
Natural Language Processing
with Deep Learning

CS224N/Ling284

Tatsunori Hashimoto
Lecture 5: Language Models and Recurrent Neural Networks

(Slides mostly from Chris Manning’s 2023 version)

Lecture Plan

1. A bit more about neural networks (10 mins)
Language modeling + RNNs

• 2. A new NLP task: Language Modeling (20 mins)

• 3. A new family of neural networks: Recurrent Neural Networks (RNNs) (25 mins)

• 4. Problems with RNNs (15 mins)
• 5. Recap on RNNs/LMs (10 mins)

Reminders:
You should have handed in Assignment 2 by today, start of class
In Assignment 3, out today, you build a neural dependency parser using PyTorch

2

motivates

This is the most important concept in the
class! It leads to BERT,
GPT-3 and ChatGPT!

Important and used in Ass4, but not the only way to build LMs

Modern neural networks (esp. language models) are enormous

• Large, deep neural nets are a cornerstone of modern NLP systems

https://huggingface.co/blog/large-language-models

But building large neural networks isn’t easy or obvious

• It took a long time and much work to make deep neural networks practical!

[Bengio et al 2006]

0
model “power”

Training error

Test error

overfitting
error

We have models with many parameters! Regularization!

5

• A full loss function includes regularization over all parameters 𝜃, e.g., L2 regularization:

• Classic view: Regularization works to prevent overfitting when we have a lot of features
(or later a very powerful/deep model, etc.)

• Now: Regularization produces models that generalize well when we have a “big” model
• We do not care that our models overfit on the training data, even though they are hugely overfit

Dropout (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov 2012/JMLR 2014)

6

• During training
• For each data

point each time:
• Randomly set

input to 0 with
probability 𝑝
“dropout ratio”
(often p = 0.5
except p – 0.15
for input layer)
via dropout mask

• During testing
• Multiply all

weights by 1 − 𝑝
• No other dropout

𝑥"

0

𝑤!

1

𝑥#

𝑥$ 𝑤"
𝑤#

𝑤$

𝑏

Train 2

𝑥"

0

𝑦 = 𝑤!𝑥! + 𝑤"𝑥" + 𝑏

𝑤!

1

𝑥#

0 𝑤"
𝑤#

𝑤$

𝑏

Train 1

𝑦 = 𝑤!𝑥! +
	 𝑤#𝑥# + 𝑤"𝑥"

𝑥"

𝑥,

𝑤!

1

𝑥#

𝑥$ 𝑤"
𝑤#

𝑤$

𝑏

Test

𝑦 = (1 − 𝑝)(𝑤!𝑥! +
	 𝑤#𝑥# + 𝑤"𝑥" + 𝑤$𝑥$)

Dropout (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov 2012/JMLR 2014)

7

Why does it work?
Prevents Feature Co-adaptation = Good Regularization! Use it everywhere!

Let’s talk through an example..
• Training time: at each instance of evaluation (in online SGD-training), randomly set ~50% (p%) of the inputs to

each neuron to 0 (less for the first layer)
• Test time: halve the model weights (now twice as many)
• This prevents feature co-adaptation: A feature cannot only be useful in the presence of particular other features

In a single layer: A kind of middle-ground between Naïve Bayes (all feature weights set
independently) and logistic regression models (weights are set in the context of all others)

• Can be thought of as a form of model bagging (i.e., like an ensemble model)
• Nowadays usually thought of as strong, feature-dependent regularizer

[Wager, Wang, & Liang 2013]

“Vectorization”

8

• E.g., looping over word vectors versus concatenating them all into one large matrix
and then multiplying the softmax weights with that matrix:

• for loop: 1000 loops, best of 3: 639 µs per loop
Using single a C x N matrix: 10000 loops, best of 3: 53.8 µs per loop

• Matrices are awesome!!! Always try to use vectors and matrices rather than for loops!
• The speed gain goes from 1 to 2 orders of magnitude with GPUs!

Parameter Initialization

• You normally must initialize weights to small random values (i.e., not zero matrices!)
• To avoid symmetries that prevent learning/specialization

• Initialize hidden layer biases to 0 and output (or reconstruction) biases to optimal value if weights were
0 (e.g., mean target or inverse sigmoid of mean target)

• Initialize all other weights ~ Uniform(–r, r), with r chosen so numbers get neither too big or too small
[later, the need for this is removed with use of layer normalization]

• Xavier initialization has variance inversely proportional to fan-in nin (previous layer size) and fan-out nout
(next layer size):

Optimizers

• Usually, plain SGD will work just fine!
• However, getting good results will often require hand-tuning the learning rate
• E.g., start it higher and halve it every k epochs (passes through full data, shuffled or sampled)

• For more complex nets, or to avoid worry, try more sophisticated “adaptive” optimizers
that scale the adjustment to individual parameters by an accumulated gradient
• These models give differential per-parameter learning rates
• Adagrad ß Simplest member of family, but tends to “stall early”
• RMSprop
• Adam ß A fairly good, safe place to begin in many cases
• AdamW
• NAdamW ß Can be better with word vectors (W) and for speed (Nesterov acceleration)
• …

• Start them with an initial learning rate, around 0.001 ß Many have other hyperparameters

• Language Modeling is the task of predicting what word comes next

the students opened their ______

• More formally: given a sequence of words ,
compute the probability distribution of the next word :

where can be any word in the vocabulary

• A system that does this is called a Language Model

2. Language Modeling

exams
minds

laptops
books

11

Language Modeling

• You can also think of a Language Model as a system that
assigns a probability to a piece of text

• For example, if we have some text , then the
probability of this text (according to the Language Model) is:

12

This is what our LM provides

You use Language Models every day!

13

You use Language Models every day!

14

n-gram Language Models

the students opened their ______

• Question: How to learn a Language Model?
• Answer (pre- Deep Learning): learn an n-gram Language Model!

• Definition: An n-gram is a chunk of n consecutive words.
• unigrams: “the”, “students”, “opened”, ”their”
• bigrams: “the students”, “students opened”, “opened their”
• trigrams: “the students opened”, “students opened their”
• four-grams: “the students opened their”

• Idea: Collect statistics about how frequent different n-grams are and use these to
predict next word.

15

n-gram Language Models

16

• First we make a Markov assumption: 𝑥(&'!) depends only on the preceding n-1 words

(statistical
approximation)

(definition of
conditional prob)

(assumption)

n-1 words

prob of a n-gram

prob of a (n-1)-gram

• Question: How do we get these n-gram and (n-1)-gram probabilities?
• Answer: By counting them in some large corpus of text!

n-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

as the proctor started the clock, the students opened their _____
discard

condition on this

For example, suppose that in the corpus:
• “students opened their” occurred 1000 times
• “students opened their books” occurred 400 times

• à P(books | students opened their) = 0.4
• “students opened their exams” occurred 100 times

• à P(exams | students opened their) = 0.1

Should we have discarded
the “proctor” context?

17

Sparsity Problems with n-gram Language Models

Note: Increasing n makes sparsity problems worse.
Typically, we can’t have n bigger than 5.

Problem: What if “students
opened their” never occurred in
data? Then we can’t calculate
probability for any 𝑤!

Sparsity Problem 2

Problem: What if “students
opened their 𝑤” never
occurred in data? Then 𝑤 has
probability 0!

Sparsity Problem 1

(Partial) Solution: Add small 𝛿
to the count for every 𝑤 ∈ 𝑉.
This is called smoothing.

(Partial) Solution: Just condition
on “opened their” instead.
This is called backoff.

18

Storage Problems with n-gram Language Models

19

Storage: Need to store
count for all n-grams you
saw in the corpus.

Increasing n or increasing
corpus increases model size!

n-gram Language Models in practice

• You can build a simple trigram Language Model over a
1.7 million word corpus (Reuters) in a few seconds on your laptop*

today the _______

* Try for yourself: https://nlpforhackers.io/language-models/Otherwise, seems reasonable!

company 0.153
bank 0.153
price 0.077
italian 0.039
emirate 0.039

…

get probability
distribution

Sparsity problem:
not much granularity

in the probability
distribution

Business and financial news

20

https://nlpforhackers.io/language-models/

Generating text with a n-gram Language Model

21

You can also use a Language Model to generate text

today the _______

condition
on this

company 0.153
bank 0.153
price 0.077
italian 0.039
emirate 0.039

…

get probability
distribution

sample

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the price _______

condition
on this

of 0.308
for 0.050
it 0.046
to 0.046
is 0.031

…

get probability
distribution

sample

22

Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the price of _______

condition
on this

the 0.072
18 0.043
oil 0.043
its 0.036
gold 0.018

…

get probability
distribution

sample

23

Generating text with a n-gram Language Model

24

You can also use a Language Model to generate text

today the price of gold per ton , while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

…but incoherent. We need to consider more than
three words at a time if we want to model language well.

But increasing n worsens sparsity problem,
and increases model size…

How to build a neural language model?

• Recall the Language Modeling task:
• Input: sequence of words
• Output: prob. dist. of the next word

• How about a window-based neural model?
• We saw this applied to Named Entity Recognition in Lecture 2:

25
in Paris are amazingmuseums

LOCATION

A fixed-window neural Language Model

the students opened theiras the proctor started the clock ______
discard fixed window

26

A fixed-window neural Language Model

the students opened their

books
laptops

concatenated word embeddings

words / one-hot vectors

hidden layer

a zoo

output distribution

27

A fixed-window neural Language Model

the students opened their

books
laptops

a zoo

Improvements over n-gram LM:
• No sparsity problem
• Don’t need to store all observed n-grams

Remaining problems:
• Fixed window is too small
• Enlarging window enlarges 𝑊
• Window can never be large enough!
• 𝑥(!) and 𝑥(") are multiplied by

completely different weights in 𝑊.
No symmetry in how the inputs are
processed.

We need a neural architecture
that can process any length input

28

Approximately: Y. Bengio, et al. (2000/2003): A Neural Probabilistic Language Model

3. Recurrent Neural Networks (RNN)

29

hidden states

input sequence
(any length)

…

…

…

Core idea: Apply the same
weights 𝑊 repeatedlyA family of neural architectures

outputs
(optional)

A Simple RNN Language Model

the students opened theirwords / one-hot vectors

books
laptops

word embeddings

a zoo

output distribution

Note: this input sequence could be much
longer now!

hidden states

is the initial hidden state

30

RNN Language Models

the students opened their

books
laptops

a zoo

RNN Advantages:
• Can process any length input
• Computation for step t can (in

theory) use information from
many steps back

• Model size doesn’t increase for
longer input context

• Same weights applied on every
timestep, so there is symmetry
in how inputs are processed.

RNN Disadvantages:
• Recurrent computation is slow
• In practice, difficult to access

information from many steps
back

More on
these later

31

Training an RNN Language Model

• Get a big corpus of text which is a sequence of words
• Feed into RNN-LM; compute output distribution for every step t.

• i.e., predict probability dist of every word, given words so far

• Loss function on step t is cross-entropy between predicted probability
distribution , and the true next word (one-hot for):

• Average this to get overall loss for entire training set:

32

Training an RNN Language Model
= negative log prob

of “students”

the students opened their …examsCorpus

Loss

…

33

Predicted
prob dists

Training an RNN Language Model

the students opened their …examsCorpus

Loss

…

34

Predicted
prob dists

= negative log prob
of “opened”

Training an RNN Language Model

the students opened their …examsCorpus

Loss

…

35

Predicted
prob dists

= negative log prob
of “their”

Training an RNN Language Model

the students opened their …examsCorpus

Loss

…

36

Predicted
prob dists

= negative log prob
of “exams”

Training an RNN Language Model

+ + + + … =

the students opened their …exams

…

37

Corpus

Loss

Predicted
prob dists

“Teacher forcing”

Training a RNN Language Model

• However: Computing loss and gradients across entire corpus at once is
too expensive (memory-wise)!

• In practice, consider as a sentence (or a document)

• Recall: Stochastic Gradient Descent allows us to compute loss and gradients for small
chunk of data, and update.

• Compute loss for a sentence (actually, a batch of sentences), compute gradients
and update weights. Repeat on a new batch of sentences.

38

Backpropagation for RNNs

39

……

Question: What’s the derivative of w.r.t. the repeated weight matrix ?

Answer:
“The gradient w.r.t. a repeated weight

is the sum of the gradient
w.r.t. each time it appears”

Why?

Multivariable Chain Rule

40

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Training the parameters of RNNs: Backpropagation for RNNs

41

……

Question: How do we calculate this?

Answer: Backpropagate over timesteps
i = t, … ,0, summing gradients as you go.
This algorithm is called “backpropagation
through time” [Werbos, P.G., 1988, Neural
Networks 1, and others]

equals

equals

equals

equals

equals

Apply the multivariable chain rule:
= 1

In practice, often
“truncated” after ~20
timesteps for training
efficiency reasons

Generating with an RNN Language Model (“Generating roll outs”)
Just like an n-gram Language Model, you can use a RNN Language Model to
generate text by repeated sampling. Sampled output becomes next step’s input.

<s> my favorite season

sample

my
sample

favorite
sample

season
sample

is

is42

sample

spring

spring

sample

</s>

Generating text with an RNN Language Model

Let’s have some fun!
• You can train an RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on Obama speeches:

Source: https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

43

https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

Generating text with an RNN Language Model

Let’s have some fun!
• You can train an RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on Harry Potter:

Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

44

https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

Generating text with an RNN Language Model

Let’s have some fun!
• You can train an RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on recipes:

Source: https://gist.github.com/nylki/1efbaa36635956d35bcc

45

https://gist.github.com/nylki/1efbaa36635956d35bcc

Generating text with a RNN Language Model

46

Let’s have some fun!
• You can train a RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on paint color names:

Source: http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network

This is an example of a character-level RNN-LM (predicts what character comes next)

http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network

Evaluating Language Models

• The standard evaluation metric for Language Models is perplexity.

• This is equal to the exponential of the cross-entropy loss :

47

Inverse probability of corpus, according to Language Model

Normalized by
number of words

Lower perplexity is better!

RNNs greatly improved perplexity over what came before

n-gram model

Increasingly
complex RNNs

Perplexity improves
(lower is better)

Source: https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

48

https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

4. Problems with RNNs: Vanishing and Exploding Gradients

49

Vanishing gradient intuition

50

?

Vanishing gradient intuition

chain rule!

51

Vanishing gradient intuition

chain rule!

52

Vanishing gradient intuition

chain rule!

53

Vanishing gradient intuition

What happens if these are small?

Vanishing gradient problem:
When these are small, the gradient
signal gets smaller and smaller as it

backpropagates further
54

Vanishing gradient proof sketch (linear case)

• Recall:
• What if were the identity function, ?

• Consider the gradient of the loss on step , with respect
to the hidden state on some previous step . Let

55

(chain rule)

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf
(and supplemental materials), at http://proceedings.mlr.press/v28/pascanu13-supp.pdf

(chain rule)

If Wh is “small”, then this term gets
exponentially problematic as becomes large

(value of)

http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf

Vanishing gradient proof sketch (linear case)

• What’s wrong with ?
• Consider if the eigenvalues of are all less than 1:

• We can write using the eigenvectors of as a basis:

• What about nonlinear activations (i.e., what we use?)
• Pretty much the same thing, except the proof requires
for some dependent on dimensionality and

56 Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf
(and supplemental materials), at http://proceedings.mlr.press/v28/pascanu13-supp.pdf

(eigenvectors)

Approaches 0 as grows, so gradient vanishes

sufficient but
not necessary

http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf

Why is vanishing gradient a problem?

Gradient signal from far away is lost because it’s much smaller than gradient signal from close-by.

So, model weights are updated only with respect to near effects, not long-term effects.

57

Effect of vanishing gradient on RNN-LM

• LM task: When she tried to print her tickets, she found that the printer was out of toner.
She went to the stationery store to buy more toner. It was very overpriced. After
installing the toner into the printer, she finally printed her ________

• To learn from this training example, the RNN-LM needs to model the dependency
between “tickets” on the 7th step and the target word “tickets” at the end.

• But if the gradient is small, the model can’t learn this dependency
• So, the model is unable to predict similar long-distance dependencies at test time

58

Why is exploding gradient a problem?

• If the gradient becomes too big, then the SGD update step becomes too big:

• This can cause bad updates: we take too large a step and reach a weird and bad
parameter configuration (with large loss)
• You think you’ve found a hill to climb, but suddenly you’re in Iowa

• In the worst case, this will result in Inf or NaN in your network
(then you have to restart training from an earlier checkpoint)

59

learning rate

gradient

Gradient clipping: solution for exploding gradient

60

• Gradient clipping: if the norm of the gradient is greater than some threshold, scale it
down before applying SGD update

• Intuition: take a step in the same direction, but a smaller step

• In practice, remembering to clip gradients is important, but exploding gradients are an
easy problem to solve

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf

http://proceedings.mlr.press/v28/pascanu13.pdf

How to fix the vanishing gradient problem?

• The main problem is that it’s too difficult for the RNN to learn to preserve information
over many timesteps.

• In a vanilla RNN, the hidden state is constantly being rewritten

• First off next time: How about an RNN with separate memory which is added to?
• LSTMs

• And then: Creating more direct and linear pass-through connections in model
• Attention, residual connections, etc.

61

5. Recap

• Language Model: A system that predicts the next word

• Recurrent Neural Network: A family of neural networks that:
• Take sequential input of any length
• Apply the same weights on each step
• Can optionally produce output on each step

• Recurrent Neural Network ≠ Language Model

• We’ve shown that RNNs are a great way to build a LM (despite some problems)

• RNNs are also useful for much more!
62

Why should we care about Language Modeling?

63

• Language Modeling is a benchmark task that helps us measure our progress on
predicting language use

• Language Modeling is a subcomponent of many NLP tasks, especially those involving
generating text or estimating the probability of text:

• Everything else in NLP has now been rebuilt upon Language Modeling: GPT-3 is an LM!

• Predictive typing
• Speech recognition
• Handwriting recognition
• Spelling/grammar correction
• Authorship identification
• Machine translation
• Summarization
• Dialogue
• etc.

Other RNN uses: RNNs can be used for sequence tagging
e.g., part-of-speech tagging, named entity recognition

knocked over the vasethe startled cat

VBN IN DT NNDT JJ NN

64

RNNs can be used for sentence classification

the movie a lotoverall I enjoyed

positive

Sentence
encoding

How to compute
sentence encoding?

e.g., sentiment classification

65

RNNs can be used for sentence classification

the movie a lotoverall I enjoyed

positive

Sentence
encoding

equals

How to compute
sentence encoding?

Basic way:
Use final hidden

state

e.g., sentiment classification

66

RNNs can be used for sentence classification

the movie a lotoverall I enjoyed

positive

Sentence
encoding

How to compute
sentence encoding?

Usually better:
Take element-wise
max or mean of all

hidden states

e.g., sentiment classification

67

RNNs can be used as an encoder module
e.g., question answering, machine translation, many other tasks!

Context: Ludwig
van Beethoven was
a German
composer and
pianist. A crucial
figure …

Beethoven ?what nationality wasQuestion:

Here the RNN acts as an
encoder for the Question (the
hidden states represent the
Question). The encoder is part
of a larger neural system.

Answer: German

lots o
f n

eural

arch
ite

ctu
re

lots of neural

architecture

68

RNN-LMs can be used to generate text
e.g., speech recognition, machine translation, summarization

what’s the

weatherthewhat’s

This is an example of a conditional language model.
We’ll see Machine Translation in much more detail starting next lecture.

69

Input (audio)

<START>

conditioning

RNN-LM

Terminology and a look forward

By the end of the course: You will understand phrases like
“stacked bidirectional LSTMs with residual connections and self-attention”

The RNN described in this lecture = simple/vanilla/Elman RNN

Next lecture: You will learn about other RNN flavors

like LSTM and GRU

70

and multi-layer RNNs

