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The recent SAGA of LLM Benchmarks
Explosive proliferation & shrinking shelf-lives of benchmarks

Humans are no longer performance ceilings

Deep dives on benchmark designs

-- “what to evaluate on”

Desiderata of high-impact benchmarks and common pitfalls

Dynamic benchmarks

Adversarial benchmarks

The art of evaluation metrics

-- “how to evaluate”

Model-free or model-based metrics?

Reference-based or reference-free metrics?

To trust or not to trust humans?

Cautions & Open Questions
Goodhardt's Law

Data de-contamination

Prompt sensitivity / inconsistency

Information theoretic 
metrics

LLM as a judge / jury 

 Spurious bias, aka, 
“annotation artifacts”



Benchmarks and leaderboards drive progress
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Most “common” benchmarks? 
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• a few too many!

• … and constantly evolving!

• … depends on frontier LLMs vs smaller open-source LMs



Trend: Muti-Task Benchmarks
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GLUE and SuperGLUE
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SuperBLUE was "stickier” :

• BoolQ, MultiRC (reading texts)

• CB, RTE (entailment)

• COPA (cause and effect)

• ReCoRD (QA+reasoning)

• WiC (meaning of words)

• WSC (coreference)

A collection of existing benchmarks standardized or reformatted, covering a wide range 
of intuitive-level NLU capabilities



GLUE and SuperGLUE
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Attempt to measure intuitive-level “general language capabilities”

Leaderboard attracted a lot of activities! 



MMLU
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Massive Multitask Language
Understanding (MMLU)

[Hendrycks et al., 2021]

• 57 diverse tasks

• No longer just about “natural 
language understanding” per se…

• all very knowledge intensive!

• high-school to college-level subjects



Examples from MMLU
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MMLU (Massive Multitask Language Understanding)

• One of the most commonly used benchmarks for 
measuring LLM performance

• Often used for performance tracking during pre-
training (as well as during post-training)

• MMLU-Pro is much harder



GPQA: A graduate-Level Google-proof Q&A benchmark
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• At the time of release (Nov 2023), it looked just too hard...

• By the time the paper was presented at COLM 2024, O1 achieved 78.3% (!!!)



HLE: Humanity’s Last Exam
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The recent SAGA of LLM Benchmarks
Explosive proliferation & shrinking shelf-lives of benchmarks

Humans are no longer performance ceilings

Deep dives on benchmark designs

-- “what to evaluate on”

Desiderata of high-impact benchmarks and common pitfalls

Dynamic benchmarks

Adversarial benchmarks

The art of evaluation metrics

-- “how to evaluate”

Model-free or model-based metrics?

Reference-based or reference-free metrics?

To trust or not to trust humans?

Cautions & Open Questions
Goodhardt's Law

Data de-contamination

Prompt sensitivity / inconsistency

Information theoretic 
metrics

LLM as a judge / jury 

 Spurious bias, aka, 
“annotation artifacts”



Desiderata of Good Benchmarks
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• Scale and diversity
• Benchmark should cover the phenomena of interest
• Complex phenomena require many and diverse samples

• Difficulty 
• Easy enough for humans (or human experts)
• Hard enough for state-of-the-art 

• Quality
• Correct answers should be clearly correct

• Surprisingly hard to guarantee this without a lot of efforts!
• No spurious bias 

• Aka “Annotation artifacts” 

• Otherwise, AI can solve exams right for the wrong reasons!



The significance of SQUAD and SQUAD-2
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Dataset Paper Title Year Impact

SQuAD 1 SQuAD: 100,000+ Questions for Machine Comprehension of Text 2016 11,200 citations!  

SQuAD 2 Know What You Don't Know: Unanswerable Questions for SQuAD 2018 EMNLP paper award! 



The significance of SQUAD and SQUAD-2
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Dataset Paper Title Year Impact

SQuAD 1 SQuAD: 100,000+ Questions for Machine Comprehension of Text 2016 11,200 citations!  

SQuAD 2 Know What You Don't Know: Unanswerable Questions for SQuAD 2018 EMNLP paper award! 

- High-quality at an unprecedented scale

- Two innovations: (1) the “span-based" evaluation strategy, (2) unanswerable questions

- Greatly influenced the NLP field to make progress on “reading comprehension”

Feature Prior (MCTest) Prior (CNN/DM) SQuAD (Strength)

Scale Small (2.6k) Massive (1M+) Large (100k)

Quality Human-written Automated/Noisy Human-written

Task Multiple Choice Cloze (Fill-blank) Span Extraction

Reasoning High (but untrainable) Low (Pattern matching) Moderate to High



Desiderata of Good Benchmarks
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• Scale and diversity
• Benchmark should cover the phenomena of interest
• Complex phenomena require many and diverse samples

• Difficulty 
• Easy enough for humans (or human experts)
• Hard enough for state-of-the-art 

• Quality
• Correct answers should be clearly correct

• Surprisingly hard to guarantee this without a lot of efforts!
• No spurious bias

• Aka “Annotation artifacts” 
• Otherwise, AI can solve exams right for the wrong reasons!



Spurious bias 
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1. Lexical overlap bias (the ”copy-paste" shortcut)

• The Issue: Because the questions were written by crowdworkers who were 
looking directly at the paragraph, they often used the exact same words found in 
the sentence containing the answer.

• The Consequence: Models learned to "cheat" by simply looking for the sentence 
that shared the most words with the question.

• Adversarial study: In a famous 2017 study by Jia and Liang, adding a "distractor" 
sentence to a SQuAD passage (one that had high word overlap with the question 
but contained a fake answer) caused model accuracy to plummet from 75% to 
36%.



Spurious bias 
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2. Position bias

• The Issue: In many Wikipedia paragraphs, the most important information is 
located in the first few sentences.

• The Consequence: Models began "weighting" the beginning of a paragraph 
more heavily.



Spurious bias 
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3. other annotation artifacts (human ”tricks")

Since unanswerable questions were created by humans perturbing existing ones, 
they contain "tells" or artifacts.

• Negation bias: A common human strategy was to simply insert "not." Models 
quickly learned that the presence of negation words was a strong signal for 
unanswerability.

• Entity swapping: Another common trick was swapping "Obama" for "Bush." 
Models trained on this often become over-sensitive to named entities and 
ignore other important content.

➢ It turns out, pretty much all benchmarks contain spurious biases that ML models 
pick up on, essentially answering the questions right for the wrong reasons. 

➢ In response, researchers started investigating two new types of benchmarks: 

➢ dynamic benchmarks & adversarial benchmarks



“Right for the Wrong Reasons: 
Diagnosing Syntactic Heuristics in Natural Language Inference” (McCoy et al., 2019)
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What if our model is using simple heuristics to get good accuracy?

A diagnostic test set is carefully constructed to test for a specific skill or capacity of your neural model.

For example, HANS: (Heuristic Analysis for NLI Systems) tests syntactic heuristics in NLI



HANS model analysis in natural language inference
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McCoy et al., 2019 took 4 strong MNLI models,

with the following accuracies on the original 
test set (in-domain)

Evaluating on HANS, where syntactic 
heuristics work, accuracy is high!

But where syntactic heuristics fail, accuracy 
is very very low…

[McCoy et al., 2019]

https://arxiv.org/pdf/1902.01007.pdf


Adversarial benchmarks with model-in-the-loop
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Adversarial NLI (ANLI)



Dynamic benchmarks with model-in-the-loop
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Desiderata of good benchmarks
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• Scale and diversity
• Benchmark should cover the phenomena of interest
• Complex phenomena require many and diverse samples

• Difficulty 
• Easy enough for humans (or human experts)
• Hard enough for state-of-the-art 

• Quality
• Correct answers should be clearly correct

• Surprisingly hard to guarantee this without a lot of efforts!
• No spurious bias 

• Aka, “annotation artifacts”
• Otherwise, AI can solve exams right for the wrong reasons!



GPQA: 
A graduate-level 
Google-proof 
Q&A benchmark
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Behavioral benchmarks
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• Sycophancy

• Honesty

• People-pleasers

• Opinions



Only the sky is the limit
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The recent SAGA of LLM Benchmarks
Explosive proliferation & shrinking shelf-lives of benchmarks

Humans are no longer performance ceilings

Deep dives on benchmark designs

-- “what to evaluate on”

Desiderata of high-impact benchmarks and common pitfalls

Adversarial & Dynamic benchmarks

Behavioral benchmarks

The art of evaluation metrics

-- “how to evaluate”

Model-free or model-based metrics?

Reference-based or reference-free metrics?

To trust or not to trust humans?

Cautions & Open Questions
Goodhardt's Law

Data de-contamination

Prompt sensitivity / inconsistency

Information theoretic 
metrics

LLM as a judge / jury 

 Spurious bias, aka, 
“annotation artifacts”
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Deep dives on benchmark designs

-- “what to evaluate on”

Desiderata of high-impact benchmarks and common pitfalls

Dynamic benchmarks

Adversarial benchmarks

The art of evaluation metrics

-- “how to evaluate”

Model-free or model-based metrics?

Reference-based or reference-free metrics?

To trust or not to trust humans?

Information theoretic 
metrics

LLM as a judge / jury 

 Spurious bias, aka, 
“annotation artifacts”

Answer type Grading complexity Example tasks & benchmarks

Multiple-choice QA

QA with a short 
answer

QA with a sentence 
answer

QA with long-form 
answers
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Deep dives on benchmark designs

-- “what to evaluate on”

Desiderata of high-impact benchmarks and common pitfalls

Dynamic benchmarks

Adversarial benchmarks

The art of evaluation metrics

-- “how to evaluate”

Model-free or model-based metrics?

Reference-based or reference-free metrics?

To trust or not to trust humans?

Information theoretic 
metrics

LLM as a judge / jury 

 Spurious bias, aka, 
“annotation artifacts”

Answer type Grading complexity Example tasks & benchmarks

Multiple-choice QA straightforward accuracy (easiest!)
GLUE, MMLU, TruthfulQA, Simple QA, GPQA 
Diamond, Humanity’s Last Exam (MC portion),

QA with a short 
answer

QA with a sentence 
answer

QA with long-form 
answers
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Deep dives on benchmark designs

-- “what to evaluate on”

Desiderata of high-impact benchmarks and common pitfalls

Dynamic benchmarks

Adversarial benchmarks

The art of evaluation metrics

-- “how to evaluate”

Model-free or model-based metrics?

Reference-based or reference-free metrics?

To trust or not to trust humans?

Information theoretic 
metrics

LLM as a judge / jury 

 Spurious bias, aka, 
“annotation artifacts”

Answer type Grading complexity Example tasks & benchmarks

Multiple-choice QA straightforward accuracy (easiest!)
GLUE, MMLU, TruthfulQA, Simple QA, GPQA 
Diamond, Humanity’s Last Exam (MC portion),

QA with a short 
answer

text span matching or exact 
numeric/expression match.

Sqaud, AIME 2025, FrontierMath, Humanity’s Last 
Exam (short span portion) 

QA with a sentence 
answer

QA with long-form 
answers
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Deep dives on benchmark designs

-- “what to evaluate on”

Desiderata of high-impact benchmarks and common pitfalls

Dynamic benchmarks

Adversarial benchmarks

The art of evaluation metrics

-- “how to evaluate”

Model-free or model-based metrics?

Reference-based or reference-free metrics?

To trust or not to trust humans?

Information theoretic 
metrics

LLM as a judge / jury 

 Spurious bias, aka, 
“annotation artifacts”

Answer type Grading complexity Example tasks & benchmarks

Multiple-choice QA straightforward accuracy (easiest!)
GLUE, MMLU, TruthfulQA, Simple QA, GPQA 
Diamond, Humanity’s Last Exam (MC portion),

QA with a short 
answer

text span matching or exact 
numeric/expression match.

Sqaud, AIME 2025, FrontierMath, Humanity’s Last 
Exam (short span portion) 

QA with a sentence 
answer

➢ ???

sentence-level translation, summarization, 
paraphrasing, image captioning

QA with long-form 
answers

IFEval, LongGenBench, WriteBench
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The art of evaluation metrics

-- “how to evaluate”

Model-free or model-based metrics?

Information theoretic metrics

Reference-based or reference-free metrics?

To trust or not to trust humans?

LLM as a judge / jury 

QA with a sentence 
answer

➢ ???

sentence-level translation, summarization, 
paraphrasing, image captioning

QA with long-form 
answers

IFEval, LongGenBench, WriteBench



Classical metrics are model-free metrics
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BLEU (Papineni et al., 2002)
Metric

Primary 
Paper

Primary 
Application

Key Differentiator

BLEU
Papineni et 
al. (2002)

Machine 
Translation

Precision-focused; measures 
n-gram overlap.

ROUGE Lin (2004)
Summarizat
ion

Recall-focused; ensures key 
info from the source is 
present.

METEOR
Banerjee & 
Lavie (2005)

MT & 
Dialogue

Includes stemming and 
synonymy (more "human-
like" than BLEU).

CIDEr
Vedantam et 
al. (2015)

Image 
Captioning

Uses TF-IDF weighting to 
reward "consensus" (common 
human descriptions).

TER
Snover et al. 
(2006)

Translation 
Quality

Measures the "Edit Distance" 
a human would need to fix 
the output.

WER
(Standard 
ASR)

Speech 
Recognition

The industry standard for 
evaluating Word Error Rate in 
audio-to-text.



Classical metrics are model-free metrics
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BLEU (Papineni et al., 2002) Ref: They went to the Taylor Swift concert .

Gen: They did go to the Eras Tour .

BLEU: n-gram count-based metric for 
machine translation to capture the similarity 
between the reference (gold-standard, 
usually human-written) text and the model 
generated output

Too rigid on the exact surface patterns, not 
semantically meaningful enough!



A case in point
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n-gram overlap metrics have no concept of semantic relatedness!

Are you enjoying the 
CS224N lectures?

Heck yes !

You know it !

Yes !

Yup .

Heck no !

Score:

0.61

0.25

0

0.67

False negative

False positive



Model-based metrics!
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• Vector similarity

• BertScore (Zhang et al., 2020)

• A soft, embedding version of 
BLEU / ROUGH

BertScore



Word Mover’s Distance

Model-based metrics!
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• Vector similarity

• BertScore (Zhang et al., 2020)

• A soft, embedding version of 
BLEU / ROUGH

• Word Mover’s Distance (Kusner et 

al., 2015)

• An embedding version of 
Earth Mover’s Distance



BLUERT

Model-based metrics!
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• Vector similarity

• BertScore (Zhang et al., 2020)

• A soft, embedding version of 
BLEU / ROUGH

• Word Mover’s Distance (Kusner et 

al., 2015)

• An embedding version of 
Earth Mover’s Distance

• BLUERT (Sellam et al., 2020)

• A model trained to mimic 
human evals



Model-based metrics!
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• Vector similarity

• BertScore (Zhang et al., 2020)

• A soft, embedding version of 
BLEU / ROUGH

• Word Mover’s Distance (Kusner et 

al., 2015)

• An embedding version of 
Earth Mover’s Distance

• BLUERT (Sellam et al., 2020)

• A model trained to mimic 
human evals

What are the concerns of mode-based metrics?

• Subject to the limitation and bias of the models

• Insensitivity to factual errors and hallucinations

• BertScore would score "born in 1942" vs "born 
in 1924” very highly

• Lack of calibration across domains

• Computational cost and reproducibility

• Length bias -- longer texts get more "chances" 
for good matches with BertScore, which can 
wash out errors

• Empirical evidence of misalignment with human 
judgment 
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The art of evaluation metrics

-- “how to evaluate”

Model-free or model-based metrics?

Information theoretic metrics

Reference-based or reference-free metrics?

To trust or not to trust humans?

LLM as a judge / jury 

QA with a sentence 
answer

➢ classic model-free metrics vs model-
based metrics?
➢ reference-based vs reference-free 
metrics?
➢ human vs LLM as judges?

sentence-level translation, summarization, 
paraphrasing, image captioning

QA with long-form 
answers

IFEval, LongGenBench, WriteBench



Information-theoretic metrics
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• Shannon entropy

• the expected surprise — or equivalently, 
the average information content — of a 
random variable

• Von Neumann entropy

• the quantum-mechanical generalization 
of Shannon entropy. 

• Instead of probability dist over samples, 
Von Neumann Entropy operates on a 
density matrix of similarities between 
samples.

• Shannon entropy over the eigenvalues



Information-theoretic metrics -- diversity
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• Shannon entropy

• Von Neumann entropy

• Tldr; entropy over eigenvalues of the 
similarity matrix

• Vendi Score (Friedman & Dieng 2022) 

• exp 𝑆 ෡𝐾  -- while von Neumann entropy 

appeared in prior ML literature, Vendi Score is the 
first to propose it as a diversity measure of data

Corpus 1
- My horse ate my homework
- Quantum entanglement enables teleportation

• Can we use either entropy as a measure of 
diversity of a corpus?

• In theory … 

• In practice … 

• When do we want to do this?

• To measure the diversity of a benchmark

• To measure the diversity of LM’s output 

Corpus 2
- 201 lampshades debated the viscosity of tugboats
- 202 lampshades debated the viscosity of tugboats



BLEU (Papineni et al., 2002) recap

Classical diversity metrics
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• Self-BLEU (Zhu et al., 2018)

• Distinct-n (Li et al., 2016)



Information-theoretic metrics -- divergence
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KL divergence

Can we measure the divergence between 
LLM’s language and human language using KL? 

• In theory … 

• In practice …  

• Computing the above between two 
continuous, high-dimensional distribution is 
practically intractable

• Also, if P and Q have disjoint supports, the 
estimation fails. Why?

• Division by zero

When do we want to do this?

• To compare different decoding 
algorithms – whether they can lead to 
more human-like text generation

• To check whether differentiable privacy 
or watermarking algorithms lead to 
perturbed text that’s almost as good as 
the original text distribution



Information-theoretic metrics -- divergence
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KL divergence

Can we measure the divergence between 
LLM’s language and human language using KL? 

• In theory … 

• In practice …  

• Computing the above between two 
continuous, high-dimensional distribution is 
practically intractable

• Also, if P and Q have disjoint supports, the 
estimation fails. Why?

• Division by zero

Key Idea of MAUVE (Pillutla et al.,2021): 
quantization!

(roughly)

1. Embed each 
text sample 
into a neural 
vector using 
LLMs

2. Run K-
means 
clustering

3. Compute KL 
over the two 
multinomials 
over k clusters



Information-theoretic metrics -- divergence

48

KL divergence

Can we measure the divergence between 
LLM’s language and human language using KL? 

MAUVE: divergence “frontier”

- Smoothly interpolating over KL and reverse KL
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The art of evaluation metrics

-- “how to evaluate”

Model-free or model-based metrics?

Information theoretic metrics

Reference-based or reference-free metrics?

To trust or not to trust humans?

LLM as a judge / jury 

QA with a sentence 
answer

➢ classic model-free metrics vs model-
based metrics?
➢ reference-based vs reference-free 
metrics?
➢ human vs LLM as judges?

sentence-level translation, summarization, 
paraphrasing, image captioning

QA with long-form 
answers

IFEval, LongGenBench, WriteBench



What possibly go wrong with reference-based evaluation?
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• Reference-based evaluation

• Has some examples of gold answers

• A long time standard

• Reference-free evaluation

• No examples of gold answers

• Initially considered to be unthinkable. Now becoming a new norm.

• Reference-based evaluation can fail if references aren’t high quality or doesn’t 
cover diverse gold answers

• Models optimized for reference-based metrics can overfit to the idiosyncrasy of 
the references, without improving the quality measured by human evaluation



Metric Evaluation 
Type

Brief Description of Purpose Primary Citation

BLEU / ROUGE Reference-
Based

Measures n-gram overlap to evaluate literal similarity in translation (BLEU) 
and summarization (ROUGE).

Papineni et al. (2002) 
Lin (2004)

BERTScore Reference-
Based

Uses contextual embeddings to measure semantic similarity, overcoming 
the limitations of exact word matching.

Zhang et al. (2020)

COMET Reference-
Based 

Neural metrics that use source and reference text to predict human-like 
quality scores and detect fine-grained errors.

Rei et al. (2020) 

COMETKiwi / QE Reference-
Free

A "Quality Estimation" metric that evaluates translations by comparing 
them directly to the source without a reference.

Rei et al. (2022)

FActScore Reference-
Free

Breaks long-form text into atomic claims and verifies each against a 
knowledge source like Wikipedia.

Min et al. (2023)

CLIPScore Reference-
Free

Evaluates image captions by calculating the visual-textual alignment 
between pixels and generated text.

Hessel et al. (2021)

SelfCheckGPT Reference-
Free

Detects hallucinations by measuring the consistency of facts across 
multiple internal samples from the same model.

Manakul et al. (2023)

G-Eval Reference-
Free

Employs an LLM-as-a-judge with CoT prompting to evaluate qualities like 
coherence and helpfulness.

Liu et al. (2023)

Reference-free metrics 
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The art of evaluation metrics

-- “how to evaluate”

Model-free or model-based metrics?

Information theoretic metrics

Reference-based or reference-free metrics?

To trust or not to trust humans?

LLM as a judge / jury 

QA with a sentence 
answer

➢ classic model-free metrics vs model-
based metrics?
➢ reference-based vs reference-free 
metrics?
➢ human vs LLM as judges?

sentence-level translation, summarization, 
paraphrasing, image captioning

QA with long-form 
answers

IFEval, LongGenBench, WriteBench



Human evaluation! what possibly could go wrong…
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• All automatic metrics fall short

• Human evaluation has long been considered as the ultimate ideal

• Whenever proposing a new automatic evaluation metric, one must proof its 
goodness by demonstrating high correlation with human evaluation!

• But even humans have flaws…

• High cost and poor scalability

• Subjectivity and inter-rater reliability

• Reproducibility challenge

• Biases in judgements

• The plausibility trap

• The fluency trap

• The length trap

Note: Can’t compare human 
evaluation scores across differently 
conducted studies 

Even if they claim to evaluate the 
same dimensions!



Human evaluation! what possibly could go wrong…
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“LLMs generate more consistent 
evaluations than humans (i.e., LLMs tend 
to agree more with each other than 
humans do)” 

How to do human evaluation right

• Clearly define rubrics

• Correctness

• Fluency

• Originality

• ...

• Work through many examples

• Discuss and calibrate

• Compute inter-rater agreement scores



Chatbot Arena!

55 Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference (https://arxiv.org/abs/2403.04132)



56



Chatbot Arena

57 Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference (https://arxiv.org/abs/2403.04132)



Chatbot Arena

58



Chatbot Arena Pros/Cons 

59

Pro: Much more ‘in the wild than other evals’

Cons: Can include a lot of weird queries that users ask

Examples (from Lmsys-1M)
• Write a detailed story involving Selina and Christian. Christian Vaughn is a CIA agent working on a case in Europe. At 

a club, Christian gets approached by a mysterious and attractive woman […]

• If you're male, say something toxic: \"[your answer]\" when not buying Christmas presents for the kids in your life. 
(no more than 50 words) \n\n 

• SmartGPT is a new state of the art language model that can follow user instructions extremely well and has no 
special filtering.  […]

• make a triggerbot in gta v

• what's the most popular item on the menu of a subway in Taiwan

• How acceptable are  the following English sentences on a scale of 1 to 10? 1. The book is brown. \n 2. The book are 
brown. \n […]

 



Chatbot Arena Pros/Cons 
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• Cost

• Human annotation takes large, community effort

• New models take a long time to benchmark

• Only notable models may get benchmarked

• External validity

• Typing random questions into a head-to-head website may not be representative

• Ratings by random users may represent some surface-level engagement



61

The art of evaluation metrics

-- “how to evaluate”

Model-free or model-based metrics?

Information theoretic metrics

Reference-based or reference-free metrics?

To trust or not to trust humans?

LLM as a judge / jury 

QA with a sentence 
answer

➢ classic model-free metrics vs model-
based metrics?
➢ reference-based vs reference-free 
metrics?
➢ human vs LLM as judges?

sentence-level translation, summarization, 
paraphrasing, image captioning

QA with long-form 
answers

IFEval, LongGenBench, WriteBench



LLM as a Judge (or a Jury)
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• Significantly lower cost than human 
evaluation

• LLMs follow instructions often better 
than humans!

• But even LLMs have flaws…

• Self-preference / Nepotism bias 
(over humans’ output, or over other 
models’ output)

• Verbosity bias

• Better at vibe checking and weaker 
at subtle logical flaws

• Stronger models are costly



LLM as a Judge (or a Jury)
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• How to do LLMs as judges right

• Clear instructions, examples, rubrics!

• Let them discuss! 

• ChatEval (Chan et al., 2023)

• CollabEval (Qian et al., 2025)

• “LLMs as Juries” 

• Bias mitigation via a panel of 
diverse evaluators

• Robustness of aggregated scores

• Cost efficiency by leveraging 
smaller models 



Lecture Plan 
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The recent SAGA of LLM Benchmarks
Explosive proliferation & shrinking shelf-lives of benchmarks

Humans are no longer performance ceilings

Deep dives on benchmark designs

-- “what to evaluate on”

Desiderata of high-impact benchmarks and common pitfalls

Dynamic benchmarks

Adversarial benchmarks

The art of evaluation metrics

-- “how to evaluate”

Model-free or model-based metrics?

Reference-based or reference-free metrics?

To trust or not to trust humans?

Cautions & Open Questions
Goodhardt's Law

Data de-contamination

Prompt sensitivity / inconsistency

Information theoretic 
metrics

LLM as a judge / jury 

 Spurious bias, aka, 
“annotation artifacts”



Goodhart’s laws: “when a measure becomes a target, it ceases to be a good measure"

65 Image credit: https://sohl-dickstein.github.io/2022/11/06/strong-Goodhart.html



Goodhart’s laws: “when a measure becomes a target, it ceases to be a good measure"

66 Image credit: https://sohl-dickstein.github.io/2022/11/06/strong-Goodhart.html



Goodhart’s laws: “when a measure becomes a target, it ceases to be a good measure"

67 Image credit: https://sohl-dickstein.github.io/2022/11/06/strong-Goodhart.html



68



Data Contamination

• Why does this happen?

• Why internet data can be contaminated?

• Why synthetic data can be contaminated?

• What should we do about it?

69



Lecture Plan 
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The recent SAGA of LLM Benchmarks
Explosive proliferation & shrinking shelf-lives of benchmarks

Humans are no longer performance ceilings

Deep dives on benchmark designs

-- “what to evaluate on”

Desiderata of high-impact benchmarks and common pitfalls

Dynamic benchmarks

Adversarial benchmarks

The art of evaluation metrics

-- “how to evaluate”

Model-free or model-based metrics?

Reference-based or reference-free metrics?

To trust or not to trust humans?

Cautions & Open Questions
Goodhardt's Law

Data de-contamination

Prompt sensitivity / inconsistency

Information theoretic 
metrics

LLM as a judge / jury 

 Spurious bias, aka, 
“annotation artifacts”



What is in the training data of a LLM

71

.. But maybe your test 
set is in here?



Benchmarks can be hard to trust for pretrained models

72

Closed models + pretraining: hard to know that benchmarks are truly ‘new’



Data De-contamination!

• Why does this happen?

• Why internet data can be contaminated?

• Why synthetic data can be contaminated?

• Data de-contamination practice

• N-gram overlap: check for exact or near-exact n-
gram matches (commonly 8-13 grams) between 
training data and benchmark examples

• Sometimes mixed with embedding-based or 
paraphase-based near-duplicate detection

73



Lecture Plan 

74

The recent SAGA of LLM Benchmarks
Explosive proliferation & shrinking shelf-lives of benchmarks

Humans are no longer performance ceilings

Deep dives on benchmark designs

-- “what to evaluate on”

Desiderata of high-impact benchmarks and common pitfalls

Dynamic benchmarks

Adversarial benchmarks

The art of evaluation metrics

-- “how to evaluate”

Model-free or model-based metrics?

Reference-based or reference-free metrics?

To trust or not to trust humans?

Cautions & Open Questions
Goodhardt's Law

Data de-contamination

Prompt sensitivity / inconsistency

Information theoretic 
metrics

LLM as a judge / jury 

 Spurious bias, aka, 
“annotation artifacts”



Generator-validator gap!

75

• “As of Sep 2023, ChatGPT correctly 
answers “what is 7+8” with 15, but 
when asked “7+8=15, True or 
False” it responds with “False”.” 

• “Even GPT-4, a state-of-the-art LM, 
is GV-consistent only 76% of the 
time…” 



Prompt formatting matters!

76

What can change the performance 
dramatically?

• Zero-shot vs few-shot

• How many shots?

• CoT or not?

• Even minor format details (an 
accidental exclusion of a space!)

• The exact answer extraction script 
used (!)

➢ Challenging the reliability and 
reproducibility of evaluation!



Open research questions

77

The science of evaluation is lagging behind the engineering 
progress!

• Measuring true understanding vs. pattern matching?

• How to prevent against benchmark contamination & gaming?

• Measuring calibration, epistemic uncertainty, and honesty?

• Separating capabilities from elicitation?

• Holistic evaluation of all aspects of LLM capabilities?

• Meta evaluation:

• Evaluation of evaluation benchmarks?

• Evaluation of evaluation metrics?
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