
Natural Language to Code Generation

Pengcheng Yin
pcyin@google.com

Google DeepMind

The Problem: Natural Language to Code Generation

my_list = [3, 5, 1]

sort in descending order

sorted(my_list, reverse=True)

Translate a user’s natural language intents
into machine-executable programs

Semantic Parsing to Domain-specific
Formal Meaning Representations

lambda $0 e (and (flight $0)
 (from $0 pittsburgh:ci)
 (to $0 san_francisco:ci))

Show me flights from Pittsburgh to SFO

lambda-calculus logical form

Code Generation to
General-purpose Programing Languages

Sort my_list in descending order

sorted(my_list, reverse=True)

Python code

From Semantic Parsing to General-purpose Code Generation

Natural Language Intent

Sort my_list in descending order

Python Source Code

sorted(my_list, reverse=True)

Abstract Syntax Tree (AST)
– Use Abstract Syntax Trees as general-purpose

intermediate meaning representations

– is a seq-to-tree model using

program grammar as prior syntactic

knowledge to constrain decoding space

– Deterministic transformation to source code

[Yin and Neubig 2017, 2018]

Pre-LLMs: Syntax-driven Generation Methods

 : AST Generation using Auto-regressive Models

root root ⟼ Expr

Expr

expr[Value]

Call

expr[func] expr*[args] keyword*[keywords]

Name

str Name

erpr

str(my_list)

keyword

 Expr ⟼ expr[Value]

 expr ⟼ Call

Call ⟼ expr[func] expr*[args]
 keyword*[keywords]

expr ⟼ Name

Name ⟼ str

GenToken[sorted]

GenToken[</n>]

expr* ⟼ expr

expr ⟼ Name

Name ⟼ str

GenToken[my_list]

GenToken[</n>]

 keyword* ⟼ keyword

....

Derivation Abstract Syntax Tree Action Sequence

Rule Application

Token Generation

str(sorted)

....

sorted(my_list, reverse=True)

[Yin and Neubig 2017]

Factorize the generation process of an AST into sequential applications of tree-constructing actions {a_t}

2nd-Stage
Code-specific Training

Code Generation as

a Prompting Task
Prompt:

Model Completion:

 result = sorted(
 arr, reverse=True)[:k]
 return result

def find_k_largest(arr, k):
 # return the k largest
 # elements in the input array

Large Language Models (LLMs) for Code Generation

General Natural Language
Pre-training

.py
.cpp

.java

.c
.js

PaLM (540B Parameters)
50% social media conversations

30% filtered Web documents

5% Github Code (39B tokens)

(780B tokens in total)

PaLM-Coder (based on PaLM 540B)
Additional 8B multilingual code tokens

(including 5B Python tokens)

Also mix with small % of NL data

[Chowdhery et al., 2022]https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

Other more-recent Code LLMs:
● Code LLaMA
● DeepSeek Coder

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

Code Generation to Domain-Specific Programs: Text-to-SQL

Natural Language Questions with

Database Schema

Show me flights from Pittsburgh to SFO
Input Utterance

SQL Query

SELECT Flight.FlightNo

FROM Flight

JOIN Airport as DepAirport

ON

 Flight.Departure == DepAirport.Name

JOIN Airport as ArvAirport

ON

 Flight.Arrival == ArvAirport.Name

WHERE

 DepAirport.CityName == Pittsburgh

 AND

 ArvAirport.CityName == San_Francisco

[Sun et al., 2023; SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL]

https://arxiv.org/abs/2306.00739

General-purpose Code Generation: Python Algorithmic Problems

def sum_odd_elements(lst):

 """given non-empty list of integers, return the

sum of all of the odd elements that are in even

positions

 Examples

 solution([5, 8, 7, 1]) ⇒ 12

 solution([3, 3, 3, 3, 3]) ⇒ 9

 solution([30, 13, 24, 321]) ⇒ 0

"""

return sum([

 lst[i] for i in range(0, len(lst))

 if i % 2 == 0 and list[i] % 2 == 1)

Write a function to find the smallest missing

element in a sorted array. Your code should

satisfy these tests:

assert smallest_missing(

 [0, 1, 2, 3, 4, 5, 6], 0, 6) == 7

assert smallest_missing(

 [0, 1, 2, 6, 9, 11, 15], 0, 6) == 3

assert smallest_missing(

 [1, 2, 3, 4, 6, 9, 11, 15], 0, 7) == 0

def smallest_missing(arr, n, m):
 smallest = min(n, m)
 for i in range(n, m + 1):
 if arr[i] <= smallest:
 smallest += 1
 return smallest

HumanEval Doc-string2Code (Chen et al., 2021) MBPP NL description + tests (Austin et al., 2021)

[Chen et al., 2021; Austin et al., 2021]

Competition Level Programming: APPS/CodeContests

An example competition-level coding problem (figure from from Hendrycks et al. 2021)

LeetCode Dataset: https://github.com/deepseek-ai/DeepSeek-Coder/tree/main/Evaluation/LeetCode

https://github.com/deepseek-ai/DeepSeek-Coder/tree/main/Evaluation/LeetCode

import json, pathlib, nbconvert, nbformat
import streamlit as st

Get the path of Jupyter notebooks under '~/datasets/'
root_path = pathlib.Path('~/datasets/').expand_user()
notebook_files = [p for p in root_path.glob('*.ipynb')]

Load file contents to a dict with file path as key.
notebook_contents = {
 fp: nbformat.load(open(fp)) for fp in notebook_files}

Define a function to render a notebook in HTML.
def convert_notebook_to_html(notebook):
 exporter = nbconvert.HTMLExporter()
 return exporter.from_notebook_node(notebook)[0]

Build a streamlit app to visualize notebooks in html
nb_to_view = st.selectbox(
 "Choose a notebook to view:", notebook_files)
selected_notebook = notebook_contents[nb_to_view]
st.write(convert_notebook_to_html(selected_notebook))

Get the path of Jupyter notebooks under '~/datasets/'

Load file contents to a dict with file path as key

Define a function to render a notebook in HTML

Build a streamlit app to visualize notebooks

– Succinct or under-specified intents

– Rich programmatic contexts

– Multi-turn NL2Code interaction

– Open-ended tasks

How developers prompt LLMs

in AI pair programming

[Barke et al., 2022; Nijkamp et al., 2022]

Challenges in real-world interaction with coding assistants

– Elaborate specifications and test cases

– No multi-turn problems or rich contexts

– Simple problems using basic data structures

def solution(lst):

 """given non-empty list of integers, return the

sum of all of the odd elements that are in even

positions

 Examples

 solution([5, 8, 7, 1]) ⇒ 12

 solution([3, 3, 3, 3, 3]) ⇒ 9

 solution([30, 13, 24, 321]) ⇒ 0

"""

return sum([

 lst[i] for i in range(0, len(lst))

 if i % 2 == 0 and list[i] % 2 == 1)

HumanEval Doc-string2Code (Chen et al., 2021)

– Succinct and potentially under-specified intents

– Multi-turn interaction with rich code contexts

– Open-ended tasks

Real-world Interaction Existing Datasets

Modeling Context and

Multi-turn Interaction

Instruction Tuning

Model Evaluation on Open-Domain Tasks

Decoding and Reasoning Methods

(planning, consistency-based

decoding, self-improvement)

Natural language to Code Generation: Agenda

Modeling Context and

Multi-turn Interaction

(Supervised) Instruction Tuning

Model Evaluation on Open-Domain Tasks

Decoding and Reasoning Methods

(planning, consistency-based

decoding, self-improvement)

Natural language to Code Generation: Agenda

Instruction Tuning: Synthesize NL2Code Examples for Instruction Tuning

NL Instruction

Instruction Generation

● Prompt LLMs to generate
interview-style coding questions

● Focus on sample diversity (high temp)

Generate Code Solutions

● Generate code based on NL and tests

● Focus on sample diversity (high temp)

● Filtering based on test pass/fail results

Generate Test Cases

● Define the function signature and
input/output specifications

● Focus on solution quality (greedy
decoding)

Write a function to find the k-th
largest item in an array

assert k_largest(arr=[5,7,3],k=2) == 5
assert k_largest(arr=[4,2,3,1],k=3) == 2
assert k_largest(arr=[15, 8],k=1) == 15

def k_largest(arr, k):
 result = sorted(
 arr, reverse=True)[k - 1]
 return result

Test Cases

Code Solution

[Wang et al., 2022; Honovich et al., 2022; Rozière et al., 2023]

Self-Instruct

Instruction Tuning: Synthesize NL2Code Problems for Instruction Tuning

● Other variants:
○ WizardCoder: iteratively envolve an instruction-code pair to a more complex version
○ Textbooks are all you need: distill textbook-style coding exercise data from LLMs
○ Both methods rely on strong teacher models

Create a Python program that creates a
random password of 8 characters

Create a Python programs that generates
a random password with 12 characters,
including at least one uppercase
letter, one special char from !@#$%^&

More complex instructions (with solutions)

Seed Instructions (with solutions)

Example 1: Consider the matrix A = np.array([[1, 2], [2,
4]]). We can check if this matrix is singular or
nonsingular using the determinant function. We can define
a Python function, ` is_singular(A)`, which returns true
if the determinant of A is zero, and false otherwise.

import numpy as np
def is_singular(A):
 det = np.linalg.det(A)
 if det == 0: return True
 else: return False
 A = np.array([[1, 2], [2, 4]])
 print(is_singular(A)) # True

WizardCoder (Luo et al; 2023) Textbooks are all you need (Gunasekar et al; 2023)

Instruction Tuning: Improve Diversity by Leveraging Code Data in the Wild

● Idea: use random Github code snippets to “inspire” an LLM to generate NL2Code problems in similar topics
● Seed code snippets ensures broad domain coverage

MagicCoder (Wei et al., 2023)

Instruction Tuning: Leverage Noisy NL2Code Data in the Wild

● Mine noisy instruction-tuning like data from Github commits with high-precision heuristics and filters
● Does not need distillation from a teacher model
● Broad domain coverage (compared to interview-style problems)
● Contextualized instructions: Code + NL instruction Code Solution
● NL instructions based on commit messages are often noisy and under-specified

OctoPack (Muennighoff et al., 2023)

Instruction Tuning: Learning to follow complex instructions with I/O specifications

Get average duration of flights between cities for each airline

Airline Delhi Mumbai Chennai

AirAsia
Delhi N/A 7.56 1.04

Mumbai 8.08 8.74 11.2
...

SpiceJet ...

Code generation using Intents with I/O Specifications

Input dataframe has columns such as airline, source_city

destination_city. Output dataframe has columns such as

Airline, Delhi, Mumbai, Chennai

Developer’s intent with I/O specifications

Task description + Additional l/O Specification

Predictions from different code LLMs

df.groupby([

 'airline','source_city',

 ...]).duration.mean()

Intended Output

Correct logic but misaligned output

1

2

airline src_city dest_city
AirAisa Delhi Mumbai

… … …

Instruct-tuning with synthetic Intents and Code

1
. 2
. 3
.

1
. 2
. 3

1

2

3

Show the top three countries with the highest GDP
df.argmax(‘GDP’)[‘Country’].tolist()

What are the most populous cities in each country?
df.groupby(‘Country’).argmax(‘Population’)

1

2

Generate intents with code context

1

Type: List

[“USA”,“China”,“Japan”]

Type: pandas.DataFrame

Execute code and collect execution results2

Output is a list of string.

Show the top three countries with the highest GDP

What are the most populous cities in each country?

1

2

Output is a dataframe with columns like Country, City,
Population.

1
. 2
. 3
.

1
. 2
. 3

1

2

3

Augment intents with I/O specifications derived from execution3

df.groupby(['airline',..

.]).duration.mean()

.unstack(level=2)

Correct Output

Instruction
tuning

[WYSHCP 2023]

Country City Population
USA NYC 8,622,357
… … …

Modeling Code Context and

Multi-turn Interaction

(Supervised) Instruction Tuning

Model Evaluation on Open-Domain Tasks

Decoding and Reasoning Methods

(planning, consistency-based

decoding, self-improvement)

Natural language to Code Generation: Agenda

Modeling Context: In-IDE Multi-turn Code Generation

Data Wrangling

Exploratory Data Analysis

Interactive data science platform

import pandas as pd
df = pd.read_csv('dataset/Gamepass_Games_v1.csv')

[1]

def get_hours(x):
 try: return float(x[0]) , float(x[1])
 except: return 0, 0

df['min'], df['max'] = zip(*df['TIME'].str.replace(
 ' hours','').str.split("-").apply(get_hours))

[2] Extract min and max hours as two columns

df['GAMERS']=df['GAMERS'].str.replace(',','').astype(int)
added_year=df[df['GAMERS'].idxmax()]['ADDED'].year

[3] In which year was the most played game added?

fallout=df[df['GAME'].str.contains('Fallout')]
fallout.groupby(fallout['ADDED'].dt.year).get_group(
 added_year)['max'].mean()

[4] What is the average maximum completion time for all
fallout games added that year?

● Context-rich, Multi-turn Interaction
○ Mix code, natural language, execution results
○ Multi-turn (8-10) tasks with dependent context

import pandas as pd
df = pd.read_csv('dataset/Gamepass_Games_v1.csv')

[1]

def get_hours(x):
 try: return float(x[0]) , float(x[1])
 except: return 0, 0

df['min'], df['max'] = zip(*df['TIME'].str.replace(
 ' hours','').str.split("-").apply(get_hours))

[2] Extract min and max hours as two columns

df['GAMERS']=df['GAMERS'].str.replace(',','').astype(int)
added_year = df[df['GAMERS'].idxmax()]['ADDED'].year

[3] In which year was the most played game added?

fallout = df[df['GAME'].str.contains('Fallout')]
fallout.groupby(fallout['ADDED'].dt.year).get_group(
 added_year)['max'].mean()

[4] What is the average maximum completion time for all
fallout games added that year?

pd.pivot_table(df, index=df['ADDED'].dt.year, ...,
 aggfunc=np.count_nonzero,
 fill_value='0').rename_axis(
 index='Year', columns='Month')

[5] What is the amount of games added in each year for each
month? (show a table with index as years, columns as
months and fill null values with 0)

Arcade: Answer Repository for Computational Analysis and Data Engineering.

Multi-turn code generation with succinct intents.

● Grounded Natural Language Understanding
○ Requires understanding of variable contents

(e.g., dataframe contents) and NL concepts.

[Yin et al., 2023]

● Succinct and More Realistic Intents
○ Intents often lack detailed specifications

[2] # Schema of Dataframes:
Columns in df with example values:
name (Mike), subject (math), score (90), date
(2021-05-01)

import pandas as pd

df = pd.read_csv(scores.csv')

[1]

[5] Plot the number of students in each letter grade
range (A: >=90, B: 70-90, C: <70).

>_ LLM Completion:
df.score.apply(

 lambda x: 'A' if x >= 90 else

 ('B' if 70 <= x < 90 else 'C')

).value_counts().plot(kind='bar')

[3] How many students took math courses this year?

df[(df['subject'] == 'math' &

 df['date'].dt.year == datetime.now.year)].count()

[4] Is there a correlation between math and physics grade?

df[df['subject'].in(['math', 'physics'])].corr()

Context Cells

Execution State Descriptions

Intents and Gold-solutions for Prior Turns

NL Intent for the Current Turn

Prompt LLMs for data science code generation

[Yin et al., 2023]

Arcade is a challenging benchmark Code LLMs on Arcade

Fine-tune on Python
code (64B tokens)

Fine-tune on Jupyter
notebooks (10B tokens)

Base PaLM model
trained on 1.3T
tokens

[Yin et al., 2023]

Arcade for multi-turn evaluation of chat LLMs

Hi! I am working on this notebook:

Can you extract min and max hours as two columns?

Sure. You can define a custom function and use `apply`:
import pandas as pd

df = pd.read_csv(

 'dataset/Gamepass_Games_v1.csv')
def get_hours(x): ...

df['min'], df['max'] =

 df['hours'].str.split("-").apply(get_hours)

In which year was the most played game added?

You can use `idmax` to find the index of rows with max
`GAMERS` and get the value of the `ADDED` column

max_year=df[df['GAMERS'].idxmax()]['ADDED'].year

Great! What is the average maximum completion
time for all fallout games added that year?

Just get the rows for the `max_year` above and …

fallout = df[df['GAME'].str.contains('Fallout')]
fallout[fallout['ADDED'] == max_year]['max'].mean()

Modeling Context: Multi-turn Conversational Programming with LLM Chatbots

Arcade for multi-turn evaluation of chat LLMs
[Yin et al., 2023]

Modeling Context: Cross-context Repository-level Code Generation

● Task: given a GitHub issue description, generate a patch (multi-file code changes in a PR) that fixes the issue
● A two-stage baseline approach:

○ Retrieval: Given NL issue description, retrieve relevant source code files that need to be edited.
○ Code Generation: Generate a patch given issue description and retrieved relevant code files

SWE-bench (Jimenez et al., 2023)

● Tasks are quite challenging for SoTA LLMs even given ground-truth source files to edit.
● Models struggle with understanding long contexts (worse performance with increased prompt length)

Solve rate of Claude 2 wrt input length

% Problems

% Solved

[Jimenez et al., 2023]

Modeling Code Context and

Multi-turn Interaction

(Supervised) Instruction Tuning

Model Evaluation on Open-Domain Tasks

Decoding and Reasoning Methods

(planning, consistency-based

decoding, self-improvement)

Natural language to Code Generation: Agenda

Decoding Methods: solving problems with step-by-step prompting

[Yin et al., 2023; Jiang et al., 2023; Zelikman et al., 2023]

Let's solve this problem step-by-step. preamble

[2] Plot the number of students in each letter grade
range (A: >=90, B: 70-90, C: <70).

>_ LLM Completion...

import pandas as pd

df = pd.read_csv(scores.csv')

[1]

A Problem that requires a multi-step solution:

Decompositional step-by-step decoding

df.score.apply(

 lambda x: 'A' if x >= 90 else

 ('B' if 70 <= x < 90 else 'C')

).value_counts().plot(kind='bar')

A vanilla solution:

Decoding Methods: solving problems with step-by-step prompting

def get_grade(score):

 if score >= 90:

 return 'A'

 elif 70 <= score < 90:

 return 'B'

 else:

 return 'C'

df['grade'] = df.score.apply(get_grade)

count_df = df['grade'].value_counts()

count_df.plot(kind='bar')

Step-by-step Prediction with Explanations:
Let's solve this problem step-by-step.

Step 1: Define a function to convert

scores to letter grades.

Step 2: Convert scores to letter grades.

Step 3: Count the number of students by grade.

Step 4: Visualize in a bar chart.

[Yin et al., 2023; Jiang et al., 2023; Zelikman et al., 2023]

Let's solve this problem step-by-step.

* Step 1: Define a function to convert scores to

letter grades.

* Step 2: Convert scores to letter grades.

* Step 3: Count the number of students by grade.

* Step 4: Visualize in a bar chart.

Step-by-Step Planning in NL (Jiang et al., 2023):
preamble

explanation

[2] Plot the number of students in each letter grade
range (A: >=90, B: 70-90, C: <70).

>_ LLM Completion...

import pandas as pd

df = pd.read_csv(scores.csv')

[1]

A Problem that requires a multi-step solution:

Decompositional step-by-step decoding

(Yin et al., 2023)

Decoding Methods: solving problems with step-by-step prompting

def get_grade(score):

 if score >= 90:

 return 'A'

 elif 70 <= score < 90:

 return 'B'

 else:

 return 'C'

df['grade'] = df.score.apply(get_grade)

count_df = df['grade'].value_counts()

count_df.plot(kind='bar')

Step-by-step Prediction with Explanations:
Let's solve this problem step-by-step.

Step 1: Define a function to convert

scores to letter grades.

Step 2: Convert scores to letter grades.

Step 3: Count the number of students by grade.

Step 4: Visualize in a bar chart.

[Yin et al., 2023; Jiang et al., 2023; Zelikman et al., 2023]

[2] Plot the number of students in each letter grade
range (A: >=90, B: 70-90, C: <70).

>_ LLM Completion...

import pandas as pd

df = pd.read_csv(scores.csv')

[1]

A Problem that requires a multi-step solution:

Decompositional step-by-step decoding

(Yin et al., 2023)

Step-by-Step Decoding Improves Accuracy and Code Style
(prompting using notebook context and additional exemplars with step-by-step code solutions)

Larger gap for
harder problems

[Yin et al., 2023]

Let’s solve the problem
step-by-step!

Step 1: Get the unique values of age
age_groups = students['Age'].unique()
Step 2: Group students by their age groups and adaptivity level and
get the number of students in each group
distribution = students.groupby(['Age', 'Adaptivity Level']).size()
Step 3: Return the age groups as an index and adaptivity levels as columns
result = distribution.unstack(level=1, fill_value=0)

Intent: What is the distribution of student adaptivity level across each age group?

 # Step 1: Get the year that has the highest percent increase in votes.
max_year_pct_change = pct_change_votes.idxmax()
Step 2: Get the genres for each shows in that year.
genres = drama[drama['Year of Release']==max_year_pct_change]['Genre']
Step 3: Count each genre
genre_counts = {}
for genre in genres:
 for genre in genre.split(','):
 if genre not in genre_counts:
 genre_counts[genre] = 0
 genre_counts[genre] += 1
Step 4: Return the most common genres
most_common_genres = pd.Series(genre_counts).sort_values(ascending=False)
most_common_genres[:5]

Step-by-Step Decoding Improves Code Readability

Intent: What are the five most common genres for shows released during the year having
the highest percent increase in votes?

[Yin et al., 2023; Jiang et al., 2023]

Step-by-Step Decoding Improves Solution Diversity

Step 1: Create a new column with the last two digits
of the year in expiration date column
ecom['CC Exp Date_last'] = ecom['CC Exp Date'].str[-2:]
Step 2: Get the rows that expire in 2025
ecom_2025 = ecom[ecom['CC Exp Date_last'] == '25']
Step 3: Return the count of rows that expire in 2025
len(ecom_2025.index)

Step 1: Get all the year in the expiration date
exp_date_year = ecom['CC Exp Date'].apply(lambda x:
x[3:])
Step 2: Get all the year in the expiration date as
integer
exp_date_year = exp_date_year.astype(int)
Step 3: Get all the year in the expiration date as
integer that are equal to 25
exp_date_year = exp_date_year[exp_date_year == 25]
Step 4: Count the occurances
exp_date_year.value_counts()

Step-by-step Prompting Vanilla Prompting

len(ecom[ecom['CC Exp Date'].str[-2:] == '25'].index)

len(ecom[ecom['CC Exp Date'].str[3:] == '25'])

len(ecom[ecom['CC Exp Date'].str[3:]=='25'])

(ecom['CC Exp Date'].str[-2:]=='25').sum()

Intent: How many people have credit cards expiring in 2025?

. . .

[Yin et al., 2023; Jiang et al., 2023]

Decoding Methods: Find consistency among candidate solutions

Write a function to count the lowercase letters in a string

def count(string):
 cnt = 0
 for ch in string:
 cnt += ch.islower()
 return cnt

def count(s):
 return len([
 c for c in s
 if c.islower()])

def count(s):
 return len(s)

>_ Execution Output:

count(‘Abc1’) = 2
count(‘abc’) = 3

count(‘Abc1’) = 4
count(‘abc’) = 3

count(‘Abc1’) = 2
count(‘abc’) = 3

1

2

3

Sample multiple candidate code solutions

Synthesize input cases and collect execution results

{ , }
Cluster solutions based on execution outputs

1 3 { }2

Find whose execution behavior is the highest under

>_

>_={2,3}
1 3= +

>_={3,4}
2=

Define a distribution over their “semantics” (execution behavior):

[Shi et al., 2023; Wang et al., 2023]

Particularly effective with step-by-step decoding since it
improves sample diversity (Yin et al., 2023)

Return a solution whose execution results agree
with most candidate solutions

(Example credit: talk by Freda Shi)

https://home.ttic.edu/~freda/data/files/talks/2309-pku-grounded-structures.pdf

Decoding Methods: Reason with semantic consistency without execution
What is the most expensive phone model in each brand?

df.loc[
 df.groupby('brand')['price'].idxmax()
][['brand', 'price']]

df.groupby('brand').agg(
 {'price': 'idxmax'})

idx = df.groupby('brand')['price'].idxmax()
expensive_models_df = df.loc[idx]
expensive_models_df[['model', 'price']]

1

2

3

Based on the three code solutions, the most
consistent answer is:

idx = df.groupby('brand')['price'].idxmax()
expensive_models_df = df.loc[idx]
expensive_models_df[
 ['brand', 'model', 'price']]

Sample multiple candidate code solutions

Use an LLM to select a most consistent answer

[Chen et al., 2023. Universal Self-Consistency for Large Language Model Generation]

– Does not require execution

– Useful for open-ended problems where exact

match of execution results is difficult

– Model can also leverage partially correct answers

during reasoning

https://arxiv.org/pdf/2311.17311.pdf

Decoding Methods: Self-improvement by reasoning with/without execution

Write a function to find all words which are at least 4
characters long and end with “e”.

import re
def find_words(text):
 return (re.findall(r"\w{3,}e", text))

Model first generates an initial code solution

If test fails, pass the test result to model as feedback

re.findall() extracts a list of strings in text that
match with the regex `\w{3,}e`. The `\w{3,}` part
matches strings with at least 3 characters. The `e`
part matches letter “e”. So the regex will find
string with at least 3 characters followed by “e”.
Therefore, with the given input, the return value is
[“File”, “came”].

To fix this, we can change the regex to only match
full words instead of arbitrary prefixes. Here’s a
fix of the code:

import re
def find_words(text):
 return (re.findall(r"\w{3,}e\b", text))

assert find_words("Filex came over") == [“came”]
Actual Output: [“File”, “came”]>_

Model reasons with the execution of the program to

identify potential bugs and suggest a fix.

[Chen et al., 2023. Teaching Large Language Models to Self-Debug]

– execution feedback could be optional and LLMs

could self-debug by reasoning about execution

– Self-repair performance is largely bottlenecked by the

model’s reasoning ability to find the bug and propose a

strategy to fix its prediction (Olausson et al., 2023).

>_

https://arxiv.org/pdf/2304.05128.pdf

38

Modeling Code Context and

Multi-turn Interaction

(Supervised) Instruction Tuning

Model Evaluation on Open-Domain Tasks

Decoding and Reasoning Methods

(planning, consistency-based

decoding, self-improvement)

Natural language to Code Generation: Agenda

Code Generation Evaluation:
Challenges in Creating Benchmarks

– Evaluating LLMs requires high-quality annotated natural

language problems with test cases or reference answers

– Creating annotated NL2Code problems costs and

– Therefore, datasets are limited in domain coverage and size

Write a function to find the k-th
largest item in an array

assert k_largest(arr=[5,7,3],k=2) == 5
assert k_largest(arr=[4,2,3,1],k=3) == 2
assert k_largest(arr=[15, 8],k=1) == 15

1
. 2
. 3
.

1
. 2
. 3

1
2
3

I have a 1d numpy array a = np.array([1,0,3]).

Encode this as a 2D one-hot array

np.array([[0,1,0,0],[1,0,0,0],[0,0,0,1]])

1
. 2
. 3
.

1
. 2
. 3

1
2
3

import numpy as np
a = np.array([1, 2, 0])
assert answer(a) == np.array(
 [[0,1,0], [0,0,1], [1,0,0]])

Show the time of the day and the price for

each airline
1
. 2
. 3
.

1
. 2
. 3

1
2
3

Airline Time Price
United Noon $450

Morning Noon
United $500 $450

Acceptable Answers:

Test Cases:

Unit Tests:

MBPP (Austin et al., 2021)

DS-1000 (Wang et al., 2022)

Arcade (Yin et al., 2023) Can we leverage high-quality code with tests in the wild to

evaluate the natural language to code skills of LLMs?

Unsupervised Evaluation of Code LLMs with Round-Trip Correctness

def unique_in_window (iterable, n):
 """Yield the items from iterable that
haven't been seen recently. n is the size of
the lookback window."""
 window = deque(maxlen=n)
 counts = defaultdict(int)
 use_key = key is not None

 for item in iterable :
 if len(window) == n :
 to_discard = window[0]
 if counts [to_discard] == 1:
 del counts[to_discard]
 else:
 counts[to_discard] -= 1

 if item not in counts:
 yield item

 counts[item] += 1
 window.append(item)

 if len(window) == n :
 to_discard = window[0]
 if counts [to_discard] == 1:
 del counts[to_discard]
 else:
 counts[to_discard] -= 1

def unique_in_window (iterable, n):
 """Yield the items from iterable that
haven't been seen recently. n is the size of
the lookback window."""
 window = deque(maxlen=n)
 counts = defaultdict(int)
 use_key = key is not None

 for item in iterable :
 if len(window) == n :
 to_discard = window[0]
 if counts [to_discard] == 1:
 del counts[to_discard]

 if item not in counts:
 yield item

 counts[item] += 1
 window.append(item)

 # TODO(LLM): if the window is at
capacity, discard the oldest element, and
update counts so that this element is only
considered if it is seen again.

Code to Natural Language
(forward pass)

Natural Language to Code
(backward pass)

– Extract “holes” from open-domain Github code repositories with unit tests.

– Measure correctness using the fraction of reconstructed code samples in backward pass that can pass unit tests.

[Allamanis*, Panthaplackel*, Yin*, 2024. Unsupervised Evaluation of Code LLMs with Round-Trip Correctness]

https://arxiv.org/abs/2402.08699

Unsupervised Evaluation of Code LLMs with Round-Trip Correctness

def unique_in_window (iterable, n):
 """Yield the items from iterable that
haven't been seen recently. n is the size of
the lookback window."""
 window = deque(maxlen=n)
 counts = defaultdict(int)
 use_key = key is not None

 for item in iterable :
 if len(window) == n :
 to_discard = window[0]
 if counts [to_discard] == 1:
 del counts[to_discard]
 else:
 counts[to_discard] -= 1

 if item not in counts:
 yield item

 counts[item] += 1
 window.append(item)

 if len(window) == n :
 to_discard = window[0]
 if counts [to_discard] == 1:
 del counts[to_discard]
 else:
 counts[to_discard] -= 1

“to discard” takes the first value in
“window”. If the count for that value in
“counts” is “1”, we remove the value,
otherwise we decrement the count.

if the window is at capacity, discard the
oldest element, and update counts so that
this element is only considered if it is seen
again.

“to discard” equals “window[(len(window)
- 1) % len(window)]”

to_discard = window.popleft()
if counts[to_discard] == 1:
 del counts[to_discard]
else:
 counts[to_discard] -= 1

if len(window) == n:
 k = window.popleft()
 counts[k] -= 1
 if counts[k] == 0:
 del counts[k]

to_discard = window[
 (len(window) - 1) % len(window)]

Test Pass

Round Trip Correctness Score RTC
pass

= 1/3

[Allamanis*, Panthaplackel*, Yin*, 2024]

Round-trip correctness scores correlate well with official benchmark metrics without using

annotated natural language instructions [Allamanis*, Panthaplackel*, Yin*, 2024]

Round-trip correctness scores vary widely across projects/domains, suggesting that

narrow-domain benchmarks cannot capture the LLM’s skills across multiple domains

RTC scores on HumanEval

Round-trip correctness (RTC) scores on Gemini Nano 2 and Gemini Pro across 60 open-source projects

Easy: implementations
of popular algorithms

Hard: Python static
analysis framework

[Allamanis*, Panthaplackel*, Yin*, 2024]

Modeling Code Context and

Multi-turn Interaction

(Supervised) Instruction Tuning

Model Evaluation on Open-Domain Tasks

Decoding and Reasoning Methods

(planning, consistency-based

decoding, self-improvement)

Natural Language to Code Generation: Summary

