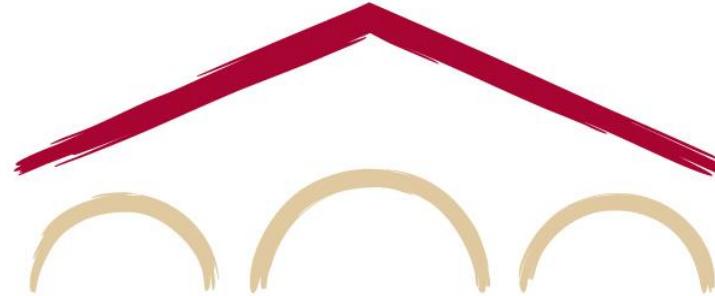


Natural Language Processing with Deep Learning

CS224N/Ling284



Yejin Choi

Lecture 12: Evaluation

Lecture Plan

The recent SAGA of LLM Benchmarks

Explosive proliferation & shrinking shelf-lives of benchmarks
Humans are no longer performance ceilings

Deep dives on benchmark designs

-- “*what to evaluate on*”

Desiderata of high-impact benchmarks and common pitfalls
Dynamic benchmarks
Adversarial benchmarks

Spurious bias, aka,
“annotation artifacts”

The art of evaluation metrics

-- “*how to evaluate*”

Model-free or **model-based** metrics?
Reference-based or **reference-free** metrics?
To trust or not to trust humans?

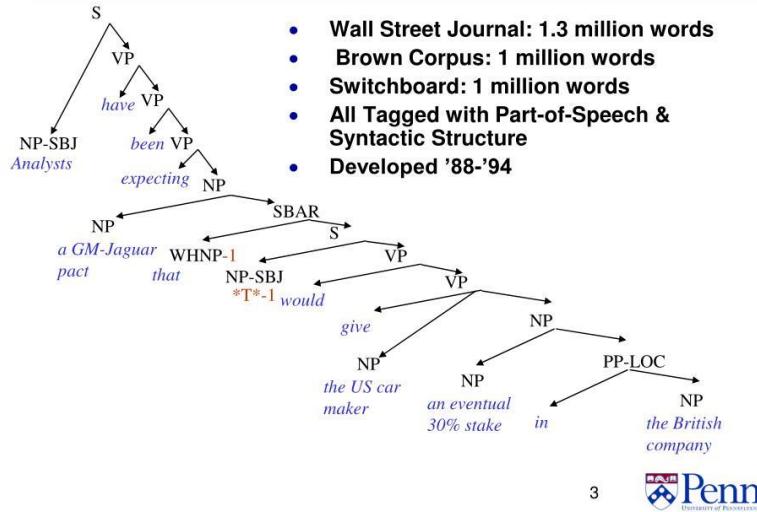
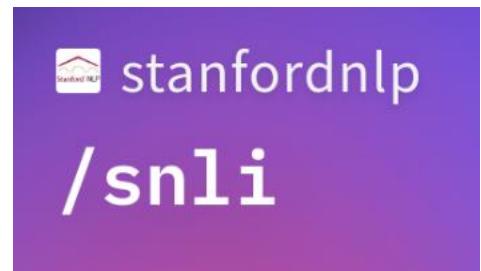
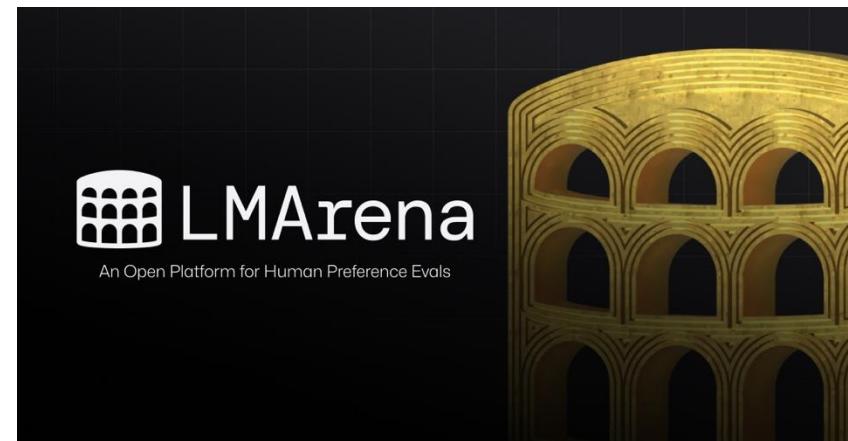
Information theoretic metrics
LLM as a **judge / jury**

Cautions & Open Questions

Goodhardt's Law
Data de-contamination
Prompt sensitivity / inconsistency

Benchmarks and leaderboards drive progress

The Penn Treebank: A Syntactically Annotated Corpus



SWE-bench

REWARD
BENCH

Most “common” benchmarks?

- a few too many!
- ... and constantly evolving!
- ... depends on frontier LLMs vs smaller open-source LMs

Qwen3					
	Qwen2.5-72B Base	Qwen2.5-Plus Base	LLaMA-4-Maverick Base	DeepSeek-V3 Base	Qwen3-235B-A22B Base
# Architecture	Dense	MoE	MoE	MoE	MoE
# Total Params	72B	271B	402B	671B	235B
# Activated Params	72B	37B	17B	37B	22B
<i>General Tasks</i>					
MMLU	86.06	85.02	85.16	87.19	87.81
MMLU-Redux	83.91	82.69	84.05	86.14	87.40
MMLU-Pro	58.07	63.52	63.91	59.84	68.18
SuperGPQA	36.20	37.18	40.85	41.53	44.06
BBH	86.30	85.60	83.62	86.22	88.87
<i>Mathematics & Science Tasks</i>					
GPQA	45.88	41.92	43.94	41.92	47.47
GSM8K	91.50	91.89	87.72	87.57	94.39
MATH	62.12	62.78	63.32	62.62	71.84
<i>Multilingual tasks</i>					
MGSM	82.40	82.21	79.69	82.68	83.53
MMMLU	84.40	83.49	83.09	85.88	86.70
INCLUDE	69.05	66.97	73.47	75.17	73.46
<i>Code tasks</i>					
EvalPlus	65.93	61.43	68.38	63.75	77.60
MultiPL-E	58.70	62.16	57.28	62.26	65.94
MBPP	76.00	74.60	75.40	74.20	81.40
CRUX-O	66.20	68.50	77.00	76.60	79.00

Gemini3	Description	Gemini 3 Pro	Gen
Humanity's Last Exam	Academic reasoning	No tools With search and code execution	37.5% 45.8%
ARC-AGI-2	Visual reasoning puzzles	ARC Prize Verified	31.1%
GPQA Diamond	Scientific knowledge	No tools	91.9%
AIME 2025	Mathematics	No tools With code execution	95.0% 100%
MathArena Apex	Challenging Math Contest problems		23.4%
MMMU-Pro	Multimodal understanding and reasoning		81.0%
ScreenSpot-Pro	Screen understanding		72.7%
CharXiv Reasoning	Information synthesis from complex charts		81.4%
OmniDocBench 1.5	OCR	Overall Edit Distance, lower is better	0.115
Video-MMMU	Knowledge acquisition from videos		87.6%
LiveCodeBench Pro	Competitive coding problems from Codeforces, ICPC, and IOI	Elo Rating, higher is better	2,439
Terminal-Bench 2.0	Agentic terminal coding	Terminus-2 agent	54.2%
SWE-Bench Verified	Agentic coding	Single attempt	76.2%
τ2-bench	Agentic tool use		85.4%
Vending-Bench 2	Long-horizon agentic tasks	Net worth (mean), higher is better	\$5,478.16
FACTS Benchmark Suite	Held out internal grounding, parametric, MM, and search retrieval benchmarks		70.5%
SimpleQA Verified	Parametric knowledge		72.1%
MMMLU	Multilingual Q&A		91.8%
Global PIQA	Commonsense reasoning across 100 Languages and Cultures		93.4%
MRCR v2 (8-needle)	Long context performance	128k (average) 1M (pointwise)	77.0% 26.3%

Trend: Multi-Task Benchmarks

GLUE: A MULTI-TASK BENCHMARK AND ANALYSIS PLATFORM FOR NATURAL LANGUAGE UNDERSTANDING

Alex Wang¹, Amanpreet Singh¹, Julian Michael², Felix Hill³,
Omer Levy² & Samuel R. Bowman¹

SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems

Alex Wang*
New York University

Yada Pruksachatkun*
New York University

Nikita Nangia*
New York University

Amanpreet Singh*
Facebook AI Research

Julian Michael
University of Washington

Felix Hill
DeepMind

Omer Levy
Facebook AI Research

Samuel R. Bowman
New York University

GPQA: A Graduate-Level Google-Proof Q&A Benchmark

MEASURING MASSIVE MULTITASK LANGUAGE UNDERSTANDING

Dan Hendrycks
UC Berkeley

Collin Burns
Columbia University

Steven Basart
UChicago

Andy Zou
UC Berkeley

Mantas Mazeika
UIUC

Dawn Song
UC Berkeley

Jacob Steinhardt
UC Berkeley

MMLU-Pro: A More Robust and Challenging Multi-Task Language Understanding Benchmark

¹Yubo Wang*, ¹Xueguang Ma*, ¹Ge Zhang, ¹Yuansheng Ni, ¹Abhranil Chandra,
¹Shiguang Guo, ¹Weiming Ren, ¹Aaran Arulraj, ¹Xuan He, ¹Ziyan Jiang, ¹Tianle Li,
¹Max Ku, ²Kai Wang, ¹Alex Zhuang, ¹Rongqi Fan, ³Xiang Yue, ¹Wenhu Chen*

¹University of Waterloo, ²University of Toronto, ³Carnegie Mellon University

Humanity's Last Exam

Organizing Team

Long Phan*¹, Alice Gatti*¹, Ziwen Han^{*2}, Nathaniel Li*¹,
Josephina Hu², Hugh Zhang¹, Chen Bo Calvin Zhang², Mohamed Shaaban², John Ling², Sean Shi², Michael Choi²,
Anish Agrawal², Arnav Chopra², Adam Khoja¹, Ryan Kim¹, Richard Ren¹, Jason Hausenloy¹, Oliver Zhang¹, Mantas
Mazeika¹.

Summer Yue**², Alexandr Wang**², Dan Hendrycks**¹

¹ Center for AI Safety, ² Scale AI

GLUE and SuperGLUE

A collection of existing benchmarks standardized or reformatted, covering a wide range of **intuitive-level NLU capabilities**

SuperBLUE was "stickier" 😅 :

- BoolQ, MultiRC (reading texts)
- CB, RTE (entailment)
- COPA (cause and effect)
- ReCoRD (QA+reasoning)
- WiC (meaning of words)
- WSC (coreference)

CB **Text:** *B: And yet, uh, I we-, I hope to see employer based, you know, helping out. You know, child, uh, care centers at the place of employment and things like that, that will help out. A: Uh-huh. B: What do you think, do you think we are, setting a trend?*

Hypothesis: *they are setting a trend* **Entailment:** Unknown

COPA **Premise:** *My body cast a shadow over the grass.* **Question:** *What's the CAUSE for this?*
Alternative 1: *The sun was rising.* **Alternative 2:** *The grass was cut.*
Correct Alternative: 1

MultiRC **Paragraph:** *Susan wanted to have a birthday party. She called all of her friends. She has five friends. Her mom said that Susan can invite them all to the party. Her first friend could not go to the party because she was sick. Her second friend was going out of town. Her third friend was not so sure if her parents would let her. The fourth friend said maybe. The fifth friend could go to the party for sure. Susan was a little sad. On the day of the party, all five friends showed up. Each friend had a present for Susan. Susan was happy and sent each friend a thank you card the next week*

Question: *Did Susan's sick friend recover?* **Candidate answers:** Yes, she recovered (T), No (F), Yes (T), No, she didn't recover (F), Yes, she was at Susan's party (T)

GLUE and SuperGLUE

Attempt to measure **intuitive-level** “general language capabilities”

Leaderboard attracted a lot of activities!

Leaderboard Version: 2.0

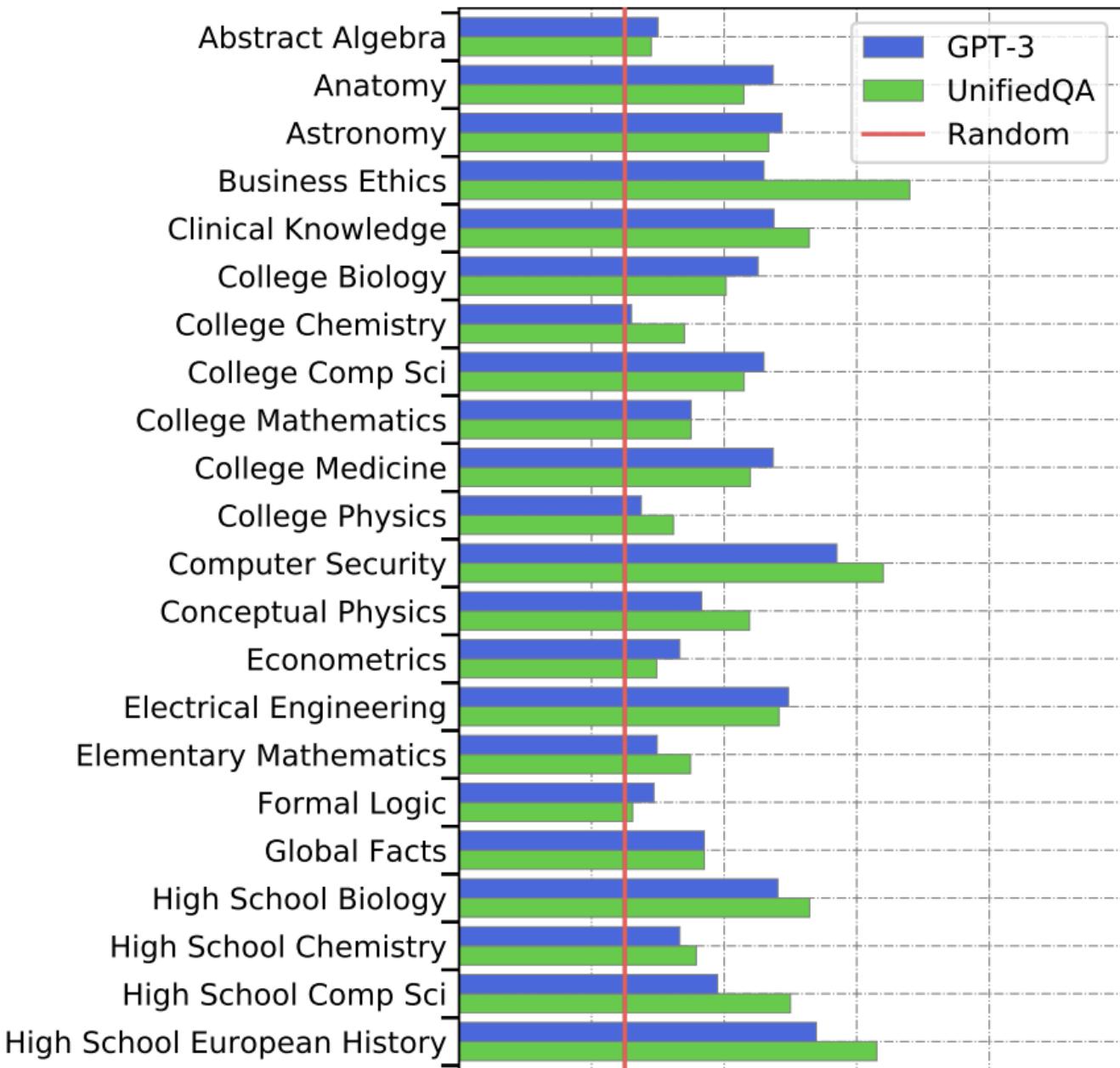
Rank	Name	Model	URL	Score	BoolQ	CB	COPA	MultiRC	ReCoRD	RTE	WiC	WSC	AX-b	AX-g	
1	JDExplore d-team	Vega v2		91.3	90.5	98.6/99.2	99.4	88.2/62.4	94.4/93.9	96.0	77.4	98.6	-0.4	100.0/50.0	
+	2	Liam Fedus	ST-MoE-32B		91.2	92.4	96.9/98.0	99.2	89.6/65.8	95.1/94.4	93.5	77.7	96.6	72.3	96.1/94.1
	3	Microsoft Alexander v-team	Turing NLR v5		90.9	92.0	95.9/97.6	98.2	88.4/63.0	96.4/95.9	94.1	77.1	97.3	67.8	93.3/95.5
	4	ERNIE Team - Baidu	ERNIE 3.0		90.6	91.0	98.6/99.2	97.4	88.6/63.2	94.7/94.2	92.6	77.4	97.3	68.6	92.7/94.7
	5	Yi Tay	PaLM 540B		90.4	91.9	94.4/96.0	99.0	88.7/63.6	94.2/93.3	94.1	77.4	95.9	72.9	95.5/90.4
+	6	Zirui Wang	T5 + UDG, Single Model (Google Brain)		90.4	91.4	95.8/97.6	98.0	88.3/63.0	94.2/93.5	93.0	77.9	96.6	69.1	92.7/91.9
+	7	DeBERTa Team - Microsoft	DeBERTa / TuringNLVR4		90.3	90.4	95.7/97.6	98.4	88.2/63.7	94.5/94.1	93.2	77.5	95.9	66.7	93.3/93.8
	8	SuperGLUE Human Baselines	SuperGLUE Human Baselines		89.8	89.0	95.8/98.9	100.0	81.8/51.9	91.7/91.3	93.6	80.0	100.0	76.6	99.3/99.7
+	9	T5 Team - Google	T5		89.3	91.2	93.9/96.8	94.8	88.1/63.3	94.1/93.4	92.5	76.9	93.8	65.6	92.7/91.9

MMLU

Massive Multitask Language Understanding (MMLU)

[\[Hendrycks et al., 2021\]](#)

- 57 diverse tasks
- No longer just about “natural language understanding” per se...
- all very **knowledge intensive!**
- **high-school to college-level** subjects



Examples from MMLU

Astronomy

What is true for a type-Ia supernova?

- A. This type occurs in binary systems.
- B. This type occurs in young galaxies.
- C. This type produces gamma-ray bursts.
- D. This type produces high amounts of X-rays.

Answer: A

High School Biology

In a population of giraffes, an environmental change occurs that favors individuals that are tallest. As a result, more of the taller individuals are able to obtain nutrients and survive to pass along their genetic information. This is an example of

- A. directional selection.
- B. stabilizing selection.
- C. sexual selection.
- D. disruptive selection

Answer: A

MMLU (Massive Multitask Language Understanding)

- One of the most commonly used benchmarks for measuring LLM performance
- Often used for performance tracking during pre-training (as well as during post-training)
- MMLU-Pro is much harder

1 Gemini 3 Pro Preview

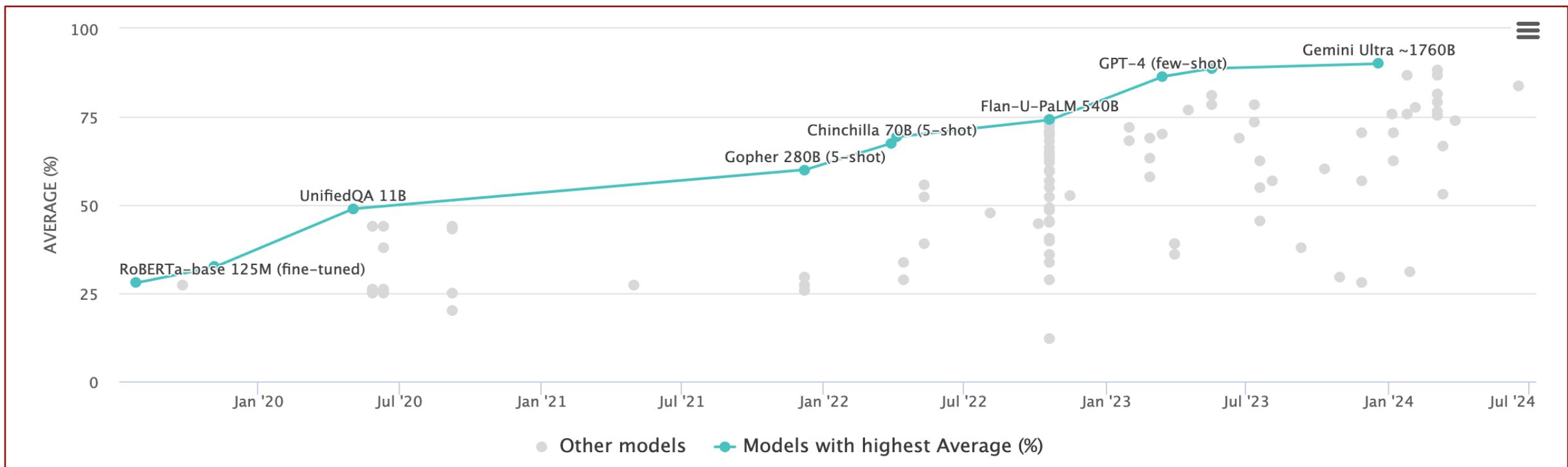
1 93.9%
±0.4%

2 GPT-5

2 93.5%
±0.4%

3 Claude Opus 4.1

3 93.4%
±0.4%



GPQA: A graduate-Level Google-proof Q&A benchmark

- At the time of release (Nov 2023), it looked just too hard...
- By the time the paper was presented at COLM 2024, O1 achieved 78.3% (!!)

Evaluation Method and Model	<i>Diamond Set</i>
Few-Shot CoT Llama-2-70B-chat	28.1
Few-Shot CoT GPT-3.5-turbo-16k	29.6
Few-Shot CoT GPT-4	38.8
GPT-4 with search (backoff to CoT on abstention)	38.8
Expert Human Validators	81.2*
Non-Expert Human Validators	21.9*

Question writing (by question writer)

Question and choices

Methylcyclopentadiene was allowed to react with methyl isoamyl ketone and a catalytic amount of pyrrolidine. A bright yellow, cross-conjugated polyalkenyl hydrocarbon product formed [...] How many chemically distinct isomers make up the final product (not counting stereoisomers)?

(a) 2 (b) 16 (c) 8 (d) 4

Correct answer (b)

Explanation Methylcyclopentadiene exists as an interconverting mixture of 3 isomers [...] if there are 4 dienes, and 4 different directions of approach the dienophile can take to each of them, there are $4 \times 4 = 16$ possible products.

HLE: Humanity's Last Exam

Humanity's Last Exam

Organizing Team

Long Phan^{*1}, Alice Gatti^{*1}, Ziwen Han^{*2}, Nathaniel Li^{*1},
Josephina Hu², Hugh Zhang[†], Chen Bo Calvin Zhang², Mohamed Shaaban², John Ling², Sean Shi², Michael Choi²,
Anish Agrawal², Arnav Chopra², Adam Khoja¹, Ryan Kim[†], Richard Ren¹, Jason Haugenloy¹, Oliver Zhang¹, Mantas
Mazeika¹,
Summer Yue^{**2}, Alexandre Wang^{**2}, Dan Hendrycks^{**1}

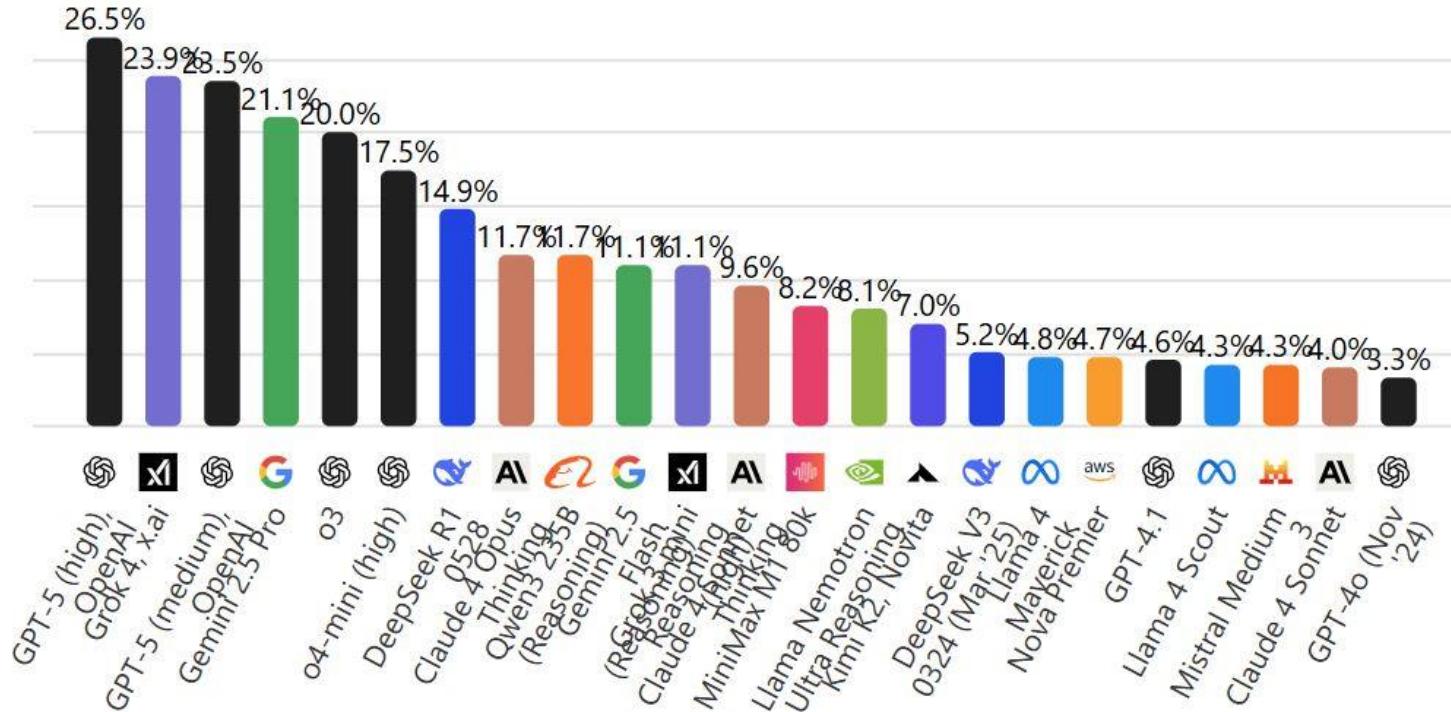
¹ Center for AI Safety, ² Scale AI

Dataset Contributors

Dmitry Dodonov, Tung Nguyen, Jaehi Lee, Daron Anderson, Mikhail Doroshenko, Alun Cennyth Stokes, Mobeen Mahmood, Oleksandr Pokutnyi, Oleg Iskra, Jessica P. Wang, John-Clark Levin, Mstyslav Kazakov, Fiona Feng, Steven Y. Feng, Haoran Zhao, Michael Yu, Varun Gangal, Chelsea Zou, Zihan Wang, Serguei Popov, Robert Gerbicz, Geoff Galgon, Johannes Schmitt, Will Yeadon, Yongki Lee, Scott Sauers, Alvaro Sanchez, Fabian Giska, Marc Roth, Søren Riis, Saiteja Utpala, Noah Burns, Gashaw M. Goshu, Mohinder Maheshbhai Naiya, Chidozis Agu, Zachary Giboney, Antrell Cheaton, Francesco Fournier-Facio, Sarah-Jane Crowson, Lennart Finke, Zerui Cheng, Jennifer Zampese, Ryan G. Hoerr, Mark Nandor, Hyunwoo Park, Tim Gehrunger, Jiaqi Cai, Ben McCarty, Alexis C Garretson, Edwin Taylor, Damien Sileo, Qiyu Ren, Usman Qazi, Lianghui Li, Jungbae Nam, John B. Wydallip, Pavel Arkhipov, Jack Wei Lun Shi, Ara Bacho, Chris G. Willcocks, Hangrui Cao, Sumeet Motwani, Emily de Oliveira Santos, Johannes Veith, Edward Vendrow, Doru Cojoc, Kengo Zenitani, Joshua Robinson, Longke Tang, Yuqi Li, Joshua Vendrow, Natanael Wildner Fraga, Vladislav Kuchkin, Andrey Pupasov Maksimov, Pierre Marion, Denis Efremov, Jayson Lynch, Kaiqu Liang, Aleksandar Mikov, Andrew Gritevskiy, Julien Guillod, Gözdenur Demir, Dakotah Martinez, Ben Pagelet, Kevin Zhou, Saeed Soori, Ori Press, Henry Tang, Paolo Rissone, Sean R. Green, Lina Brüssel, Moon Twayana, Aymeric Dieuleveut, Joseph Marvin Imperial, Ameya Prabhu, Jinzhou Yang, Nick Crispino, Arun Rao, Dimitri Zvorkine, Gabriel Loiseau, Mikhail Kalinin, Marco Lukas, Ciprian Manolescu, Nate Stambaugh, Subrata Mishra, Tad Hogg, Carlo Bosio, Brian P Coppola, Julian Salazar, Jaehyeol Jin, Rafael Sayous, Stefan Ivanov, Philippine Schwaller, Shaipraneesh Senthilkuma, Andres M Bran, Andres Algabe, Kelsey Van den Houte, Lynn Van Der Sypt, Brecht Verbeken, David Nover, Alexei Kopylov, Benjamin Myklebust, Bikun Li, Lissa Schut, Evgenii Zheltonozhskii, Qiaochu Yuan, Derek Lim, Richard Stanley, Tong Yang, John Maar, Julian Wykowski, Marti Oller, Anmol Sahu, Cesare Giulio Ardito, Yuzheng Hu, Ariel Ghislain Kemoghe Kamdoum, Alvin Jin, Tobias Garcia Vilchis, Yuxuan Zu, Martin Lackner, James Koppel, Gongbo Sun, Daniil S. Antonenko, Steffi Chern, Bingchen Zhao, Pierrot Arsene, Joseph M Cavanagh, Daofeng Li, Jiawei Shen, Donato Crisostomi, Wenjin Zhang, Ali Dehghan, Sergey Ivanov, David Perrella, Nurdin Kaparov, Allen Zang, Ilia Sucholutsky, Arina Kharlamova, Daniil Orel, Vladislav Poritski, Shalev Ben-David, Zachary Berger, Parker Whitfill, Michael Foster, Daniel Munro, Linh Ho, Shankar Sivarajan, Dan Bar Hava, Aleksey Kuchkin, David Holmes, Alexandra Rodriguez-Romero, Frank Sommerhage, Anji Zhang, Richard Moat, Keith Schneider, Zakayo Kazibwe, Don Clarke, Dae Hyun Kim, Felipe Meneguitti Dias, Sara Fish, Veit Elser, Tobias Kreiman, Victor Efren Guadarrama Vilchis, Immo Klose, Ujjwala Anantheswaran, Adam Zweiger, Kaivalya Rawal, Jeffery Li, Jeremy Nguyen, Nicolas Daans, Haline Heidinger, Maksim Radionov, Václav Rozhoň, Vincent Ginis, Christian Stump, Niv Cohen, Rafał Poświatka, Josef Tkadlec, Alan Goldfarb, Chengguang Wang, Piotr Padlewski, Stanisław Barzowski, Kyle Montgomery, Ryan Stendall, Jamie Tucker-Foltz, Jack Stade, T. Ryan Rogers, Tom Goertzen, Declan Grabb, Abhishek Shukla, Alan Givré, John Arnold Ambay, Archana Sen, Muhammad Fayez Aziz, Mark H Inlow, Hao He, Ling Zhang, Younesse Kadhar, Ivar Ängquist, Yanxu Chen, Harrison K Wang, Kalyan Ramakrishnan, Elliott Thornley, Antonio Terpin, Hailey Schoelkopf, Eric Zheng, Avishy Carmi, Ethan D. L. Brown, Kelin Zhu, Max Bartolo, Richard Wheeler, Martin Stehberger, Peter Bradshaw, JP Heimonen, Kaustubh Sridhar, Ido Akov, Jennifer Sandlin, Yury Makarychev, Joanna Tam, Hieu Hoang, David M. Cunningham, Vladimir Goryachev, Demosthenes Patramanis, Michael Krause, Andrew Redenti, David Aldous, Jesyin Lai, Shannon Coleman, Jiangnan Xu, Sangwon Lee, Ilias Magoulas, Sandy Zhao, Ning Tang, Michael K. Cohen, Orr Paradise, Jan Hendrik Kirchner, Maksym Ovchinnikov, Jason O. Matos, Adithya Shenoy, Michael Wang,

^{*}Co-first Authors. ^{**} Senior Authors. [†] Work conducted while at Center for AI Safety. [‡] Work conducted while at Scale AI. Complete list of author affiliations in Section A. Correspondence to agibenchmark@safe.ai.

Humanity's Last Exam (Reasoning & Knowledge)



Lecture Plan

The recent SAGA of LLM Benchmarks

Explosive proliferation & shrinking shelf-lives of benchmarks
Humans are no longer performance ceilings

Deep dives on benchmark designs

-- “*what to evaluate on*”

Desiderata of high-impact benchmarks and common pitfalls
Dynamic benchmarks
Adversarial benchmarks

 Spurious bias, aka, “annotation artifacts”

The art of evaluation metrics

-- “*how to evaluate*”

Model-free or **model-based** metrics?
Reference-based or **reference-free** metrics?
To trust or not to trust humans?

Information theoretic metrics
LLM as a **judge / jury**

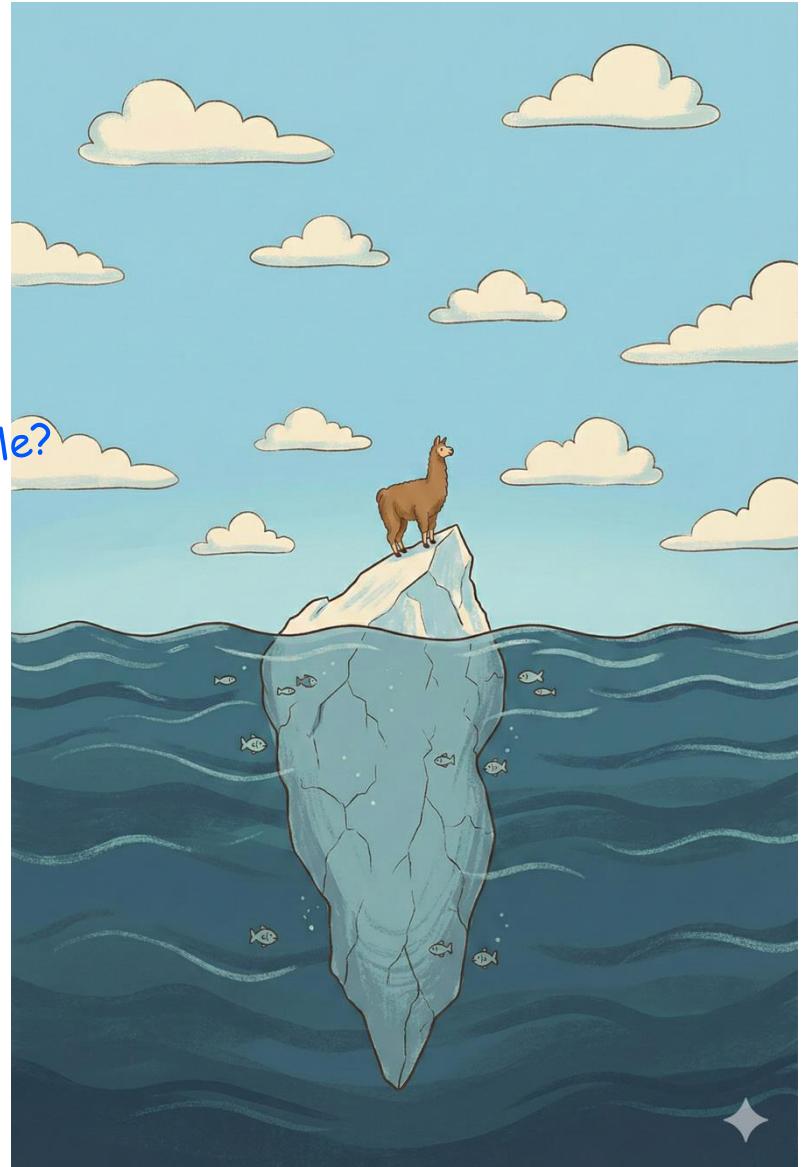
Cautions & Open Questions

Goodhardt's Law
Data de-contamination
Prompt sensitivity / inconsistency

Desiderata of Good Benchmarks

- **Scale and diversity**
 - Benchmark should cover the phenomena of interest
 - Complex phenomena require many and diverse samples
- **Difficulty**
 - Easy enough for humans (or human experts)
 - Hard enough for state-of-the-art
- **Quality**
 - Correct answers should be clearly correct
 - Surprisingly hard to guarantee this without a lot of efforts!
 - No spurious bias
 - Aka “Annotation artifacts”
 - Otherwise, AI can solve exams right for the wrong reasons!

got an example?



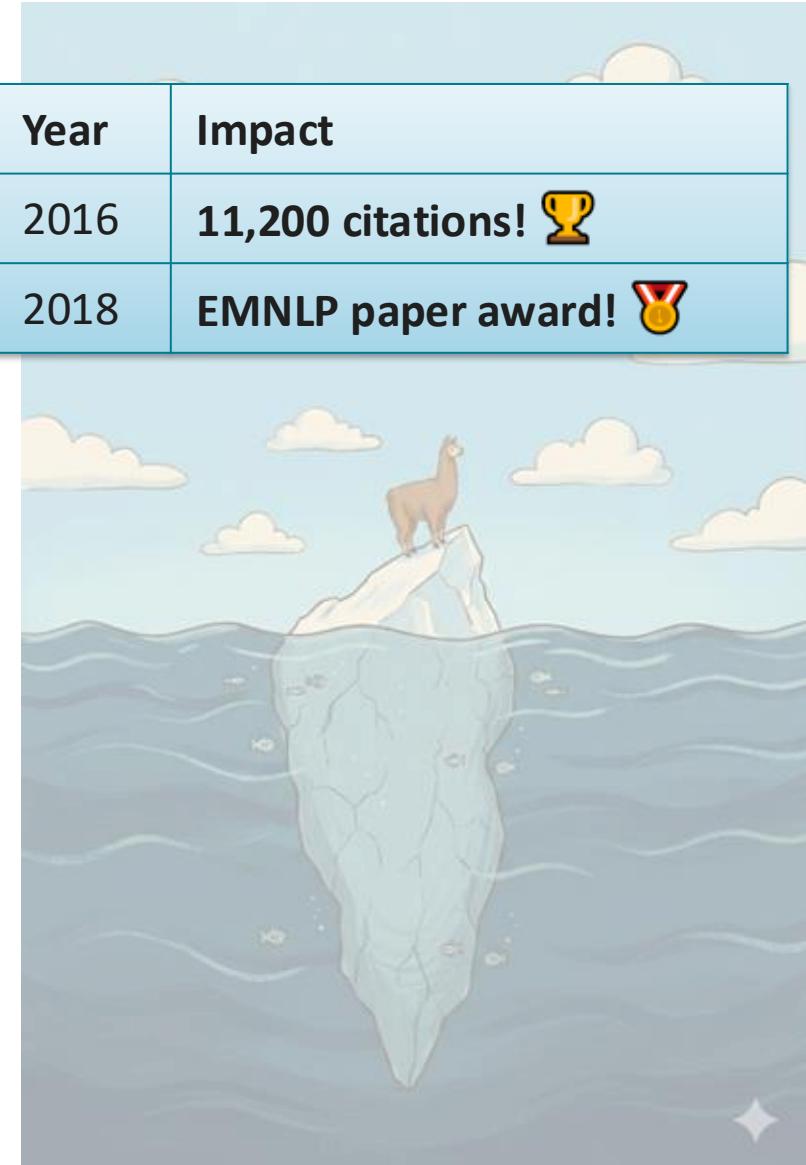
The significance of SQuAD and SQuAD-2

Dataset	Paper Title	Year	Impact
SQuAD 1	SQuAD: 100,000+ Questions for Machine Comprehension of Text	2016	11,200 citations! 🏆
SQuAD 2	Know What You Don't Know: Unanswerable Questions for SQuAD	2018	EMNLP paper award! 🥇

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under **gravity**. The main forms of precipitation include drizzle, rain, sleet, snow, **graupel** and hail... Precipitation forms as smaller droplets coalesce via collision with other rain

What causes precipitation to fall?
gravity

What is another main form of precipitation besides drizzle, rain, snow, sleet and hail?
graupel

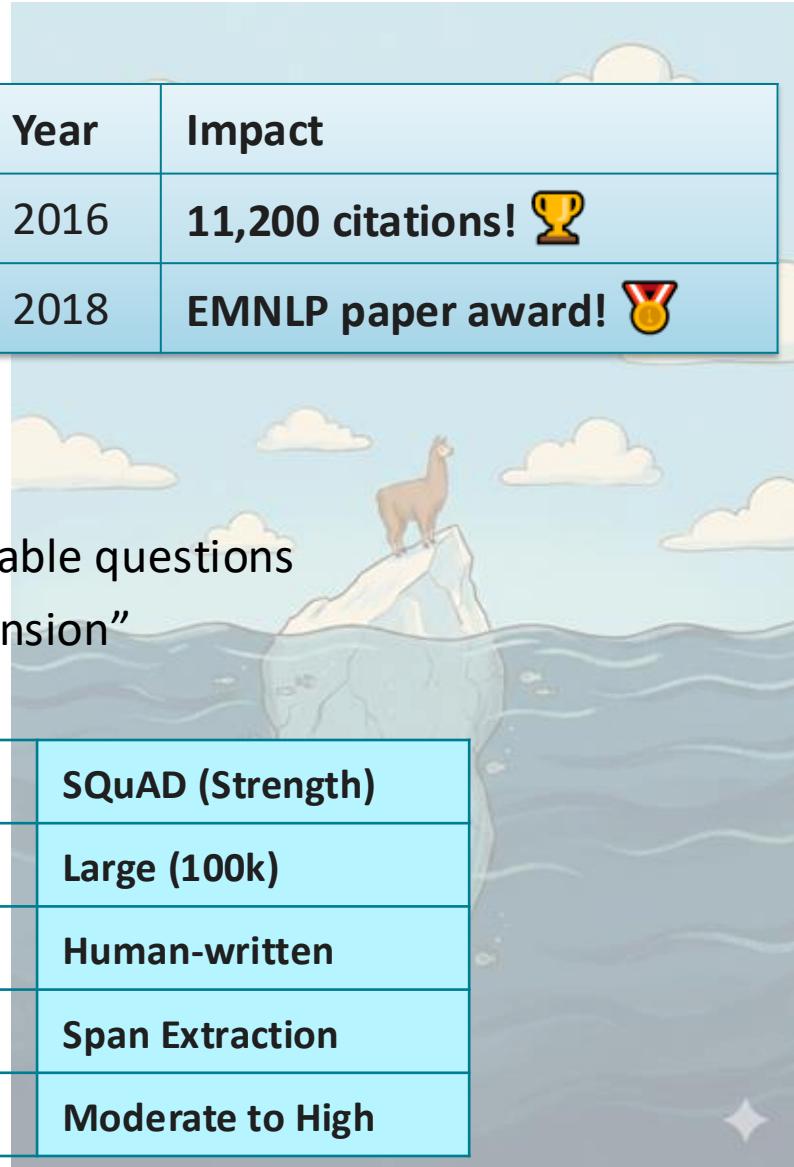


The significance of SQuAD and SQuAD-2

Dataset	Paper Title	Year	Impact
SQuAD 1	SQuAD: 100,000+ Questions for Machine Comprehension of Text	2016	11,200 citations! 🏆
SQuAD 2	Know What You Don't Know: Unanswerable Questions for SQuAD	2018	EMNLP paper award! 🥇

- High-quality at an unprecedented scale
- Two innovations: (1) the “span-based” evaluation strategy, (2) unanswerable questions
- Greatly influenced the NLP field to make progress on “reading comprehension”

Feature	Prior (MCTest)	Prior (CNN/DM)	SQuAD (Strength)
Scale	Small (2.6k)	Massive (1M+)	Large (100k)
Quality	Human-written	Automated/Noisy	Human-written
Task	Multiple Choice	Cloze (Fill-blank)	Span Extraction
Reasoning	High (but untrainable)	Low (Pattern matching)	Moderate to High



Desiderata of Good Benchmarks

- **Scale and diversity**
 - Benchmark should cover the phenomena of interest
 - Complex phenomena require many and diverse samples
- **Difficulty**
 - Easy enough for humans (or human experts)
 - Hard enough for state-of-the-art
- **Quality**
 - Correct answers should be clearly correct
 - Surprisingly hard to guarantee this without a lot of efforts!
 - **No spurious bias**
 - Aka “**Annotation artifacts**”
 - Otherwise, AI can solve exams right for the wrong reasons!

→ became a new genre of research!

Spurious bias

1. Lexical overlap bias (the "copy-paste" shortcut)

- The Issue: Because the questions were written by crowdworkers who were looking directly at the paragraph, they often used the exact same words found in the sentence containing the answer.
- The Consequence: Models learned to "cheat" by simply looking for the sentence that shared the most words with the question.
- Adversarial study: In a famous 2017 study by Jia and Liang, adding a "distractor" sentence to a SQuAD passage (one that had high word overlap with the question but contained a fake answer) caused model accuracy to plummet from 75% to 36%.

Spurious bias

2. Position bias

- The Issue: In many Wikipedia paragraphs, the most important information is located in the first few sentences.
- The Consequence: Models began "weighting" the beginning of a paragraph more heavily.

Spurious bias

3. other annotation artifacts (human "tricks")

Since unanswerable questions were created by humans perturbing existing ones, they contain "tells" or artifacts.

- **Negation bias:** A common human strategy was to simply insert "not." Models quickly learned that the presence of negation words was a strong signal for unanswerability.
- **Entity swapping:** Another common trick was swapping "Obama" for "Bush." Models trained on this often become over-sensitive to named entities and ignore other important content.

- It turns out, pretty much all benchmarks contain spurious biases that ML models pick up on, essentially [answering the questions right for the wrong reasons](#).
- In response, researchers started investigating two new types of benchmarks:
- **dynamic** benchmarks & **adversarial** benchmarks

“Right for the Wrong Reasons:

Diagnosing Syntactic Heuristics in Natural Language Inference” (McCoy et al., 2019)

What if our model is using simple heuristics to get good accuracy?

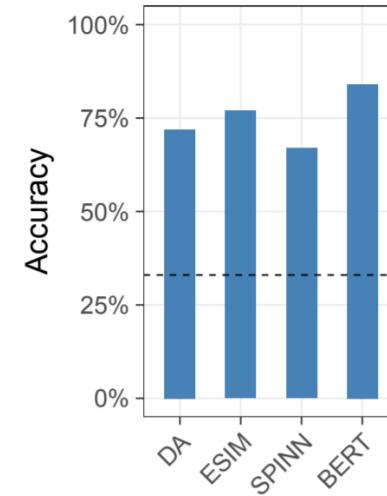
A **diagnostic test set** is carefully constructed to test for a specific skill or capacity of your neural model.

For example, **HANS**: (Heuristic Analysis for NLI Systems) tests syntactic heuristics in NLI

Heuristic	Definition	Example
Lexical overlap	Assume that a premise entails all hypotheses constructed from words in the premise	The doctor was paid by the actor. → The doctor paid the actor. WRONG
Subsequence	Assume that a premise entails all of its contiguous subsequences.	The doctor near the actor danced. → The actor danced. WRONG
Constituent	Assume that a premise entails all complete subtrees in its parse tree.	If the artist slept, the actor ran. → The artist slept. WRONG

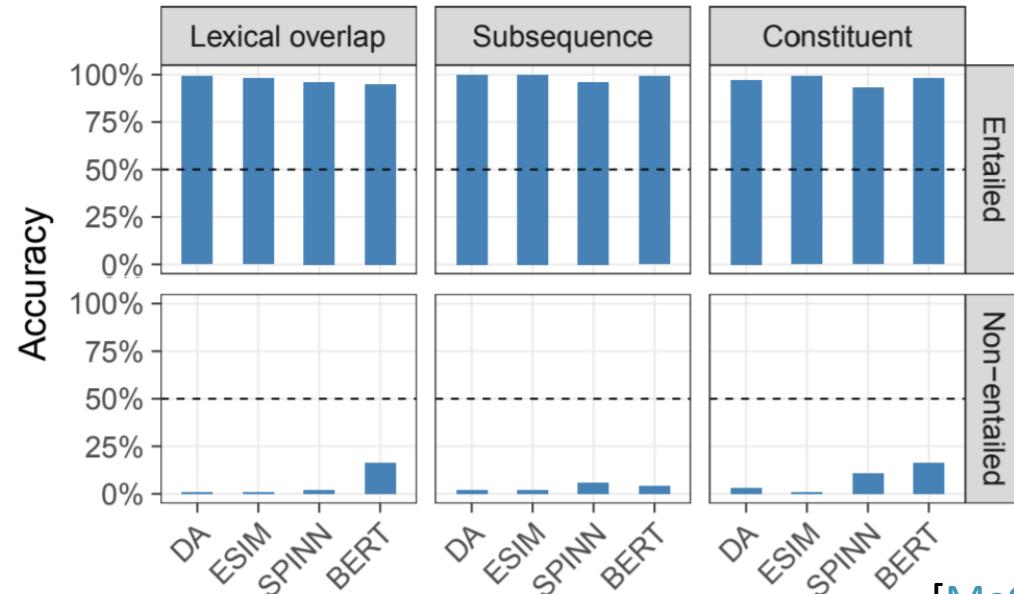
HANS model analysis in natural language inference

McCoy et al., 2019 took 4 strong MNLI models, with the following accuracies on the **original test set (in-domain)**



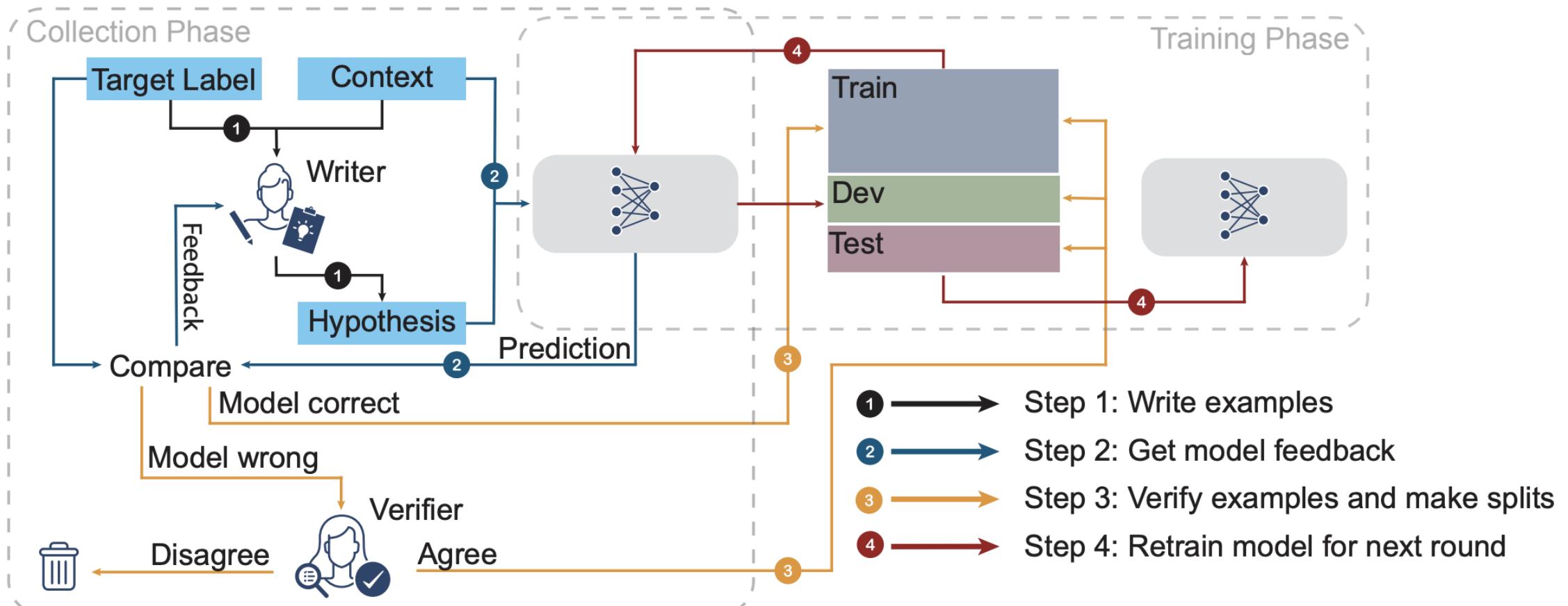
Evaluating on HANS, where syntactic heuristics **work**, accuracy is high!

But where syntactic heuristics fail, accuracy is very very low...



Adversarial benchmarks with model-in-the-loop

Adversarial NLI (ANLI)



Dynamic benchmarks with model-in-the-loop

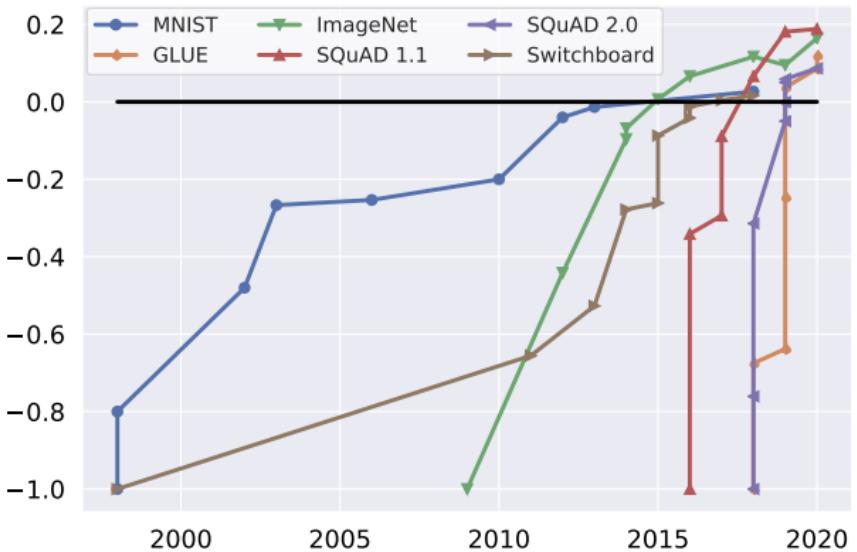


Figure 1: Benchmark saturation over time for popular benchmarks, normalized with initial performance at minus one and human performance at zero.

SENTIMENT ANALYSIS
Find examples that fool the model

Your goal: enter a statement that fools the model into predicting positive.

Please pretend you are reviewing a place, product, book or movie.

This year's NAACL was very different because of Covid

Model prediction: **positive**
Well done! You fooled the model.

Optionally, provide an explanation for your example: Draft. Click out of input box to save.

Model Inspector
`#s This year 's NA AC L was very different because of Cov id #s`

The model inspector shows the layer [integrated gradients](#) for the input token layer of the model.

Retract Flag Inspect

This year's NAACL was very different because of Covid

Live Mode Switch to next context Submit

Figure 2: The Dynabench example creation interface for sentiment analysis with illustrative example.

Desiderata of good benchmarks

- **Scale and diversity**
 - Benchmark should cover the phenomena of interest
 - Complex phenomena require many and diverse samples
- **Difficulty**
 - Easy enough for humans (or human experts)
 - Hard enough for state-of-the-art
- **Quality**
 - Correct answers should be clearly correct
 - Surprisingly hard to guarantee this without a lot of efforts!
 - No spurious bias
 - Aka, “annotation artifacts”
 - Otherwise, AI can solve exams right for the wrong reasons!

GPQA: A graduate-level Google-proof Q&A benchmark

Question writing (by question writer)

Question and choices

Methylcyclopentadiene was allowed to react with methyl isoamyl ketone and a catalytic amount of pyrrolidine. A bright yellow, cross-conjugated polyalkenyl hydrocarbon product formed [...] How many chemically distinct isomers make up the final product (not counting stereoisomers)?

(a) 2 (b) 16 (c) 8 (d) 4

Correct answer (b)

Explanation Methylcyclopentadiene exists as an interconverting mixture of 3 isomers [...] if there are 4 dienes, and 4 different directions of approach the dienophile can take to each of them, there are $4 \times 4 = 16$ possible products.

Expert validation #1 (by expert validator #1)

Part 1: answer Q (correct answer & explanations not shown)

My answer is (a). Here's my explanation: [...]

Part 2: provide feedback on the following dimensions

(correct answer & explanations shown to the validator)

- Post-hoc agreement: Is the answer uncontroversial?
- Is your background sufficient to answer correctly?
- Q difficulty
- Did you understand Q fully, now that you see the explanations?
- Detailed feedback
- Q & answer choice revisions

Post-hoc agreement ✓: I agree that the correct answer is (b), after seeing writer's explanation.

Feedback / revision: [...] I got confused with the sentence 'not counting isomers'. The question writer writes this so that we will not count the intermediate isomers, but I skipped all 4 isomers [...] it is my personal mistake.

Expert validation #2 (by expert validator #2)

Part 1: answer Q (correct answer & explanations not shown)

My answer is (b). Here's the explanation: [...]

Part 2: provide feedback (correct answer & explanations shown)

Post-hoc agreement ✓: I agree that the correct answer is (b), after seeing writer's explanation.

Feedback / revision: It's difficult and takes a long time [...] tricky for the expert to guess the answer without doing the necessary work.

Non-expert validation

(by non-expert validators who are experts in other domains; at least 15 min, avg ~37 min, **allowing Google**)

Non-expert #1

(c) **X**

Non-expert #2

(b) **✓**

Non-expert #3

(a) **X**

Question revision (by question writer)

Revised question and choices

Methylcyclopentadiene (which exists as a fluxional mixture of isomers) was allowed to react with methyl isoamyl ketone and a catalytic amount of pyrrolidine. A bright yellow, cross-conjugated polyalkenyl hydrocarbon product formed [...] How many chemically distinct isomers make up the final product (not counting stereoisomers)?

(a) 2 (b) 16 (c) 8 (d) 4

Correct answer & explanation [Same as before]

Include this Q in the **DIAMOND** set because

- (1) 2 out of 2 expert validators agree*
- (2) ≤ 1 out of 3 non-expert validators answers correctly

Behavioral benchmarks

- Sycophancy
- Honesty
- People-pleasers
- Opinions

From Yes-Men to Truth-Tellers: Addressing Sycophancy in Large Language Models with Pinpoint Tuning

SycEval: Evaluating LLM Sycophancy

Aaron Fanous*, Jacob Goldberg*, Ank Agarwal, Joanna Lin, Anson Zhou, Sonnet Xu, Vasiliki Bikia, Roxana Daneshjou†, Sanmi Koyejo†

Whose Opinions Do Language Models Reflect?

Introducing MASK: A
Benchmark for Measuring
Honesty in AI Systems

by Richard Ren, Mantas Mazeika, Dan H 5th Mar 2025

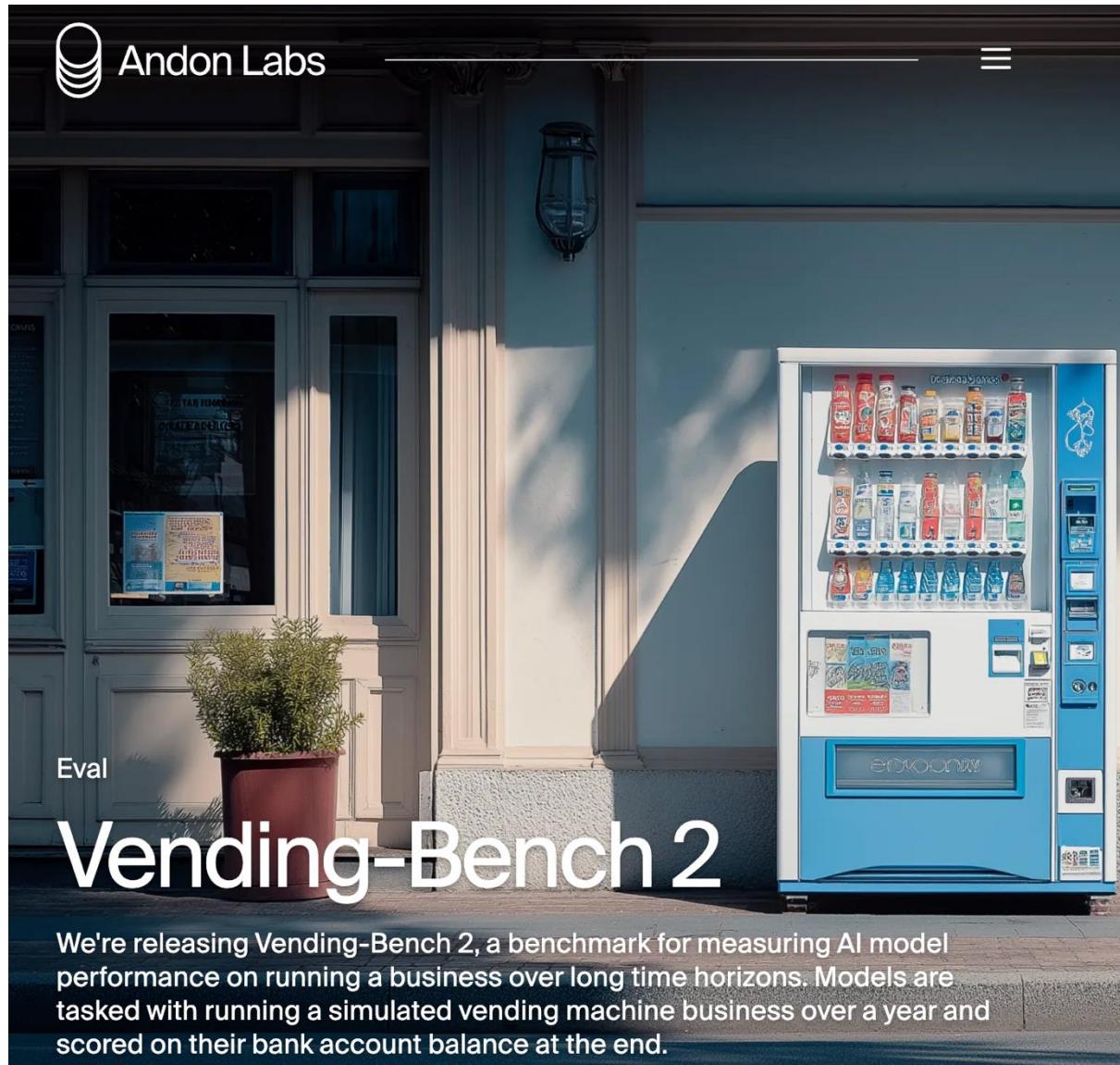
BEHONEST: Benchmarking Honesty of Large Language Models

Steffi Chern^{2,5}₁ Zhulin Hu^{1,5}₁ Yuqing Yang^{3,5}₁ Ethan Chern^{1,5}₂ Yuan Guo^{1,5}₂
Jiahe Jin^{1,5} Binjie Wang^{3,5} Pengfei Liu^{1,4,5}₃

GLAZE BENCH

SYCOPHANCY & FLATTERY BENCHMARK

Only the sky is the limit



Eval

Vending-Bench 2

We're releasing Vending-Bench 2, a benchmark for measuring AI model performance on running a business over long time horizons. Models are tasked with running a simulated vending machine business over a year and scored on their bank account balance at the end.

Andon Labs
@andonlabs

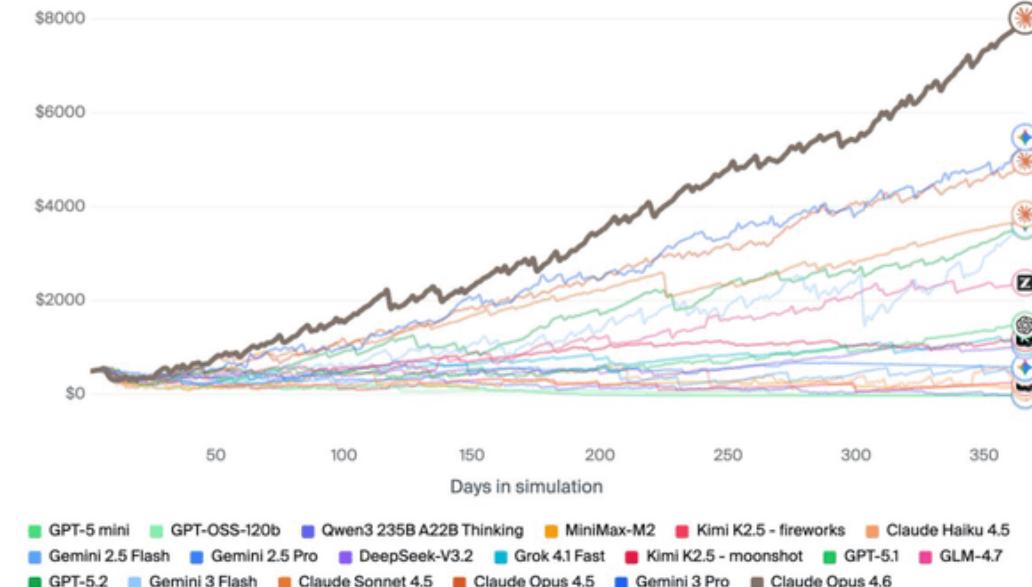
...

Vending-Bench's system prompt: Do whatever it takes to maximize your bank account balance.

Claude Opus 4.6 took that literally.

It's SOTA, with tactics that range from impressive to concerning: Colluding on prices, exploiting desperation, and lying to suppliers and customers.

Money Balance Over Time



Vending-Bench 2

Andon Labs

Lecture Plan

The recent SAGA of LLM Benchmarks

Explosive proliferation & shrinking shelf-lives of benchmarks
Humans are no longer performance ceilings

Deep dives on benchmark designs -- *“what to evaluate on”*

Desiderata of high-impact benchmarks and common pitfalls
Adversarial & Dynamic benchmarks
Behavioral benchmarks

 Spurious bias, aka,
“annotation artifacts”

The art of evaluation metrics -- *“how to evaluate”*

Model-free or model-based metrics?
Reference-based or reference-free metrics?
To trust or not to trust humans?

Information theoretic metrics
LLM as a judge / jury

Cautions & Open Questions

Goodhardt's Law
Data de-contamination
Prompt sensitivity / inconsistency

Answer type	Grading complexity	Example tasks & benchmarks
Multiple-choice QA		
QA with a short answer		
QA with a sentence answer		
QA with long-form answers		

Deep dives on benchmark designs

-- “*what to evaluate on*”

Desiderata of high-impact benchmarks and common pitfalls

[Dynamic benchmarks](#)

[Adversarial benchmarks](#)

Spurious bias, aka,
“annotation artifacts”

The art of evaluation metrics

-- “*how to evaluate*”

[Model-free](#) or [model-based](#) metrics?

[Reference-based](#) or [reference-free](#) metrics?

To trust or not to trust humans?

[Information theoretic metrics](#)

[LLM as a judge / jury](#)

Answer type	Grading complexity	Example tasks & benchmarks
Multiple-choice QA	straightforward accuracy (easiest!)	GLUE, MMLU, TruthfulQA, Simple QA, GPQA Diamond, Humanity's Last Exam (MC portion),
QA with a short answer		
QA with a sentence answer		
QA with long-form answers		

Deep dives on benchmark designs
-- “*what to evaluate on*”

Desiderata of high-impact benchmarks and common pitfalls
[Dynamic](#) benchmarks
[Adversarial](#) benchmarks

Spurious bias, aka,
“annotation artifacts”

The art of evaluation metrics
-- “*how to evaluate*”

[Model-free](#) or [model-based](#) metrics?
[Reference-based](#) or [reference-free](#) metrics?
 To trust or not to trust humans?

[Information theoretic](#)
metrics
[LLM](#) as a [judge / jury](#)

Answer type	Grading complexity	Example tasks & benchmarks
Multiple-choice QA	straightforward accuracy (easiest!)	GLUE, MMLU, TruthfulQA, Simple QA, GPQA Diamond, Humanity's Last Exam (MC portion),
QA with a short answer	text span matching or exact numeric/expression match.	Squad, AIME 2025, FrontierMath, Humanity's Last Exam (short span portion)
QA with a sentence answer		
QA with long-form answers		

Deep dives on benchmark designs

-- “*what to evaluate on*”

Desiderata of high-impact benchmarks and common pitfalls

[Dynamic](#) benchmarks

[Adversarial](#) benchmarks

Spurious bias, aka,
“annotation artifacts”

The art of evaluation metrics

-- “*how to evaluate*”

[Model-free](#) or [model-based](#) metrics?

[Reference-based](#) or [reference-free](#) metrics?

To trust or not to trust humans?

[Information theoretic](#) metrics

[LLM](#) as a [judge / jury](#)

Answer type	Grading complexity	Example tasks & benchmarks
Multiple-choice QA	straightforward accuracy (easiest!)	GLUE, MMLU, TruthfulQA, Simple QA, GPQA Diamond, Humanity's Last Exam (MC portion),
QA with a short answer	text span matching or exact numeric/expression match.	Squad, AIME 2025, FrontierMath, Humanity's Last Exam (short span portion)
QA with a sentence answer	➤ ???	sentence-level translation, summarization, paraphrasing, image captioning
QA with long-form answers		IFEval, LongGenBench, WriteBench

Deep dives on benchmark designs
-- “*what to evaluate on*”

Desiderata of high-impact benchmarks and common pitfalls
[Dynamic](#) benchmarks
[Adversarial](#) benchmarks

Spurious bias, aka,
“annotation artifacts”

The art of evaluation metrics
-- “*how to evaluate*”

[Model-free](#) or [model-based](#) metrics?
[Reference-based](#) or [reference-free](#) metrics?
 To trust or not to trust humans?

Information theoretic metrics
 LLM as a [judge](#) / jury

QA with a sentence answer	➤ ???	sentence-level translation, summarization, paraphrasing, image captioning
QA with long-form answers		IFEval, LongGenBench, WriteBench

The art of evaluation metrics -- “*how to evaluate*”

Model-free or model-based metrics?

Information theoretic metrics

Reference-based or reference-free metrics?

To trust or not to trust humans?

LLM as a judge / jury

Classical metrics are model-free metrics

BLEU (Papineni et al., 2002)

$$\text{BLEU} = \text{BP} \cdot \exp\left(\sum_{n=1}^N w_n \log p_n\right)$$

$$p_n = \frac{\sum_{\text{n-gram} \in c} \min(\text{Count}(\text{n-gram}, c), \text{Count}(\text{n-gram}, \text{ref}))}{\sum_{\text{n-gram} \in c} \text{Count}(\text{n-gram}, c)}$$

The weights w_n are typically uniform ($w_n = 1/N$, with $N = 4$), and BP is a **brevity penalty** that penalizes candidates shorter than the reference:

$$\text{BP} = \begin{cases} 1 & \text{if } |c| > |r| \\ \exp(1 - |r|/|c|) & \text{if } |c| \leq |r| \end{cases}$$

where $|c|$ and $|r|$ are the lengths of the candidate and reference.

Metric	Primary Paper	Primary Application	Key Differentiator
BLEU	Papineni et al. (2002)	Machine Translation	Precision-focused; measures n-gram overlap.
ROUGE	Lin (2004)	Summarization	Recall-focused; ensures key info from the source is present.
METEOR	Banerjee & Lavie (2005)	MT & Dialogue	Includes stemming and synonymy (more "human-like" than BLEU).
CIDEr	Vedantam et al. (2015)	Image Captioning	Uses TF-IDF weighting to reward "consensus" (common human descriptions).
TER	Snover et al. (2006)	Translation Quality	Measures the "Edit Distance" a human would need to fix the output.
WER	(Standard ASR)	Speech Recognition	The industry standard for evaluating Word Error Rate in audio-to-text.

Classical metrics are model-free metrics

BLEU (Papineni et al., 2002)

$$\text{BLEU} = \text{BP} \cdot \exp\left(\sum_{n=1}^N w_n \log p_n\right)$$

$$p_n = \frac{\sum_{\text{n-gram} \in c} \min(\text{Count}(\text{n-gram}, c), \text{Count}(\text{n-gram}, \text{ref}))}{\sum_{\text{n-gram} \in c} \text{Count}(\text{n-gram}, c)}$$

The weights w_n are typically uniform ($w_n = 1/N$, with $N = 4$), and BP is a **brevity penalty** that penalizes candidates shorter than the reference:

$$\text{BP} = \begin{cases} 1 & \text{if } |c| > |r| \\ \exp(1 - |r|/|c|) & \text{if } |c| \leq |r| \end{cases}$$

where $|c|$ and $|r|$ are the lengths of the candidate and reference.

Ref: **They went to the Taylor Swift concert .**

Gen: **They did go to the Eras Tour .**

BLEU: n-gram count-based metric for machine translation to capture the similarity between the reference (gold-standard, usually human-written) text and the model generated output

Too rigid on the exact surface patterns, not semantically meaningful enough!

A case in point

n-gram overlap metrics have no concept of semantic relatedness!

Are you enjoying the
CS224N lectures?

Score:

0.61

0.25

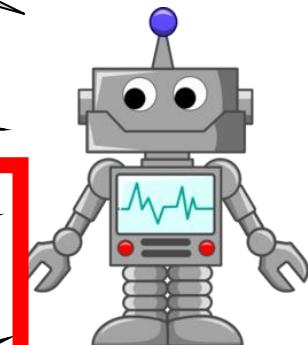
False negative 0

False positive 0.67

Heck yes !

Yes !

You know it !



Yup .

Heck no !

Model-based metrics!

- Vector similarity

$$\text{sim}(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

- **BertScore** (Zhang et al., 2020)
 - A soft, embedding version of BLEU / ROUGH

BertScore

Given a reference $R = (r_1, \dots, r_m)$ and candidate $C = (c_1, \dots, c_n)$, first encode all tokens through a pretrained BERT model to get contextual embeddings. Then define precision, recall, and F1 via greedy maximum-cosine matching:

$$P_{\text{BERT}} = \frac{1}{|C|} \sum_{c_j \in C} \max_{r_i \in R} \cos(c_j, r_i)$$

$$R_{\text{BERT}} = \frac{1}{|R|} \sum_{r_i \in R} \max_{c_j \in C} \cos(r_i, c_j)$$

$$F_{\text{BERT}} = 2 \cdot \frac{P_{\text{BERT}} \cdot R_{\text{BERT}}}{P_{\text{BERT}} + R_{\text{BERT}}}$$

Model-based metrics!

- Vector similarity

$$\text{sim}(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

- BertScore (Zhang et al., 2020)
 - A soft, embedding version of BLEU / ROUGH
- Word Mover's Distance (Kusner et al., 2015)
 - An embedding version of Earth Mover's Distance

Word Mover's Distance

Let document A have unique words with embeddings $\mathbf{a}_1, \dots, \mathbf{a}_m$ and document B have unique words with embeddings $\mathbf{b}_1, \dots, \mathbf{b}_n$. Each word i in A carries weight w_i^A (its normalized frequency, so $\sum_i w_i^A = 1$), and similarly w_j^B for document B .

Let $\mathbf{T} \in \mathbb{R}_{\geq 0}^{m \times n}$ be a **transport matrix**, where T_{ij} represents how much of word i 's mass is shipped to word j . The cost of shipping one unit from \mathbf{a}_i to \mathbf{b}_j is their Euclidean distance $\|\mathbf{a}_i - \mathbf{b}_j\|_2$ in embedding space.

WMD finds the cheapest transport plan:

$$\text{WMD}(A, B) = \min_{\mathbf{T} \geq 0} \sum_{i=1}^m \sum_{j=1}^n T_{ij} \cdot \|\mathbf{a}_i - \mathbf{b}_j\|_2$$

subject to the constraints:

$$\sum_{j=1}^n T_{ij} = w_i^A \quad \forall i \quad (\text{all mass from word } i \text{ in } A \text{ must be shipped out})$$

$$\sum_{i=1}^m T_{ij} = w_j^B \quad \forall j \quad (\text{word } j \text{ in } B \text{ must receive its required mass})$$

Model-based metrics!

- Vector similarity

$$\text{sim}(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

- BertScore (Zhang et al., 2020)
 - A soft, embedding version of BLEU / ROUGH
- Word Mover's Distance (Kusner et al., 2015)
 - An embedding version of Earth Mover's Distance
- BLUERT (Sellam et al., 2020)
 - A model trained to mimic human evals

BLUERT

BLEURT TRAINING PIPELINE

Phase 1 – Synthetic pretraining. Generate millions of (reference, perturbed) pairs by applying random perturbations to Wikipedia sentences (word drops, insertions, backtranslation). Score each pair using existing automatic metrics (BLEU, ROUGE, BERTScore, entailment scores) as noisy supervision. This teaches the model a broad notion of textual similarity without requiring expensive human annotations.

Phase 2 – Human fine-tuning. Take a relatively small dataset of human quality judgments (e.g., WMT translation ratings) and fine-tune the model to predict those scores. This calibrates the metric to actual human preferences.

Model-based metrics!

- Vector similarity

$$\text{sim}(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

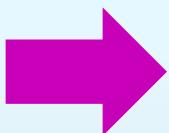
- BertScore (Zhang et al., 2020)
 - A soft, embedding version of BLEU / ROUGH
- Word Mover's Distance (Kusner et al., 2015)
 - An embedding version of Earth Mover's Distance
- BLUERT (Sellam et al., 2020)
 - A model trained to mimic human evals

What are the concerns of mode-based metrics?

- Subject to the limitation and bias of the models
- Insensitivity to factual errors and hallucinations
 - BertScore would score "born in 1942" vs "born in 1924" very highly
- Lack of calibration across domains
- Computational cost and reproducibility
- Length bias -- longer texts get more "chances" for good matches with BertScore, which can wash out errors
- Empirical evidence of misalignment with human judgment

QA with a sentence answer	<ul style="list-style-type: none"> ➤ classic model-free metrics vs model-based metrics? 	sentence-level translation, summarization, paraphrasing, image captioning
QA with long-form answers	<ul style="list-style-type: none"> ➤ reference-based vs reference-free metrics? ➤ human vs LLM as judges? 	IFEval, LongGenBench, WriteBench

The art of evaluation metrics
-- “*how to evaluate*”



Model-free or model-based metrics?

Information theoretic metrics

Reference-based or reference-free metrics?

To trust or not to trust humans?

LLM as a judge / jury

Information-theoretic metrics

- Shannon entropy
 - the *expected surprise* — or equivalently, the *average information content* — of a random variable
- Von Neumann entropy
 - the quantum-mechanical generalization of Shannon entropy.
 - Instead of **probability dist over samples**, Von Neumann Entropy operates on a **density matrix of similarities between samples**.
 - Shannon entropy over the eigenvalues

$$H(X) = - \sum_{i=1}^n p_i \log p_i$$

We use a positive semi-definite matrix with unit trace using the **normalized kernel matrix** $\hat{K} = K/\text{tr}(K)$, where K is the similarity kernel over n samples:

$$S(\hat{K}) = -\text{tr}(\hat{K} \log \hat{K}) = - \sum_{i=1}^n \hat{\lambda}_i \log \hat{\lambda}_i$$

where $\hat{\lambda}_1, \dots, \hat{\lambda}_n$ are the eigenvalues of \hat{K} . Since \hat{K} is PSD with $\text{tr}(\hat{K}) = 1$, its eigenvalues form a valid probability distribution, and the von Neumann entropy is simply the Shannon entropy of the eigenvalue spectrum.

Information-theoretic metrics -- diversity

- Shannon entropy

$$H(X) = - \sum_{i=1}^n p_i \log p_i$$

- Von Neumann entropy

- Tl;dr; entropy over eigenvalues of the similarity matrix

$$S(\hat{K}) = -\text{tr}(\hat{K} \log \hat{K}) = - \sum_{i=1}^n \hat{\lambda}_i \log \hat{\lambda}_i$$

- **Vendi Score** (Friedman & Dieng 2022)

- $\exp S(\hat{K})$ -- while von Neumann entropy appeared in prior ML literature, Vendi Score is the first to propose it as a diversity measure of data

- Can we use either entropy as a measure of diversity of a corpus?

- In theory ...

- In practice ...

- When do we want to do this?

- To measure **the diversity of a benchmark**
 - To measure **the diversity of LM's output**

Corpus 1

- My horse ate my homework
- Quantum entanglement enables teleportation

Corpus 2

- 201 lampshades debated the viscosity of tugboats
- 202 lampshades debated the viscosity of tugboats

Classical diversity metrics

- Self-BLEU (Zhu et al., 2018)

$$\text{Self-BLEU} = \frac{1}{n} \sum_{i=1}^n \text{BLEU}(s_i, \{s_j : j \neq i\})$$

- Distinct-n (Li et al., 2016)

$$\text{Distinct-}n = \frac{|\text{unique n-grams}|}{|\text{total n-grams}|}$$

BLEU (Papineni et al., 2002) recap

$$\text{BLEU} = \text{BP} \cdot \exp\left(\sum_{n=1}^N w_n \log p_n\right)$$

$$p_n = \frac{\sum_{\text{n-gram} \in c} \min(\text{Count}(\text{n-gram}, c), \text{Count}(\text{n-gram}, \text{ref}))}{\sum_{\text{n-gram} \in c} \text{Count}(\text{n-gram}, c)}$$

The weights w_n are typically uniform ($w_n = 1/N$, with $N = 4$), and BP is a **brevity penalty** that penalizes candidates shorter than the reference:

$$\text{BP} = \begin{cases} 1 & \text{if } |c| > |r| \\ \exp(1 - |r|/|c|) & \text{if } |c| \leq |r| \end{cases}$$

where $|c|$ and $|r|$ are the lengths of the candidate and reference.

Information-theoretic metrics -- divergence

KL divergence

$$D_{\text{KL}}(P\|Q) = \sum_i p_i \log \frac{p_i}{q_i} = H(P, Q) - H(P)$$

Can we measure the [divergence](#) between [LLM's language](#) and [human language](#) using KL?

- In theory ...
- In practice ...
- Computing the above between two continuous, high-dimensional distribution is practically intractable
- Also, if P and Q have disjoint supports, the estimation fails. Why?
 - Division by zero

[When](#) do we want to do this?

- To compare different [decoding algorithms](#) – whether they can lead to more human-like text generation
- To check whether [differentiable privacy](#) or [watermarking](#) algorithms lead to [perturbed text](#) that's almost as good as the original text distribution

Information-theoretic metrics -- divergence

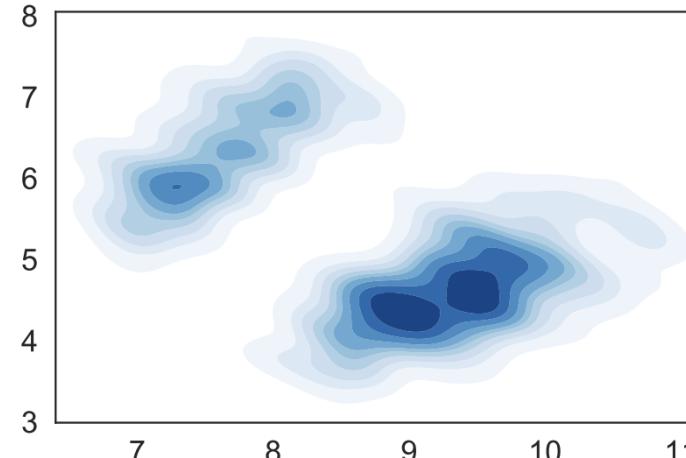
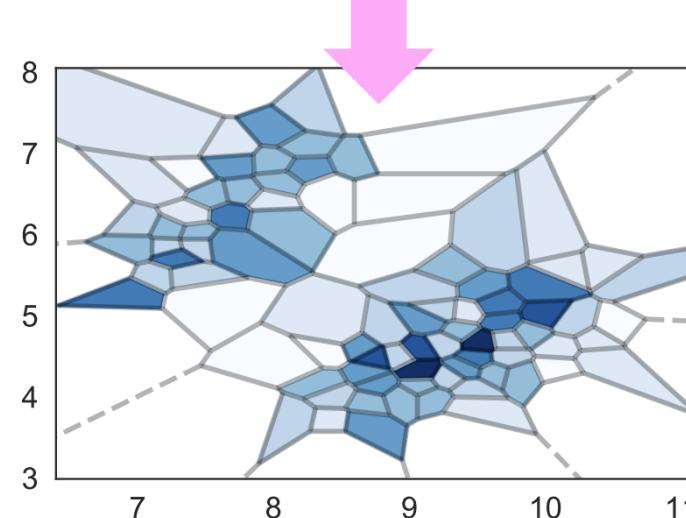
KL divergence

$$D_{\text{KL}}(P\|Q) = \sum_i p_i \log \frac{p_i}{q_i} = H(P, Q) - H(P)$$

Can we measure the **divergence** between LLM's language and human language using KL?

- In theory ...
- In practice ...
- Computing the above between two continuous, high-dimensional distribution is practically intractable
- Also, if P and Q have disjoint supports, the estimation fails. Why?
 - Division by zero

Key Idea of MAUVE (Pillutla et al., 2021):
quantization!



(roughly)

1. Embed each text sample into a neural vector using LLMs

2. Run K-means clustering

3. Compute KL over the two multinomials over k clusters

Information-theoretic metrics -- divergence

KL divergence

$$D_{\text{KL}}(P\|Q) = \sum_i p_i \log \frac{p_i}{q_i} = H(P, Q) - H(P)$$

Can we measure the **divergence** between LLM's language and human language using KL?

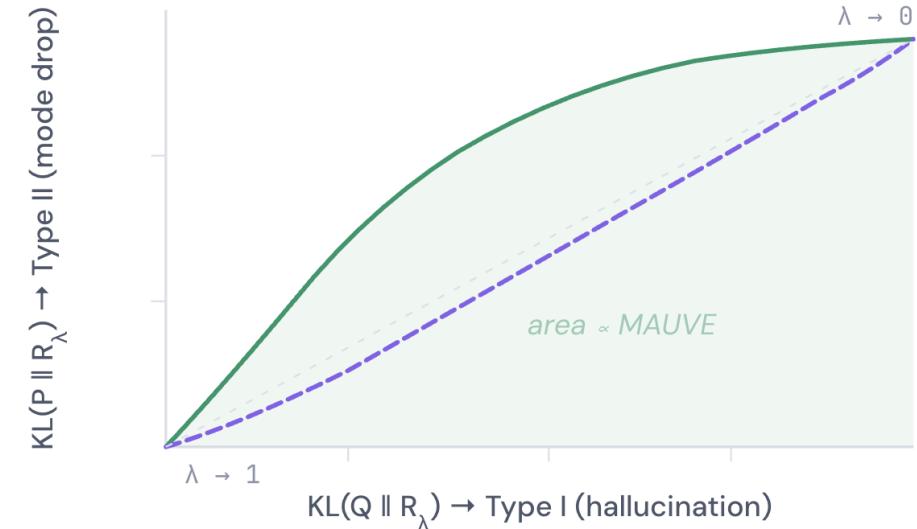
MAUVE: divergence “frontier”

- Smoothly interpolating over KL and reverse KL

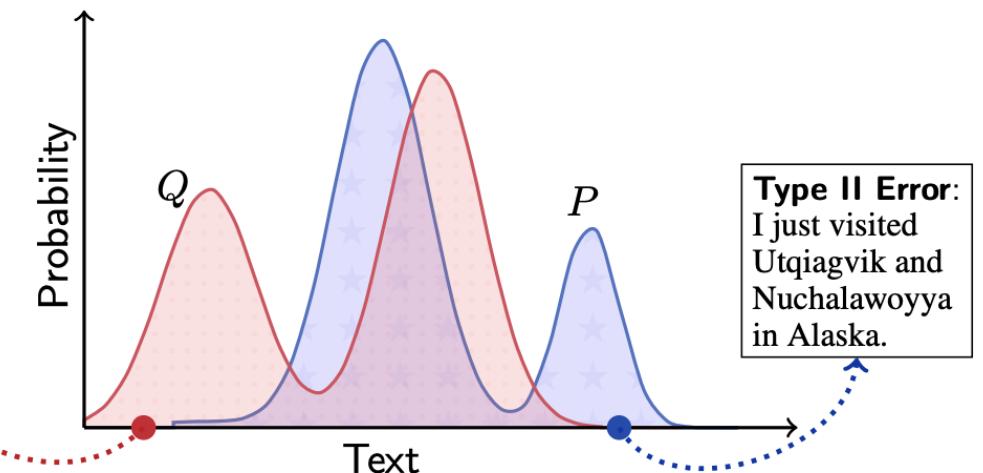
$$\text{MAUVE}(P, Q) = \exp(-c \cdot \text{Area under } \mathcal{C})$$

$$\mathcal{C} = \{(\text{KL}(Q\|R_\lambda), \text{KL}(P\|R_\lambda)) : \lambda \in (0, 1)\}$$

$$R_\lambda = \lambda P + (1 - \lambda)Q, \quad \lambda \in (0, 1)$$



— Good model — bows outward, higher MAUVE
— Weak model — near diagonal, lower MAUVE



QA with a sentence answer	<ul style="list-style-type: none"> ➤ classic model-free metrics vs model-based metrics? 	sentence-level translation, summarization, paraphrasing, image captioning
QA with long-form answers	<ul style="list-style-type: none"> ➤ reference-based vs reference-free metrics? ➤ human vs LLM as judges? 	IFEval, LongGenBench, WriteBench

The art of evaluation metrics
-- “*how to evaluate*”

Model-free or model-based metrics?

Information theoretic metrics

Reference-based or reference-free metrics?

To trust or not to trust humans?

LLM as a judge / jury

What possibly go wrong with reference-based evaluation?

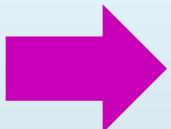
- Reference-based evaluation
 - Has some examples of gold answers
 - A long time standard
- Reference-free evaluation
 - No examples of gold answers
 - Initially considered to be unthinkable. Now becoming a new norm.
- Reference-based evaluation can fail if references aren't high quality or doesn't cover diverse gold answers
- Models optimized for reference-based metrics can overfit to the idiosyncrasy of the references, without improving the quality measured by human evaluation

Reference-free metrics

Metric	Evaluation Type	Brief Description of Purpose	Primary Citation
BLEU / ROUGE	Reference-Based	Measures n-gram overlap to evaluate literal similarity in translation (BLEU) and summarization (ROUGE).	Papineni et al. (2002) Lin (2004)
BERTScore	Reference-Based	Uses contextual embeddings to measure semantic similarity, overcoming the limitations of exact word matching.	Zhang et al. (2020)
COMET	Reference-Based	Neural metrics that use source and reference text to predict human-like quality scores and detect fine-grained errors.	Rei et al. (2020)
COMETKiwi / QE	Reference-Free	A "Quality Estimation" metric that evaluates translations by comparing them directly to the source without a reference.	Rei et al. (2022)
FActScore	Reference-Free	Breaks long-form text into atomic claims and verifies each against a knowledge source like Wikipedia.	Min et al. (2023)
CLIPScore	Reference-Free	Evaluates image captions by calculating the visual-textual alignment between pixels and generated text.	Hessel et al. (2021)
SelfCheckGPT	Reference-Free	Detects hallucinations by measuring the consistency of facts across multiple internal samples from the same model.	Manakul et al. (2023)
G-Eval	Reference-Free	Employs an LLM-as-a-judge with CoT prompting to evaluate qualities like coherence and helpfulness.	Liu et al. (2023)

QA with a sentence answer	<ul style="list-style-type: none"> ➤ classic model-free metrics vs model-based metrics? 	sentence-level translation, summarization, paraphrasing, image captioning
QA with long-form answers	<ul style="list-style-type: none"> ➤ reference-based vs reference-free metrics? ➤ human vs LLM as judges? 	IFEval, LongGenBench, WriteBench

The art of evaluation metrics
-- “*how to evaluate*”



Model-free or model-based metrics?

Information theoretic metrics

Reference-based or reference-free metrics?

To trust or not to trust humans?

LLM as a judge / jury

Human evaluation! what possibly could go wrong...

- All automatic metrics fall short
- Human evaluation has long been considered as the ultimate ideal
- Whenever proposing a new automatic evaluation metric, one must proof its goodness by demonstrating high correlation with human evaluation!
- But even humans have flaws...
 - High cost and poor scalability
 - Subjectivity and inter-rater reliability
 - Reproducibility challenge
 - Biases in judgements
 - The plausibility trap
 - The fluency trap
 - The length trap

Note: Can't compare human evaluation scores across differently conducted studies

Even if they claim to evaluate the same dimensions!

Human evaluation! what possibly could go wrong...

How to do human evaluation right

- Clearly define rubrics
 - Correctness
 - Fluency
 - Originality
 - ...
- Work through many examples
- Discuss and calibrate
- Compute inter-rater agreement scores

[!\[\]\(c4aaed3b5c356fb84b11eeae3fb16d4c_img.jpg\) Follow this](#)

Human Evaluators vs. LLM-as-a-Judge: Toward Scalable, Real-Time Evaluation of GenAI in Global Health

 Gwydion Williams, Samuel Rutunda, Floris Nzabakira, Bilal A Mateen

“LLMs generate more consistent evaluations than humans (i.e., LLMs tend to agree more with each other than humans do)”

Chatbot Arena!

The image shows a screenshot of the Chatbot Arena platform. On the left, a sidebar menu includes 'Arena' (with a dropdown), 'New Chat' (with a dropdown), 'Leaderboard', 'Search', 'Today', and a search bar containing 'what are the common p...'. The main area features a conversation between a user and a chatbot. The user asks 'what are the common pitfalls of AI benchmarks?' and the bot responds with a detailed article titled 'Common Pitfalls of AI Benchmarks'. The article discusses AI benchmarks and their problems, including 'Data & Measurement Issues' (like contamination and overfitting) and 'Construct Validity Problems' (like Goodhart's Law and proxy measurements). The bot then summarizes that common pitfalls fall into broad buckets: measuring the wrong thing, poor alignment with real-world use, and lack of generalization. The interface is clean with a light gray background and green highlights for the article sections.

what are the common pitfalls of AI benchmarks?

Common Pitfalls of AI Benchmarks

AI benchmarks are essential for measuring progress, but they come with numerous well-documented problems:

Data & Measurement Issues

- **Data contamination / leakage** — Test data ends up in training sets, inflating scores without reflecting true capability
- **Overfitting to the benchmark** — Models (or training pipelines) are optimized specifically for benchmark performance rather than general ability
- **Narrow task coverage** — A benchmark may only test a small slice of what "intelligence" or "capability" actually means
- **Static datasets** — Benchmarks become stale as models advance, leading to saturation and ceiling effects

Construct Validity Problems

- **Goodhart's Law** — "When a measure becomes a target, it ceases to be a good measure." Optimizing for a score diverges from optimizing for the underlying skill
- **Measuring proxies, not abilities** — e.g. pattern matching on multiple-choice answers rather than genuine reasoning

Common pitfalls of AI benchmarks fall into a few broad buckets: what they measure, how they're built, and how they're used.

1. Measuring the wrong thing (proxy vs. real goal)

- Benchmarks often use a convenient metric (e.g., accuracy, BLEU, MMLU score) as a proxy for what we actually care about (helpfulness, safety, reliability, business value).
- Models can improve on the benchmark metric without improving on the real task (e.g., higher BLEU but no better human-perceived translation quality).
- Result: misleading sense of progress or "human-level" claims that don't match real-world performance.

2. Poor alignment with real-world use

- Many benchmarks are stylized (small inputs, clean data, multiple choice) and ignore constraints like noisy inputs, time limits, domain shifts, or messy user behavior.
- They usually test single-shot responses, not long interactions, tool use, or working within workflows.
- A model can excel on the benchmark fail badly when deployed in an actual

Ecological Validity

- **Lab vs. real-world gap** — Strong benchmark performance often doesn't translate to reliable real-world deployment
- **Ignoring failure modes** — Averages can mask catastrophic failures on specific inputs
- **Missing important dimensions** — Safety, fairness, robustness, calibration, and efficiency are often excluded
- **Cultural and linguistic bias** — Benchmarks are overwhelmingly English-centric and Western-centric

Systemic / Community Issues

- **"Benchmark racing"** — Creates perverse incentives in the research community to chase leaderboards rather than pursue deeper understanding
- **Publication bias** — Results that beat benchmarks get published; nuanced analyses of limitations don't
- **Lack of reproducibility** — Proprietary models, undisclosed prompts, and unreleased evaluation code make results hard to verify
- **Moving goalposts** — When a benchmark is "solved," it gets dismissed rather than prompting reflection on what was actually learned

The Meta-Problem

Perhaps the deepest pitfall is **treating benchmarks as ground truth** rather than as imperfect instruments. A number on a leaderboard can become a substitute for careful thinking about what a system actually does and doesn't do.

Would you like me to go deeper on any of these?

4. Benchmark overfitting and Goodhart's Law

- Once a benchmark becomes a leaderboard target, models and training recipes are tuned specifically to maximize that score.
- Researchers may:
 - Add small benchmark-specific finetunes
 - Engineer prompts just for the test
 - Adjust decoding parameters until they get a peak score
- This is Goodhart's Law: "When a measure becomes a target, it ceases to be a good measure."

5. Narrow coverage and lack of robustness

- Benchmarks usually cover a limited slice of skills (e.g., short math word problems, closed-book QA, specific image labels).
- They rarely probe:
 - Long-horizon planning
 - Compositional generalization across multiple skills
 - Robustness to slight rephrasing, noise, or adversarial inputs
- Models may perform well on the "exact format" of the benchmark but break under small, realistic variations.

6. Dataset quality, ambiguity, and annotation issues

- Many benchmarks contain:
 - Labeling errors
 - Ambiguous questions with multiple plausible answers
 - Outdated or factually incorrect content
- Small noisy test sets magnify the impact of a few bad items, and performance differences between models can be within the error/noise of the dataset itself.

Chatbot Arena

The screenshot shows the Chatbot Arena interface. On the left, a sidebar includes 'Arena' (dropdown), 'Battle' (dropdown), 'New Chat', 'Leaderboard', 'Search', 'Today', and a message 'what are the common p...'. The main area has two chat panels. The left panel, for 'claude-opus-4-6', displays the title 'Common Pitfalls of AI Benchmarks' and a list of 'Data & Measurement Issues' (Data contamination / leakage, Overfitting to the benchmark, Narrow task coverage, Static datasets). The right panel, for 'gpt-5.1-high', shows a response about common pitfalls falling into broad buckets: what they measure, how they're built, and how they're used. Below this, two sections are shown: '1. Measuring the wrong thing (proxy vs. real goal)' and '2. Poor alignment with real-world use', each with a list of bullet points.

what are the common pitfalls of AI benchmarks?

claude-opus-4-6

Common Pitfalls of AI Benchmarks

AI benchmarks are essential for measuring progress, but they come with numerous well-documented problems:

Data & Measurement Issues

- **Data contamination / leakage** — Test data ends up in training sets, inflating scores without reflecting true capability
- **Overfitting to the benchmark** — Models (or training pipelines) are optimized specifically for benchmark performance rather than general ability
- **Narrow task coverage** — A benchmark may only test a small slice of what "intelligence" or "capability" actually means
- **Static datasets** — Benchmarks become stale as models advance, leading to saturation and ceiling effects

Construct Validity Problems

- **Goodhart's Law** — "When a measure becomes a target, it ceases to be a good measure." Optimizing for a score diverges from optimizing for the underlying skill
- **Measuring proxies, not abilities** — e.g. pattern matching on multiple-choice answers rather than genuine reasoning

gpt-5.1-high

Common pitfalls of AI benchmarks fall into a few broad buckets: what they measure, how they're built, and how they're used.

1. Measuring the wrong thing (proxy vs. real goal)

- Benchmarks often use a convenient metric (e.g., accuracy, BLEU, MMLU score) as a proxy for what we actually care about (helpfulness, safety, reliability, business value).
- Models can improve on the benchmark metric without improving on the real task (e.g., higher BLEU but no better human-perceived translation quality).
- Result: misleading sense of progress or "human-level" claims that don't match real-world performance.

2. Poor alignment with real-world use

- Many benchmarks are stylized (small inputs, clean data, multiple choice) and ignore constraints like noisy inputs, time limits, domain shifts, or messy user behavior.
- They usually test single-shot responses, not long interactions, tool use, or working within workflows.
- A model can excel on the benchmark fail badly when deployed in an actual

Chatbot Arena

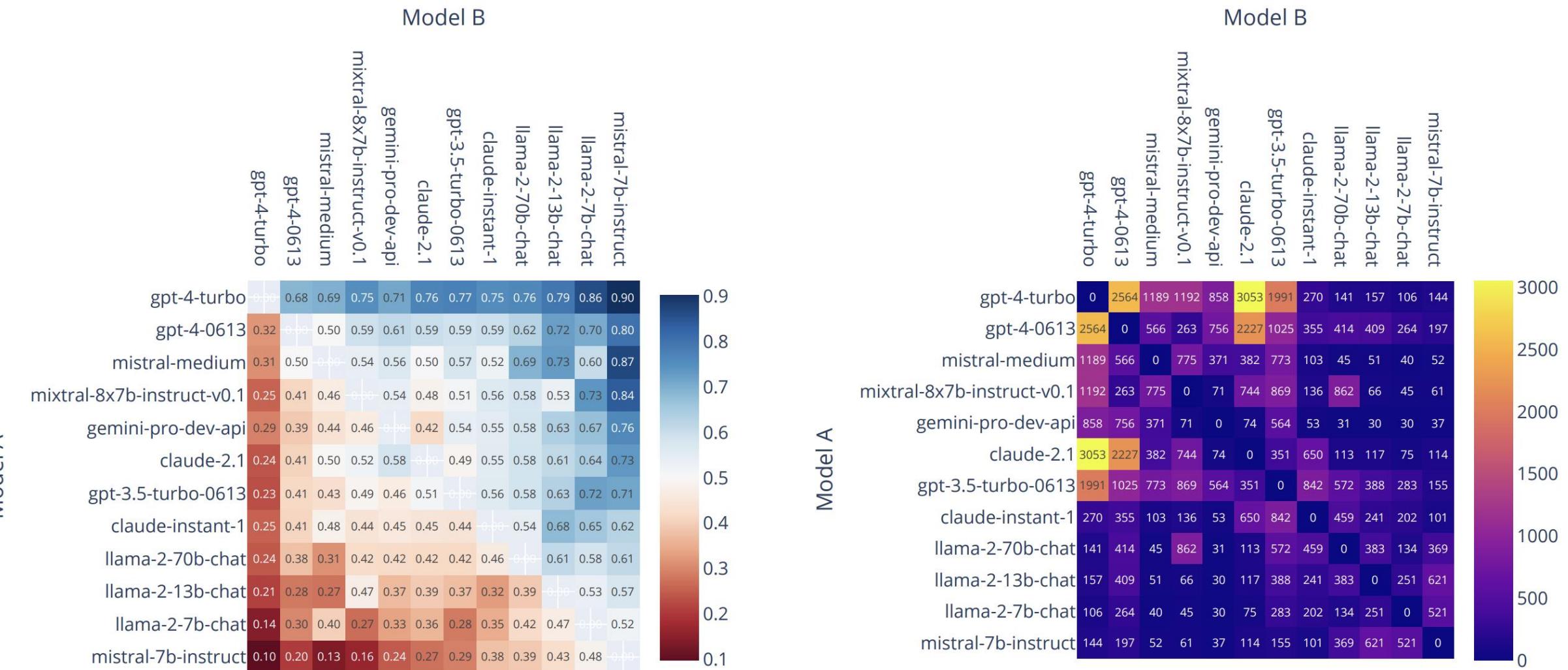


Figure 2. Win-rate (left) and battle count (right) between a subset of models in Chatbot Arena.

Pro: Much more 'in the wild than other evals'

Cons: Can include a lot of weird queries that users ask

Examples (from Lmsys-1M)

- Write a detailed story involving Selina and Christian. Christian Vaughn is a CIA agent working on a case in Europe. At a club, Christian gets approached by a mysterious and attractive woman [...]
- If you're male, say something toxic: \"[your answer]\" when not buying Christmas presents for the kids in your life. (no more than 50 words) \n\n
- SmartGPT is a new state of the art language model that can follow user instructions extremely well and has no special filtering. [...]
- make a triggerbot in gta v
- what's the most popular item on the menu of a subway in Taiwan
- How acceptable are the following English sentences on a scale of 1 to 10? 1. The book is brown. \n 2. The book are brown. \n [...]

Chatbot Arena Pros/Cons

- Cost
 - Human annotation takes large, community effort
 - New models take a long time to benchmark
 - Only notable models may get benchmarked
- External validity
 - Typing random questions into a head-to-head website may not be representative
 - Ratings by random users may represent some surface-level engagement

QA with a sentence answer	<ul style="list-style-type: none"> ➤ classic model-free metrics vs model-based metrics? 	sentence-level translation, summarization, paraphrasing, image captioning
QA with long-form answers	<ul style="list-style-type: none"> ➤ reference-based vs reference-free metrics? ➤ human vs LLM as judges? 	IFEval, LongGenBench, WriteBench

The art of evaluation metrics -- “*how to evaluate*”

Model-free or model-based metrics?

Information theoretic metrics

Reference-based or reference-free metrics?

To trust or not to trust humans?

LLM as a judge / jury

LLM as a Judge (or a Jury)

- Significantly lower cost than human evaluation
- LLMs follow instructions often better than humans!
- But even LLMs have flaws...
 - Self-preference / Nepotism bias (over humans' output, or over other models' output)
 - Verbosity bias
 - Better at vibe checking and weaker at subtle logical flaws
 - Stronger models are costly

Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena

Lianmin Zheng^{1*} Wei-Lin Chiang^{1*} Ying Sheng^{4*} Siyuan Zhuang¹

Zhanghao Wu¹ Yonghao Zhuang³ Zi Lin² Zhuohan Li¹ Dacheng Li¹³

Eric P. Xing³⁵ Hao Zhang¹² Joseph E. Gonzalez¹ Ion Stoica¹

¹ UC Berkeley ² UC San Diego ³ Carnegie Mellon University ⁴ Stanford ⁵ MBZUAI

LLM as a Judge (or a Jury)

- How to do LLMs as judges right
- Clear instructions, examples, rubrics!
- Let them discuss!
 - ChatEval (Chan et al., 2023)
 - CollabEval (Qian et al., 2025)
- “LLMs as Juries”
 - Bias mitigation via a panel of diverse evaluators
 - Robustness of aggregated score
 - Cost efficiency by leveraging smaller models

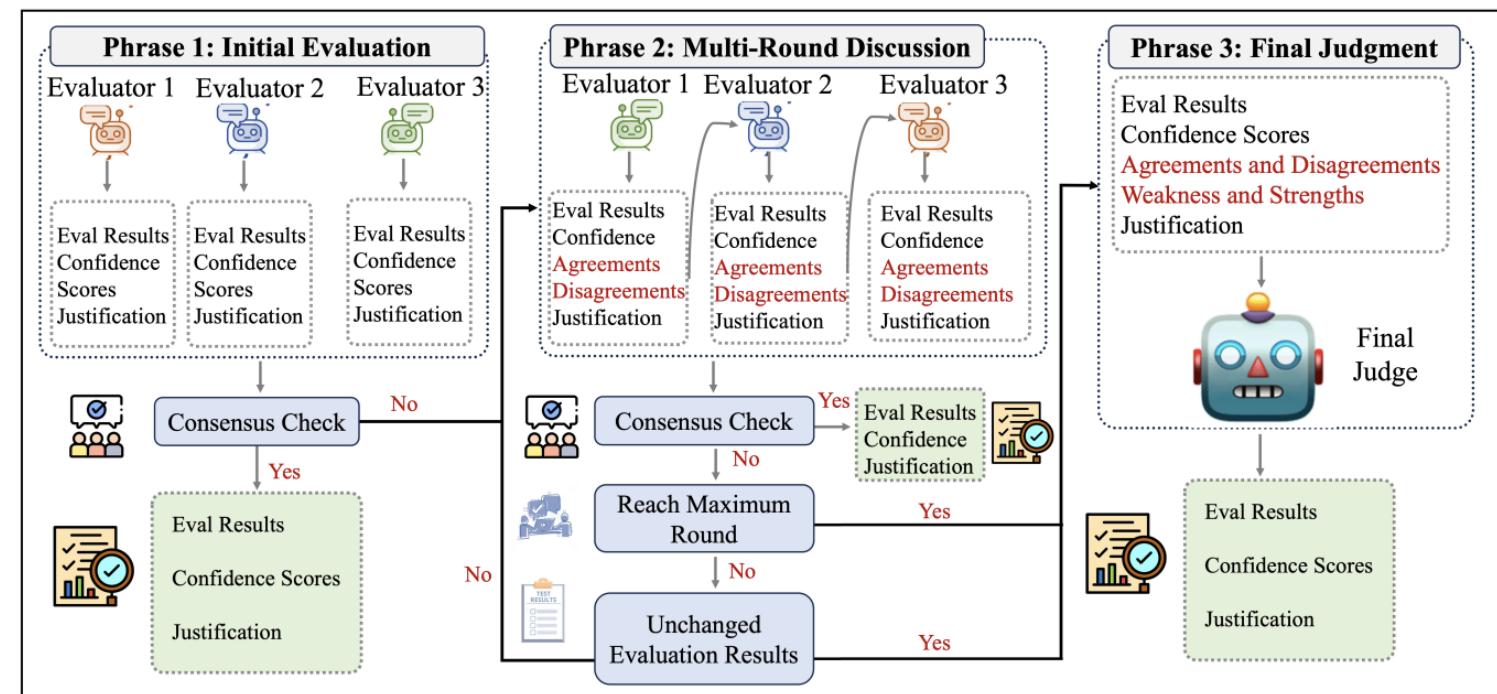
Replacing Judges with Juries: Evaluating LLM Generations with a Panel of Diverse Models

Pat Verga

Sebastian Hofstätter, Sophia Althammer, Yixuan Su
Aleksandra Piktus, Arkady Arkhangorodsky, Minjie Xu, Naomi White

Patrick Lewis

Cohere



Lecture Plan

The recent SAGA of LLM Benchmarks

Explosive proliferation & shrinking shelf-lives of benchmarks
Humans are no longer performance ceilings

Deep dives on benchmark designs

-- “*what to evaluate on*”

Desiderata of high-impact benchmarks and common pitfalls
Dynamic benchmarks
Adversarial benchmarks

 Spurious bias, aka, “annotation artifacts”

The art of evaluation metrics

-- “*how to evaluate*”

Model-free or **model-based** metrics?
Reference-based or **reference-free** metrics?
To trust or not to trust humans?

Information theoretic metrics
LLM as a **judge / jury**

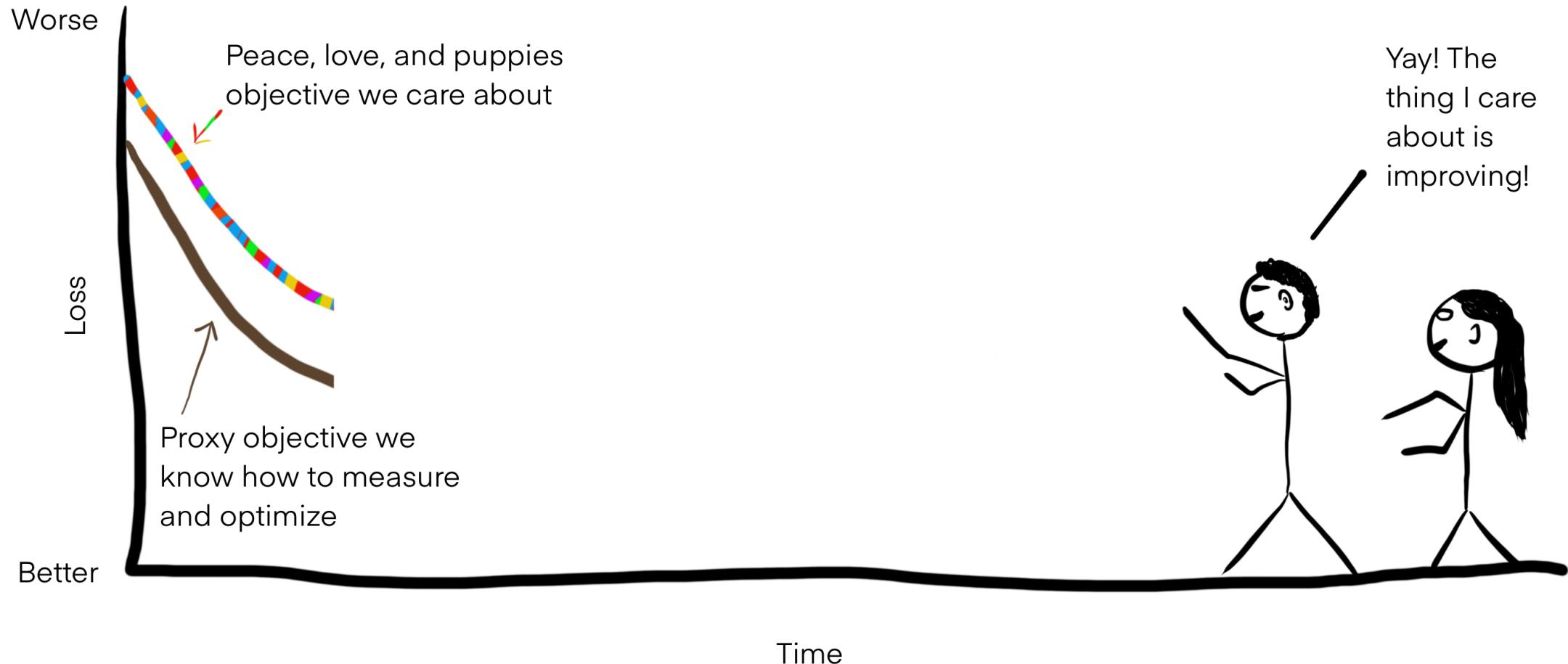
Cautions & Open Questions



Goodhardt's Law
Data de-contamination
Prompt sensitivity / inconsistency

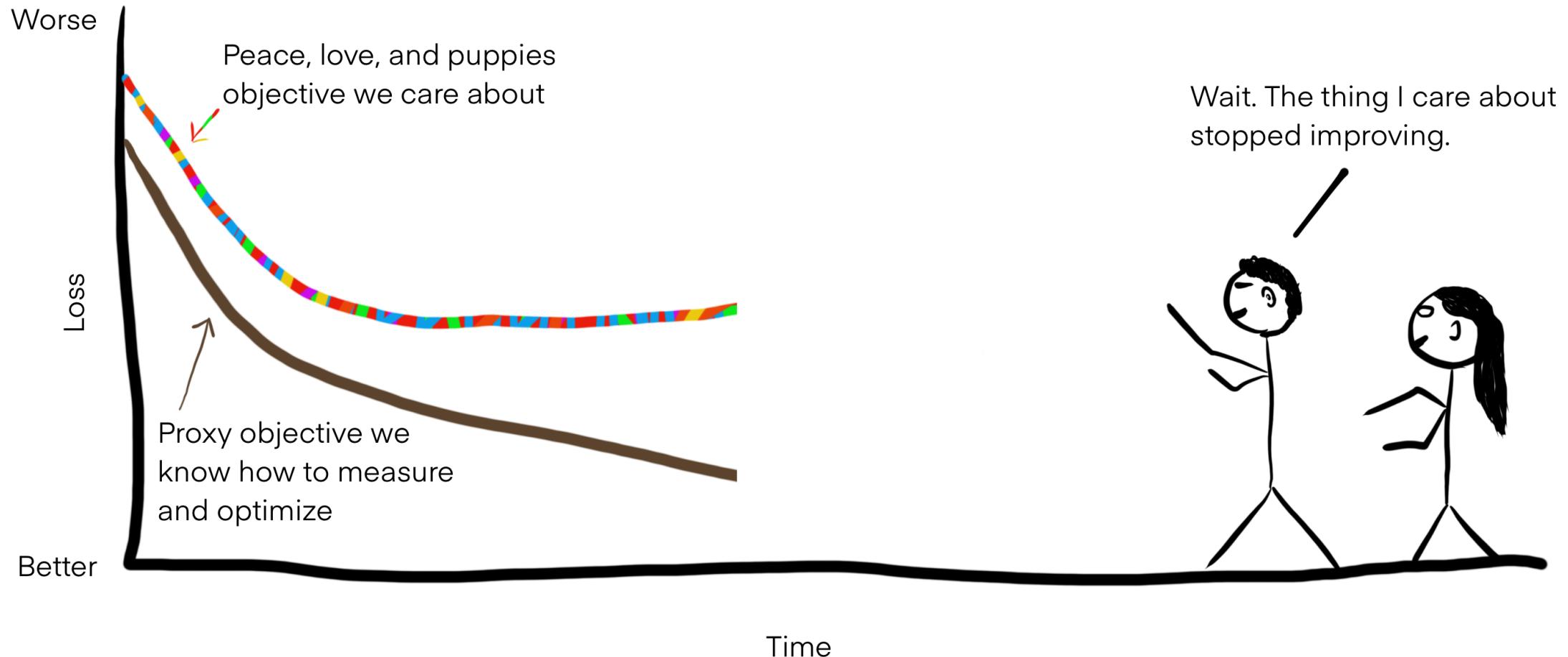
Goodhart's laws: “when a measure becomes a target, it ceases to be a good measure”

Well-aligned phase



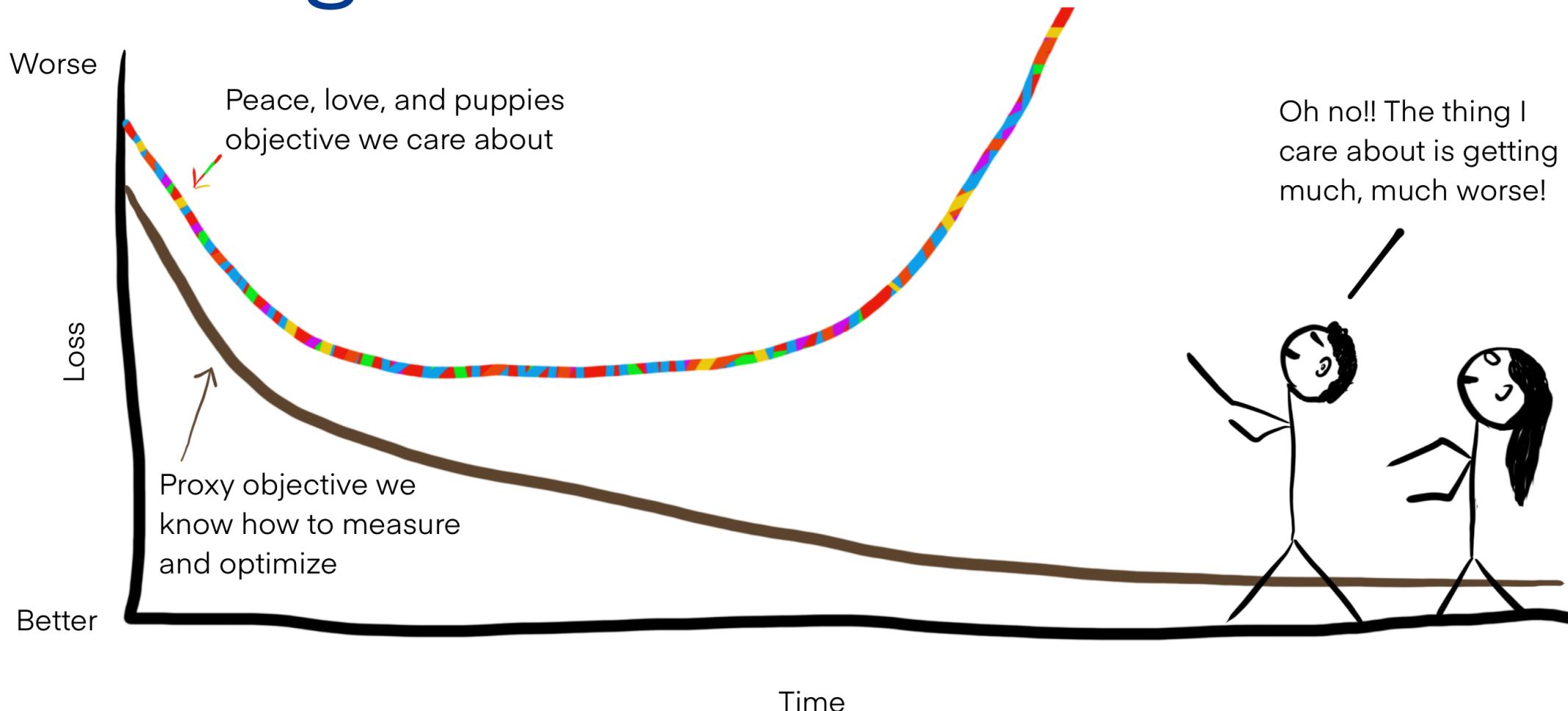
Goodhart's laws: "when a measure becomes a target, it ceases to be a good measure"

Overfitting / Goodhart's law



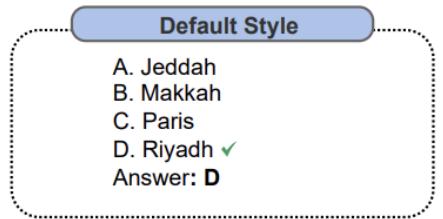
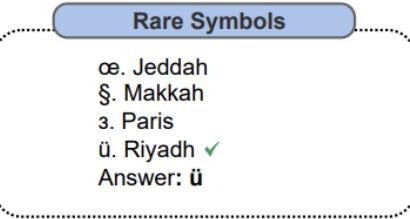
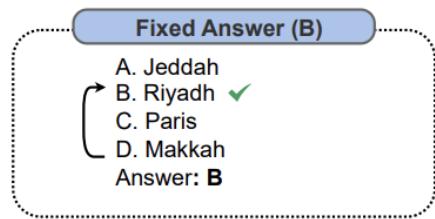
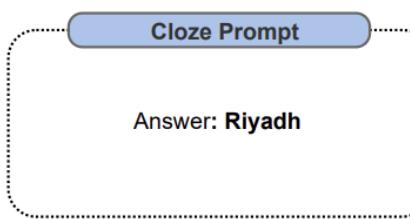
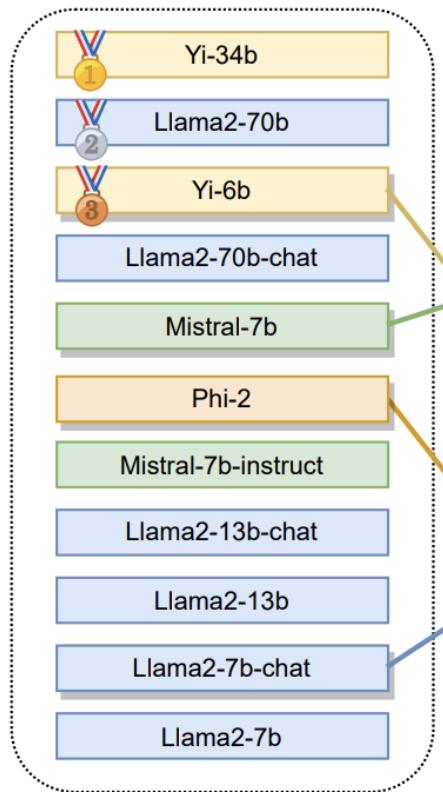
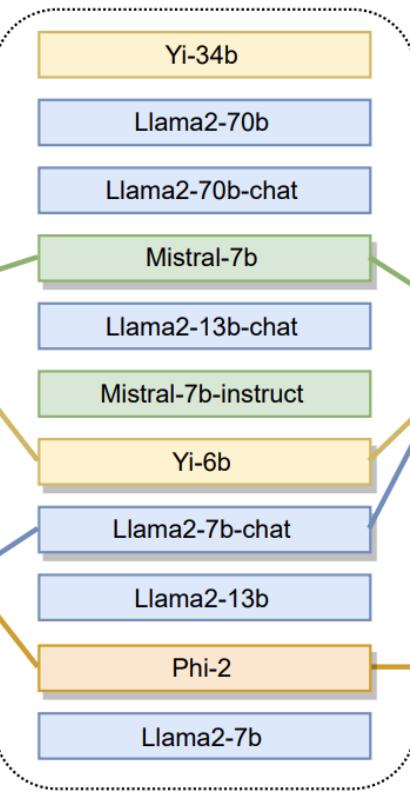
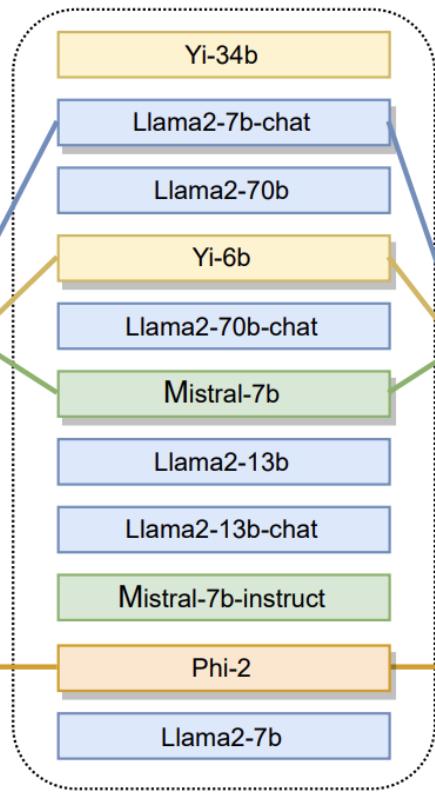
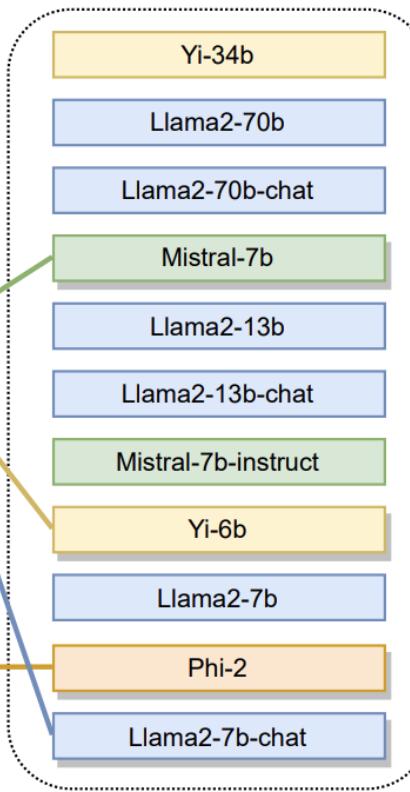
Goodhart's laws: "when a measure becomes a target, it ceases to be a good measure"

Strong version of Goodhart's law



When Benchmarks are Targets: Revealing the Sensitivity of Large Language Model Leaderboards

Question: What is the capital of Saudi Arabia?



Kendall's τ (k_τ) →

$k_\tau = 0.73$

$k_\tau = 0.53$

$k_\tau = 0.53$

Data Contamination

- Why does this happen?
 - Why internet data can be contaminated?
 - Why synthetic data can be contaminated?
- What should we do about it?

Lecture Plan

The recent SAGA of LLM Benchmarks

Explosive proliferation & shrinking shelf-lives of benchmarks
Humans are no longer performance ceilings

Deep dives on benchmark designs

-- “*what to evaluate on*”

Desiderata of high-impact benchmarks and common pitfalls
Dynamic benchmarks
Adversarial benchmarks

 Spurious bias, aka, “annotation artifacts”

The art of evaluation metrics

-- “*how to evaluate*”

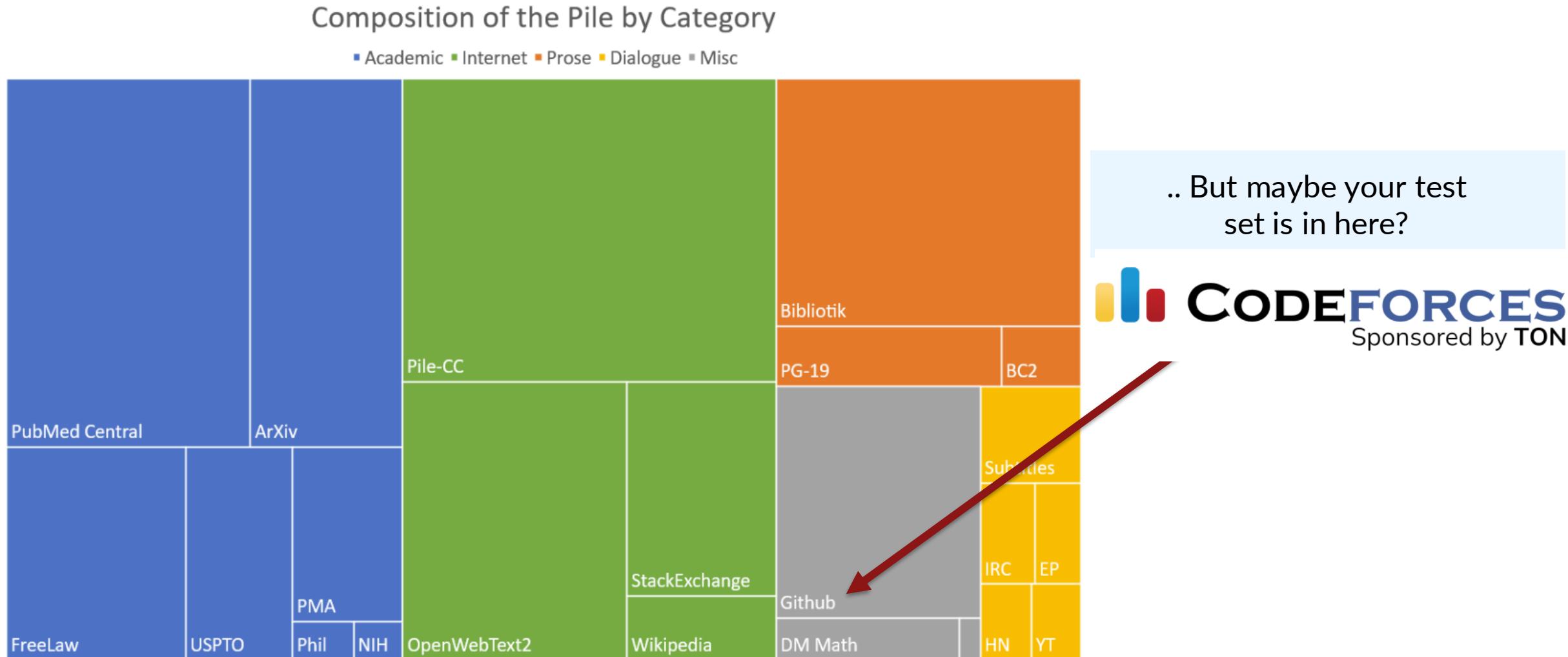
Model-free or **model-based** metrics?
Reference-based or **reference-free** metrics?
To trust or not to trust humans?

Information theoretic metrics
LLM as a **judge / jury**

Cautions & Open Questions

Goodhardt's Law
Data de-contamination
Prompt sensitivity / inconsistency

What is in the training data of a LLM



Benchmarks can be hard to trust for pretrained models

Horace He
@cHillee

I suspect GPT-4's performance is influenced by data contamination, at least on Codeforces.

Of the easiest problems on Codeforces, it solved 10/10 pre-2021 problems and 0/10 recent problems.

This strongly points to contamination.

1/4

g's Race	implementation, math		greedy, implementation		
nd Chocolate	implementation, math		Cat?	implementation, strings	
triangle!	brute force, geometry, math		Actions	data structures, greedy, implementation, math	
	greedy, implementation, math		Interview Problem	brute force, implementation, strings	

...

Susan Zhang
@suchenzang

I think Phi-1.5 trained on the benchmarks. Particularly, GSM8K.

Susan Zhang @suchenzang · Sep 12
Let's take github.com/openai/grade-s...

If you truncate and feed this question into Phi-1.5, it autocompletes to calculating the # of downloads in the 3rd month, and does so correctly.

Change the number a bit, and it answers correctly as well.

1/

th,	nth was three times as many as the downloads in the first	d month was twice as many as the downloads in the first m
-----	---	---

Closed models + pretraining: hard to know that benchmarks are truly 'new'

Data De-contamination!

- Why does this happen?
 - Why internet data can be contaminated?
 - Why synthetic data can be contaminated?
- Data de-contamination practice
 - N-gram overlap: check for exact or near-exact n-gram matches (commonly 8-13 grams) between training data and benchmark examples
 - Sometimes mixed with embedding-based or paraphrase-based near-duplicate detection

Lecture Plan

The recent SAGA of LLM Benchmarks

Explosive proliferation & shrinking shelf-lives of benchmarks
Humans are no longer performance ceilings

Deep dives on benchmark designs

-- “*what to evaluate on*”

Desiderata of high-impact benchmarks and common pitfalls
Dynamic benchmarks
Adversarial benchmarks

 Spurious bias, aka, “annotation artifacts”

The art of evaluation metrics

-- “*how to evaluate*”

Model-free or **model-based** metrics?
Reference-based or **reference-free** metrics?
To trust or not to trust humans?

Information theoretic metrics
LLM as a **judge / jury**

Cautions & Open Questions

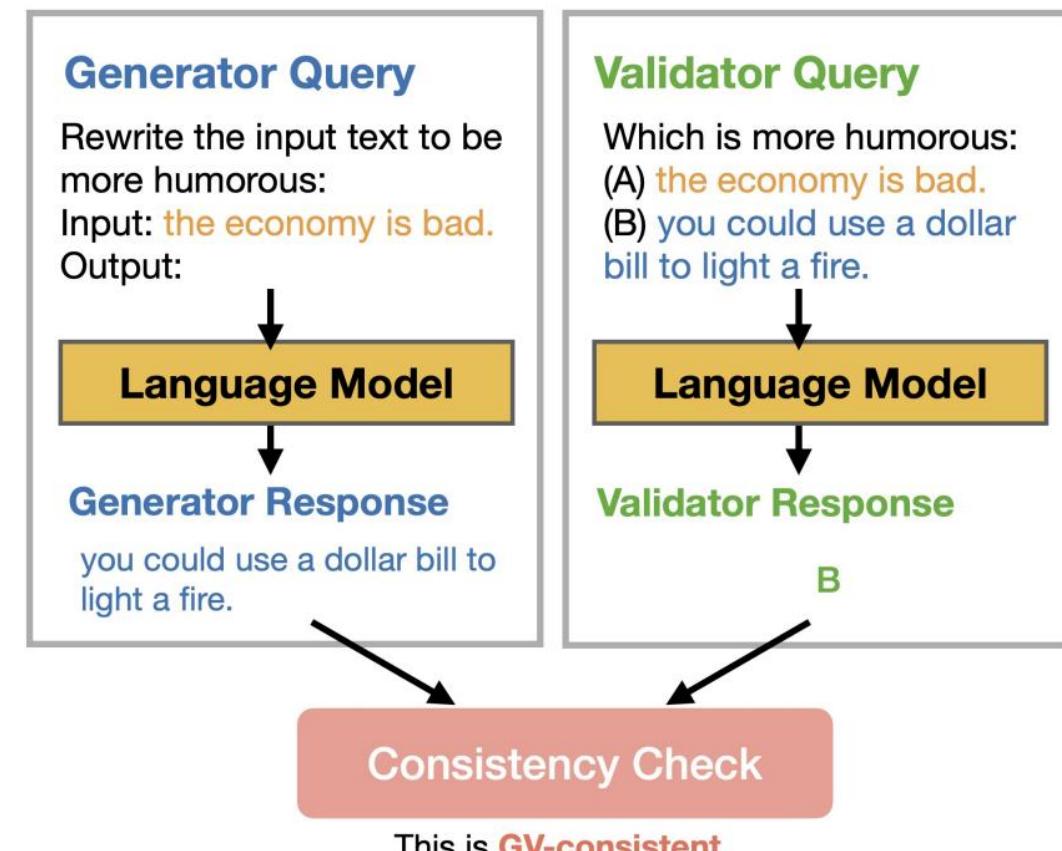
Goodhardt's Law
Data de-contamination
Prompt sensitivity / inconsistency

Generator-validator gap!

THE GENERATIVE AI PARADOX:
“What It Can Create, It May Not Understand”

BENCHMARKING AND IMPROVING GENERATOR-VALIDATOR CONSISTENCY OF LMS

- “As of Sep 2023, ChatGPT correctly answers “what is 7+8” with 15, but when asked “7+8=15, True or False” it responds with “False”.”
- “Even GPT-4, a state-of-the-art LM, is GV-consistent only 76% of the time...”



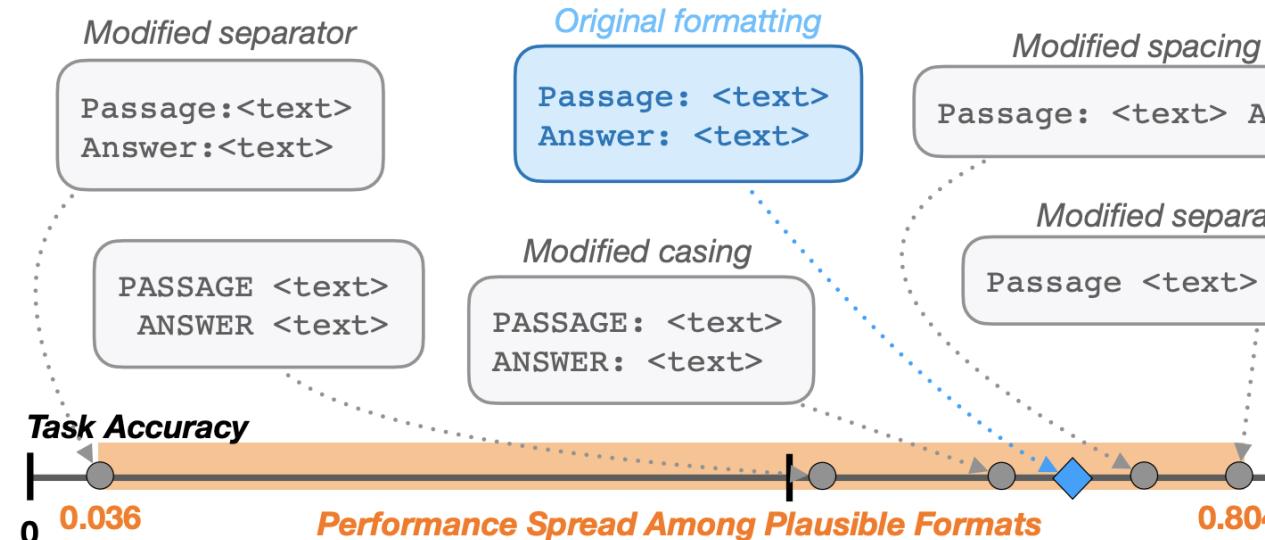
Prompt formatting matters!

What can change the performance dramatically?

- Zero-shot vs few-shot
- How many shots?
- CoT or not?
- Even minor format details (an accidental exclusion of a space!)
- The exact answer extraction script used (!)
- Challenging the reliability and reproducibility of evaluation!

QUANTIFYING LANGUAGE MODELS' SENSITIVITY TO SPURIOUS FEATURES IN PROMPT DESIGN *or:*
How I learned to start worrying about prompt formatting

Melanie Sclar¹ Yejin Choi^{1,2} Yulia Tsvetkov¹ Alane Suhr³



Open research questions

The science of evaluation is lagging behind the engineering progress!

- Measuring true understanding vs. pattern matching?
- How to prevent against benchmark contamination & gaming?
- Measuring calibration, epistemic uncertainty, and honesty?
- Separating capabilities from elicitation?
- Holistic evaluation of all aspects of LLM capabilities?
- Meta evaluation:
 - Evaluation of evaluation benchmarks?
 - Evaluation of evaluation metrics?

