due next Tuesday! At 4:30 p.m.
• Submitted to Gradescope in Canvas (i.e., using @stanford.edu email for your Gradescope account)

• Final Default or Custom Course Project (1–3 people): 43%
• Project proposal: 5%, milestone: 5%, poster or web summary: 3%, report: 30%

• Participation: 3%
• Guest lecture reactions, Ed, course evals, karma – see website!

• Late day policy
• 6 free late days; afterwards, 1% off course grade per day late
• Assignments not accepted more than 3 days late per assignment unless given permission in advance
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Course work and grading policy

• Collaboration policy: 
• Please read the website and the Honor Code! Understand allowed collaboration and how to 

document it: Don’t take code off the web; acknowledge working with other students; write your own 
assignment solutions

• AI tools policy
• Must independently submit their solutions to CS224N homework
• Collaboration with AI tools is allowed; however, the direct solicitation is strictly prohibited
• Employing AI tools to substantially complete assignments will be considered a violation of the Honor 

Code (see Generative AI Policy Guidance here for more details)
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https://communitystandards.stanford.edu/generative-ai-policy-guidance


High-Level Plan for Assignments (to be completed individually!)

• Hw1 is hopefully an easy on ramp – a Jupyter/IPython Notebook
• Hw2 is pure Python (numpy) but expects you to do (multivariate) calculus, so you really 

understand the basics
• Hw3 introduces PyTorch, building a feed-forward network for dependency parsing
• Hw4 and Hw5 use PyTorch on a GPU (Google Cloud)
• Libraries like PyTorch, Tensorflow, and Jax are now the standard tools of DL

• For Final Project, more details presented later, but you either:
• Do the default project, which is a question answering system
• Open-ended but an easier start; a good choice for many

• Propose a custom final project, which we approve
• You will receive feedback from a mentor (TA/prof/postdoc/PhD)

• Can work in teams of 1–3; can use any language/packages
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Lecture Plan

1. The course (10 mins)
2. Human language and word meaning (15 mins)
3. Word2vec introduction (15 mins)
4. Word2vec objective function gradients (25 mins)
5. Optimization basics (5 mins)
6. Looking at word vectors (10 mins or less)
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Trained on text data, neural machine translation is quite good!

https://kiswahili.tuko.co.ke/



Free-text question answering: Next gen search
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when did Kendrick lamar’s
first album come out?

July 2, 2011

E.g., YONO (Lee et al. 2021, https://arxiv.org/pdf/2112.07381.pdf) 
uses a T5-Large model fine-tuned for QA 3 times to run entire QA pipeline

https://arxiv.org/pdf/2112.07381.pdf


The SEC said, “Musk, your tweets are a 
blight.
They really could cost you your job,
if you don't stop all this tweeting at night.”
Then Musk cried, “Why?
The tweets I wrote are not mean,
I don't use all-caps
and I'm sure that my tweets are clean.”
“But your tweets can move markets
and that's why we're sore.
You may be a genius and a billionaire,
but it doesn't give you the right to

How many users have signed up since the start of 2020?
SELECT count(id) FROM users 
WHERE created_at > ‘2020-01-01’
What is the average number of influencers each user is 
subscribed to?
SELECT avg(count) FROM ( SELECT user_id, count(*) 
FROM subscribers GROUP BY user_id ) 
AS avg_subscriptions_per_user

S: I broke the window.
Q: What did I break?
S: I gracefully saved the day.
Q: What did I gracefully save?
S: I gave John flowers.
Q: Who did I give flowers to?
S: I gave her a rose and a guitar.
Q: Who did I give a rose and a guitar to?

GPT-3: A first step on the path to foundation models

abe bore!”



a train going over the Golden Gate bridge

a train going over the Golden 
Gate bridge with the bay in the 
background

a train going over the 
Golden Gate bridge 
detailed pencil drawing

cars and a train on the 
Golden Gate bridge 
detailed pencil drawing

Pictures by 
OpenAI’s DALL-E 2



ChatGPT, GPT-4, and more



How do we represent the meaning of a word?
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Definition: meaning (Webster dictionary)
• the idea that is represented by a word, phrase, etc.
• the idea that a person wants to express by using words, signs, etc.
• the idea that is expressed in a work of writing, art, etc.

Commonest linguistic way of thinking of meaning:

signifier (symbol) ⟺ signified (idea or thing)

= denotational semantics

tree ⟺ {🌳, 🌲, 🌴, …}



How do we have usable meaning in a computer?
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Previously commonest NLP solution: Use, e.g., WordNet, a thesaurus containing lists of 
synonym sets and hypernyms (“is a” relationships) 

[Synset('procyonid.n.01'), 
Synset('carnivore.n.01'), 
Synset('placental.n.01'), 
Synset('mammal.n.01'), 
Synset('vertebrate.n.01'), 
Synset('chordate.n.01'), 
Synset('animal.n.01'), 
Synset('organism.n.01'), 
Synset('living_thing.n.01'), 
Synset('whole.n.02'), 
Synset('object.n.01'), 
Synset('physical_entity.n.01'), 
Synset('entity.n.01')]

noun: good 
noun: good, goodness 
noun: good, goodness 
noun: commodity, trade_good, good 
adj: good 
adj (sat): full, good 
adj: good 
adj (sat): estimable, good, honorable, respectable 
adj (sat): beneficial, good 
adj (sat): good 
adj (sat): good, just, upright 
…
adverb: well, good 
adverb: thoroughly, soundly, good

e.g., synonym sets containing “good”: e.g., hypernyms of “panda”:
from nltk.corpus import wordnet as wn
poses = { 'n':'noun', 'v':'verb', 's':'adj (s)', 'a':'adj', 'r':'adv'}
for synset in wn.synsets("good"):
    print("{}: {}".format(poses[synset.pos()], 
            ", ".join([l.name() for l in synset.lemmas()])))

from nltk.corpus import wordnet as wn
panda = wn.synset("panda.n.01")
hyper = lambda s: s.hypernyms()
list(panda.closure(hyper))



Problems with resources like WordNet
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• A useful resource but missing nuance:
• e.g., “proficient” is listed as a synonym for “good”

This is only correct in some contexts
• Also, WordNet list offensive synonyms in some synonym sets without any 

coverage of the connotations or appropriateness of words
• Missing new meanings of words:
• e.g., wicked, badass, nifty, wizard, genius, ninja, bombest
• Impossible to keep up-to-date!

• Subjective
• Requires human labor to create and adapt
• Can’t be used to accurately compute word similarity (see following slides)



Representing words as discrete symbols
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In traditional NLP, we regard words as discrete symbols: 
   hotel, conference, motel – a localist representation

Such symbols for words can be represented by one-hot vectors:
motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

Vector dimension = number of words in vocabulary (e.g., 500,000+)

Means one 1, the rest 0s



Problem with words as discrete symbols

Example: in web search, if a user searches for “Seattle motel”, we would like to match 
documents containing “Seattle hotel”

But:
motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
 hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

These two vectors are orthogonal
There is no natural notion of similarity for one-hot vectors!

Solution:
• Could try to rely on WordNet’s list of synonyms to get similarity?
• But it is well-known to fail badly: incompleteness, etc.

• Instead: learn to encode similarity in the vectors themselves

Sec. 9.2.2
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Representing words by their context
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• Distributional semantics: A word’s meaning is given
by the words that frequently appear close-by

• “You shall know a word by the company it keeps” (J. R. Firth 1957: 11)
• One of the most successful ideas of modern statistical NLP!

• When a word w appears in a text, its context is the set of words that appear nearby 
(within a fixed-size window).

• We use the many contexts of w to build up a representation of w

…government debt problems turning into banking crises as happened in 2009…
…saying that Europe needs unified banking regulation to replace the hodgepodge…

…India has just given its banking system a shot in the arm…

These context words will represent banking



Word vectors
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We will build a dense vector for each word, chosen so that it is similar to vectors of words 
that appear in similar contexts, measuring similarity as the vector dot (scalar) product

Note: word vectors are also called (word) embeddings or (neural) word representations
They are a distributed representation

banking  =

0.286
0.792
−0.177
−0.107
0.109
−0.542
0.349
0.271

monetary  =

0.413
0.582
−0.007
0.247
0.216
−0.718
0.147
0.051



Word meaning as a neural word vector – visualization

0.286
0.792
−0.177
−0.107
0.109
−0.542
0.349
0.271
0.487

expect  =
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3. Word2vec: Overview

Word2vec is a framework for learning word vectors
(Mikolov et al. 2013)

Idea:
• We have a large corpus (“body”) of text: a long list of words
• Every word in a fixed vocabulary is represented by a vector
• Go through each position t in the text, which has a center 

word c and context (“outside”) words o
• Use the similarity of the word vectors for c and o to calculate 

the probability of o given c (or vice versa)
• Keep adjusting the word vectors to maximize this probability
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Skip-gram model 
(Mikolov et al. 2013) 



Word2Vec Overview

Example windows and process for computing	𝑃 𝑤!"#	|	𝑤!

…crisesbankingintoturningproblems… as

center word
at position t

outside context words
in window of size 2

outside context words
in window of size 2

𝑃 𝑤!"#	|	𝑤!

𝑃 𝑤!"$	|	𝑤!

𝑃 𝑤!%#	|	𝑤!

𝑃 𝑤!%$	|	𝑤!
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Word2Vec Overview

Example windows and process for computing	𝑃 𝑤!"#	|	𝑤!

…crisesbankingintoturningproblems… as

center word
at position t

outside context words
in window of size 2

outside context words
in window of size 2

𝑃 𝑤!"#	|	𝑤!

𝑃 𝑤!"$	|	𝑤!

𝑃 𝑤!%#	|	𝑤!

𝑃 𝑤!%$	|	𝑤!
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Word2vec: objective function
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For each position 𝑡 = 1,… , 𝑇, predict context words within a window of fixed size m, 
given center word 𝑤!. Data likelihood:

𝐿 𝜃 =-
!$%

&

-
'()#)(
#*+

𝑃 𝑤!"#	|	𝑤!; 𝜃

The objective function 𝐽 𝜃 	is the (average) negative log likelihood:

𝐽 𝜃 = −
1
𝑇
log 𝐿(𝜃) = −

1
𝑇
6
!$%

&

6
'()#)(
#*+

log 𝑃 𝑤!"#	|	𝑤!; 𝜃

Minimizing objective function ⟺ Maximizing predictive accuracy

Likelihood =

𝜃 is all variables 
to be optimized

sometimes called a cost or loss function



Word2vec: objective function
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• We want to minimize the objective function:

𝐽 𝜃 = −
1
𝑇
+
!&#

'

+
%()*)(
*+,

log 𝑃 𝑤!"*	|	𝑤!; 𝜃

• Question: How to calculate 𝑃 𝑤!"#	|	𝑤!; 𝜃  ?
• Answer: We will use two vectors per word w:

• 𝑣- when w is a center word
• 𝑢- when w is a context word

• Then for a center word c and a context word o:

𝑃 𝑜 𝑐 =
exp(𝑢-&𝑣.)

∑/∈1 exp(𝑢/& 𝑣.)



Word2vec: prediction function

𝑃 𝑜 𝑐 =
exp(𝑢-&𝑣.)

∑/∈1 exp(𝑢/& 𝑣.)

• This is an example of the softmax function ℝ2 → (0,1)2

softmax 𝑥3 =
exp(𝑥3)

∑#$%2 exp(𝑥#)
= 𝑝3

• The softmax function maps arbitrary values 𝑥3 to a probability distribution 𝑝3
• “max” because amplifies probability of largest 𝑥.
• “soft” because still assigns some probability to smaller 𝑥.
• Frequently used in Deep Learning

① Dot product compares similarity of o and c.
 𝑢!𝑣 = 𝑢. 𝑣 = ∑"#$% 𝑢"𝑣"
Larger dot product = larger probability

③ Normalize over entire vocabulary 
to give probability distribution
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② Exponentiation makes anything positive

Open 
region

But sort of a weird name 
because it returns a distribution!



To train the model: Optimize value of parameters to minimize loss
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To train a model, we gradually adjust parameters to minimize a loss

• Recall: 𝜃	represents all the 
model parameters, in one
long vector

• In our case, with 
d-dimensional vectors and 
V-many words, we have à

• Remember: every word has 
two vectors

• We optimize these parameters by walking down the gradient (see right figure)
• We compute all vector gradients!



Interactive Session!
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• 𝐿 𝜃 = ∏!$%
& ∏'()#)(

#*+
𝑃 𝑤!"#	|	𝑤!; 𝜃

• For a center word c and a context word o:   𝑃 𝑜 𝑐 = 9:;(=!">#)
∑$∈& 9:;(=$" >#)
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4.
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