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Lecture Plan

1. A bit more about neural networks (10 mins)
Language modeling + RNNs

• 2. A new NLP task: Language Modeling (20 mins)

• 3. A new family of neural networks: Recurrent Neural Networks (RNNs) (25 mins)

• 4. Problems with RNNs (15 mins) 
• 5. Recap on RNNs/LMs (10 mins)

Reminders: 
You should have handed in Assignment 2 by today, start of class
In Assignment 3, out today, you build a neural dependency parser using PyTorch 
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motivates

This is the most important concept in the 
class! It leads to BERT, 
GPT-3 and ChatGPT!

Important and used in Ass4, but not the only way to build LMs



Modern neural networks (esp. language models) are enormous 

• Large, deep neural nets are a cornerstone of modern NLP systems 

https://huggingface.co/blog/large-language-models



But building large neural networks isn’t easy or obvious

• It took a long time and much work to make deep neural networks practical!

[Bengio et al 2006]



0
model “power”

Training error

Test error

overfitting
error

We have models with many parameters! Regularization!
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• A full loss function includes regularization over all parameters 𝜃, e.g., L2 regularization:

• Classic view: Regularization works to prevent overfitting when we have a lot of features 
(or later a very powerful/deep model, etc.)

• Now: Regularization produces models that generalize well when we have a “big” model
• We do not care that our models overfit on the training data, even though they are hugely overfit



Dropout (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov 2012/JMLR 2014)
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• During training
• For each data 

point each time:
• Randomly set 

input to 0 with 
probability 𝑝
“dropout ratio” 
(often p = 0.5 
except p – 0.15 
for input layer) 
via dropout mask 

• During testing
• Multiply all 

weights by 1 − 𝑝
• No other dropout
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Dropout (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov 2012/JMLR 2014)
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Why does it work? 
Prevents Feature Co-adaptation = Good Regularization! Use it everywhere!

Let’s talk through an example..
• Training time: at each instance of evaluation (in online SGD-training), randomly set ~50% (p%) of the inputs to 

each neuron to 0 (less for the first layer)
• Test time: halve the model weights (now twice as many)
• This prevents feature co-adaptation: A feature cannot only be useful in the presence of particular other features

In a single layer: A kind of middle-ground between Naïve Bayes (all feature weights set 
independently) and logistic regression models (weights are set in the context of all others)

• Can be thought of as a form of model bagging (i.e., like an ensemble model)
• Nowadays usually thought of as strong, feature-dependent regularizer 

[Wager, Wang, & Liang 2013]



“Vectorization”
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• E.g., looping over word vectors versus concatenating them all into one large matrix 
and then multiplying the softmax weights with that matrix:

• for loop:                                    1000 loops, best of 3:   639 µs per loop
Using single a C x N matrix:  10000 loops, best of 3: 53.8 µs per loop

• Matrices are awesome!!! Always try to use vectors and matrices rather than for loops!
• The speed gain goes from 1 to 2 orders of magnitude with GPUs!



Parameter Initialization

• You normally must initialize weights to small random values (i.e., not zero matrices!)
• To avoid symmetries that prevent learning/specialization

• Initialize hidden layer biases to 0 and output (or reconstruction) biases to optimal value if weights were 
0 (e.g., mean target or inverse sigmoid of mean target)

• Initialize all other weights ~ Uniform(–r, r), with r chosen so numbers get neither too big or too small 
[later, the need for this is removed with use of layer normalization]

• Xavier initialization has variance inversely proportional to fan-in nin (previous layer size) and fan-out nout
(next layer size):



Optimizers

• Usually, plain SGD will work just fine!
• However, getting good results will often require hand-tuning the learning rate 
• E.g., start it higher and halve it every k epochs (passes through full data, shuffled or sampled)

• For more complex nets, or to avoid worry, try more sophisticated “adaptive” optimizers 
that scale the adjustment to individual parameters by an accumulated gradient
• These models give differential per-parameter learning rates
• Adagrad ß Simplest member of family, but tends to “stall early” 
• RMSprop
• Adam  ß A fairly good, safe place to begin in many cases
• AdamW
• NAdamW ß Can be better with word vectors (W) and for speed (Nesterov acceleration)
• …

• Start them with an initial learning rate, around 0.001 ß Many have other hyperparameters



• Language Modeling is the task of predicting what word comes next

the students opened their ______

• More formally: given a sequence of words                                 ,
compute the probability distribution of the next word             :

where            can be any word in the vocabulary

• A system that does this is called a Language Model

2. Language Modeling

exams
minds

laptops
books
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Language Modeling

• You can also think of a Language Model as a system that 
assigns a probability to a piece of text

• For example, if we have some text                          , then the 
probability of this text (according to the Language Model) is:

12

This is what our LM provides



You use Language Models every day!
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You use Language Models every day!
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n-gram Language Models

the students opened their  ______

• Question: How to learn a Language Model?
• Answer (pre- Deep Learning): learn an n-gram Language Model!

• Definition: An n-gram is a chunk of n consecutive words.
• unigrams: “the”, “students”, “opened”, ”their”
• bigrams: “the students”, “students opened”, “opened their”
• trigrams: “the students opened”, “students opened their”
• four-grams: “the students opened their”

• Idea: Collect statistics about how frequent different n-grams are and use these to 
predict next word.

15



n-gram Language Models
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• First we make a Markov assumption: 𝑥(&'!) depends only on the preceding n-1 words

(statistical 
approximation)

(definition of 
conditional prob)

(assumption)

n-1 words

prob of a n-gram

prob of a (n-1)-gram

• Question: How do we get these n-gram and (n-1)-gram probabilities?
• Answer: By counting them in some large corpus of text!



n-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

as the proctor started the clock, the students opened their _____
discard

condition on this

For example, suppose that in the corpus:
• “students opened their” occurred 1000 times
• “students opened their books” occurred 400 times

• à P(books | students opened their) = 0.4
• “students opened their exams” occurred 100 times

• à P(exams | students opened their) = 0.1

Should we have discarded 
the “proctor” context?

17



Sparsity Problems with n-gram Language Models

Note: Increasing n makes sparsity problems worse.
Typically, we can’t have n bigger than 5.

Problem: What if “students 
opened their” never occurred in 
data? Then we can’t calculate 
probability for any 𝑤!

Sparsity Problem 2

Problem: What if “students 
opened their 𝑤” never 
occurred in data? Then 𝑤 has 
probability 0!

Sparsity Problem 1

(Partial) Solution: Add small 𝛿 
to the count for every 𝑤 ∈ 𝑉. 
This is called smoothing.

(Partial) Solution: Just condition 
on “opened their” instead. 
This is called backoff.

18



Storage Problems with n-gram Language Models
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Storage: Need to store 
count for all n-grams you 
saw in the corpus. 

Increasing n or increasing 
corpus increases model size!



n-gram Language Models in practice

• You can build a simple trigram Language Model over a 
1.7 million word corpus (Reuters) in a few seconds on your laptop*

today the _______

* Try for yourself: https://nlpforhackers.io/language-models/Otherwise, seems reasonable!

company 0.153
bank 0.153
price 0.077
italian 0.039
emirate 0.039

…

get probability 
distribution

Sparsity problem: 
not much granularity 

in the probability 
distribution

Business and financial news
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https://nlpforhackers.io/language-models/


Generating text with a n-gram Language Model
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You can also use a Language Model to generate text

today the _______

condition 
on this

company 0.153
bank 0.153
price 0.077
italian 0.039
emirate 0.039

…

get probability 
distribution

sample



Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the price _______

condition 
on this

of 0.308
for 0.050
it 0.046
to 0.046
is 0.031

…

get probability 
distribution

sample
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Generating text with a n-gram Language Model

You can also use a Language Model to generate text

today the price of _______

condition 
on this

the 0.072
18 0.043
oil 0.043
its 0.036
gold 0.018

…

get probability 
distribution

sample

23



Generating text with a n-gram Language Model
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You can also use a Language Model to generate text

today the price of gold per ton , while production of shoe 
lasts and shoe industry , the bank intervened just after it 
considered and rejected an imf demand to rebuild depleted 
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

…but incoherent. We need to consider more than 
three words at a time if we want to model language well.

But increasing n worsens sparsity problem, 
and increases model size…



How to build a neural language model?

• Recall the Language Modeling task:
• Input: sequence of words
• Output: prob. dist. of the next word 

• How about a window-based neural model?
• We saw this applied to Named Entity Recognition in Lecture 2:

25
in Paris are amazingmuseums

LOCATION



A fixed-window neural Language Model

the students opened theiras the proctor started the  clock ______
discard fixed window

26



A fixed-window neural Language Model

the students opened their

books
laptops

concatenated word embeddings

words / one-hot vectors 

hidden layer

a zoo

output distribution 

27



A fixed-window neural Language Model

the students opened their

books
laptops

a zoo

Improvements over n-gram LM:
• No sparsity problem
• Don’t need to store all observed n-grams

Remaining problems:
• Fixed window is too small
• Enlarging window enlarges 𝑊 
• Window can never be large enough!
• 𝑥(!) and 𝑥(") are multiplied by 

completely different weights in 𝑊.
No symmetry in how the inputs are 
processed.

We need a neural architecture 
that can process any length input

28

Approximately: Y. Bengio, et al. (2000/2003): A Neural Probabilistic Language Model



3. Recurrent Neural Networks (RNN)

29

hidden states 

input sequence 
(any length)

…

…

…

Core idea: Apply the same 
weights 𝑊 repeatedlyA family of neural architectures

outputs 
(optional)



A Simple RNN Language Model

the students opened theirwords / one-hot vectors 

books
laptops

word embeddings 

a zoo

output distribution 

Note: this input sequence could be much 
longer now!

hidden states 

is the initial hidden state
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RNN Language Models

the students opened their

books
laptops

a zoo

RNN Advantages:
• Can process any length input
• Computation for step t can (in 

theory) use information from 
many steps back

• Model size doesn’t increase for 
longer input context

• Same weights applied on every 
timestep, so there is symmetry 
in how inputs are processed.

RNN Disadvantages:
• Recurrent computation is slow
• In practice, difficult to access 

information from many steps 
back 

More on 
these later
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Training an RNN Language Model

• Get a big corpus of text which is a sequence of words
• Feed into RNN-LM; compute output distribution         for every step t.

• i.e., predict probability dist of every word, given words so far

• Loss function on step t is cross-entropy between predicted probability 
distribution        , and the true next word        (one-hot for           ):

• Average this to get overall loss for entire training set:

32



Training an RNN Language Model
= negative log prob 

of “students”

the students opened their …examsCorpus

Loss

…

33

Predicted 
prob dists



Training an RNN Language Model

the students opened their …examsCorpus

Loss

…

34

Predicted 
prob dists

= negative log prob 
of “opened”



Training an RNN Language Model

the students opened their …examsCorpus

Loss

…

35

Predicted 
prob dists

= negative log prob 
of “their”



Training an RNN Language Model

the students opened their …examsCorpus

Loss

…

36

Predicted 
prob dists

= negative log prob 
of “exams”



Training an RNN Language Model

+                  +                   +                  + …      =

the students opened their …exams

…

37

Corpus

Loss

Predicted 
prob dists

“Teacher forcing”



Training a RNN Language Model

• However: Computing loss and gradients across entire corpus at once is 
too expensive (memory-wise)!

• In practice, consider                       as a sentence (or a document)

• Recall: Stochastic Gradient Descent allows us to compute loss and gradients for small 
chunk of data, and update.

• Compute loss          for a sentence (actually, a batch of sentences), compute gradients 
and update weights. Repeat on a new batch of sentences.

38



Backpropagation for RNNs
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……

Question: What’s the derivative of              w.r.t. the repeated weight matrix         ?

Answer:
“The gradient w.r.t. a repeated weight 

is the sum of the gradient 
w.r.t. each time it appears”

Why?



Multivariable Chain Rule
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Source:  
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version


Training the parameters of RNNs: Backpropagation for RNNs
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……

Question: How do we calculate this?

Answer: Backpropagate over timesteps
i = t, … ,0, summing gradients as you go.
This algorithm is called “backpropagation 
through time” [Werbos, P.G., 1988, Neural 
Networks 1, and others]

equals

equals

equals

equals

equals

Apply the multivariable chain rule:
= 1

In practice, often 
“truncated” after ~20 
timesteps for training 
efficiency reasons



Generating with an RNN Language Model (“Generating roll outs”)
Just like an n-gram Language Model, you can use a RNN Language Model to 
generate text by repeated sampling. Sampled output becomes next step’s input.

<s> my favorite season

sample

my
sample

favorite
sample

season
sample

is

is42

sample

spring

spring

sample

</s>



Generating text with an RNN Language Model

Let’s have some fun!
• You can train an RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on Obama speeches:

Source: https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0
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https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0


Generating text with an RNN Language Model

Let’s have some fun!
• You can train an RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on Harry Potter:

Source:  https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
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https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6


Generating text with an RNN Language Model

Let’s have some fun!
• You can train an RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on recipes:

Source: https://gist.github.com/nylki/1efbaa36635956d35bcc
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https://gist.github.com/nylki/1efbaa36635956d35bcc


Generating text with a RNN Language Model
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Let’s have some fun!
• You can train a RNN-LM on any kind of text, then generate text in that style.
• RNN-LM trained on paint color names:

Source: http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network

This is an example of a character-level RNN-LM (predicts what character comes next)

http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network


Evaluating Language Models

• The standard evaluation metric for Language Models is perplexity.

• This is equal to the exponential of the cross-entropy loss          :

47

Inverse probability of corpus, according to Language Model

Normalized by 
number of words

Lower perplexity is better!



RNNs greatly improved perplexity over what came before

n-gram model

Increasingly 
complex RNNs

Perplexity improves 
(lower is better)

Source: https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/
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https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/


4. Problems with RNNs: Vanishing and Exploding Gradients
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Vanishing gradient intuition

50

?



Vanishing gradient intuition

chain rule!
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Vanishing gradient intuition

chain rule!
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Vanishing gradient intuition

chain rule!
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Vanishing gradient intuition

What happens if these are small?

Vanishing gradient problem: 
When these are small, the gradient 
signal gets smaller and smaller as it 

backpropagates further
54



Vanishing gradient proof sketch (linear case)

• Recall: 
• What if      were the identity function,                   ? 

• Consider the gradient of the loss              on step , with respect 
to the hidden state         on some previous step  . Let

55

(chain rule)

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf
(and supplemental materials), at http://proceedings.mlr.press/v28/pascanu13-supp.pdf

(chain rule)

If Wh is “small”, then this term gets 
exponentially problematic as    becomes large

(value of               )

http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf


Vanishing gradient proof sketch (linear case)

• What’s wrong with        ? 
• Consider if the eigenvalues of        are all less than 1:

• We can write                  using the eigenvectors of        as a basis:

• What about nonlinear activations    (i.e., what we use?)
• Pretty much the same thing, except the proof requires            
for some     dependent on dimensionality and 

56 Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf
(and supplemental materials), at http://proceedings.mlr.press/v28/pascanu13-supp.pdf

(eigenvectors)

Approaches 0 as    grows, so gradient vanishes 

sufficient but 
not necessary

http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13-supp.pdf


Why is vanishing gradient a problem?

Gradient signal from far away is lost because it’s much smaller than gradient signal from close-by.

So, model weights are updated only with respect to near effects, not long-term effects.
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Effect of vanishing gradient on RNN-LM

• LM task: When she tried to print her tickets, she found that the printer was out of toner. 
She went to the stationery store to buy more toner. It was very overpriced. After 
installing the toner into the printer, she finally printed her ________

• To learn from this training example, the RNN-LM needs to model the dependency 
between “tickets” on the 7th step and the target word “tickets” at the end.

• But if the gradient is small, the model can’t learn this dependency
• So, the model is unable to predict similar long-distance dependencies at test time
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Why is exploding gradient a problem?

• If the gradient becomes too big, then the SGD update step becomes too big:

• This can cause bad updates: we take too large a step and reach a weird and bad 
parameter configuration (with large loss)
• You think you’ve found a hill to climb, but suddenly you’re in Iowa

• In the worst case, this will result in Inf or NaN in your network 
(then you have to restart training from an earlier checkpoint)

59

learning rate

gradient



Gradient clipping: solution for exploding gradient
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• Gradient clipping: if the norm of the gradient is greater than some threshold, scale it 
down before applying SGD update

• Intuition: take a step in the same direction, but a smaller step

• In practice, remembering to clip gradients is important, but exploding gradients are an 
easy problem to solve

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf

http://proceedings.mlr.press/v28/pascanu13.pdf


How to fix the vanishing gradient problem?

• The main problem is that it’s too difficult for the RNN to learn to preserve information 
over many timesteps.

• In a vanilla RNN, the hidden state is constantly being rewritten

• First off next time: How about an RNN with separate memory which is added to?
• LSTMs

• And then: Creating more direct and linear pass-through connections in model
• Attention, residual connections, etc.
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5. Recap

• Language Model: A system that predicts the next word

• Recurrent Neural Network: A family of neural networks that:
• Take sequential input of any length 
• Apply the same weights on each step
• Can optionally produce output on each step

• Recurrent Neural Network ≠ Language Model 

• We’ve shown that RNNs are a great way to build a LM (despite some problems)

• RNNs are also useful for much more!
62



Why should we care about Language Modeling?
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• Language Modeling is a benchmark task that helps us measure our progress on 
predicting language use

• Language Modeling is a subcomponent of many NLP tasks, especially those involving 
generating text or estimating the probability of text:

• Everything else in NLP has now been rebuilt upon Language Modeling: GPT-3 is an LM!

• Predictive typing
• Speech recognition
• Handwriting recognition
• Spelling/grammar correction
• Authorship identification
• Machine translation
• Summarization
• Dialogue
• etc.



Other RNN uses: RNNs can be used for sequence tagging
e.g., part-of-speech tagging, named entity recognition

knocked over the vasethe startled cat

VBN IN DT NNDT JJ NN
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RNNs can be used for sentence classification

the movie a lotoverall I enjoyed

positive

Sentence 
encoding

How to compute 
sentence encoding?

e.g., sentiment classification
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RNNs can be used for sentence classification

the movie a lotoverall I enjoyed

positive

Sentence 
encoding

equals

How to compute 
sentence encoding?

Basic way: 
Use final hidden 

state

e.g., sentiment classification
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RNNs can be used for sentence classification

the movie a lotoverall I enjoyed

positive

Sentence 
encoding

How to compute 
sentence encoding?

Usually better: 
Take element-wise 
max or mean of all 

hidden states

e.g., sentiment classification
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RNNs can be used as an encoder module
e.g., question answering, machine translation, many other tasks!

Context: Ludwig 
van Beethoven was 
a German 
composer and 
pianist. A crucial 
figure …

Beethoven ?what nationality wasQuestion:

Here the RNN acts as an 
encoder for the Question (the 
hidden states represent the 
Question). The encoder is part 
of a larger neural system.

Answer: German

lots o
f n

eural 

arch
ite

ctu
re

lots of neural 

architecture
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RNN-LMs can be used to generate text
e.g., speech recognition, machine translation, summarization

what’s the

weatherthewhat’s

This is an example of a conditional language model.
We’ll see Machine Translation in much more detail starting next lecture.

69

Input (audio)

<START>

conditioning

RNN-LM



Terminology and a look forward

By the end of the course: You will understand phrases like 
“stacked bidirectional LSTMs with residual connections and self-attention”

The RNN described in this lecture = simple/vanilla/Elman RNN

Next lecture: You will learn about other RNN flavors

like LSTM           and GRU

70

and multi-layer RNNs


