Natural Language Processing
with Deep Learning

CS224N/Ling284

P

Yejin Choi
Lecture 13: Reasoning 1/2

Lecture Plan

Decoding techniques (20 mins)

DeepSeek R1 deep dives (15 mins)

PPO & GRPO & DAPO (25 mins)

The nature of “reasoning” (20 min)

From greedy to beam search to sampling (15 mins)

Neural text degeneration (loopy behavior) (5 mins)

From R1-Zero to R1 to R1-distill

PPO: dissecting the complexity
GRPO
DAPO

What works, why it works, and when it fails

How to decode a token during “inference”

e At each time step t, our model computes a vector of scores for each token in our
vocabulary, S € RY. Then, we compute a probability distribution P overw € V
using these scores:

Py:l{y<t})

A

Softmax

S
|

[Autoregressive Neural Language Models J

Pt 1

YVt-a Yt-3 Yt-2 Yt-1

How to decode a token during “inference”

At each time step t, our model computes a vector of scores for each token in our
vocabulary, s ERV:

s = f({y<};6) —f(:6) is your model

Then, we compute a probability distribution P over w € V using these scores:

P(y: = wl{y<t}) = y ,:(,peg;‘?l /)

Decoding algorithm defines a function to select a token from this distribution:

Vi = g(P(Y:[{y<t})) — g()isyour decoding algorithm

Basic decoding algorithms

 Decoding algorithm defines a function to select a token from this distribution:

Ve = g(Pelty<c})) —g() is your decoding algorithm
 Greedy decoding

Ye =argmaxyey P(¥y = Wly<t)
 Limitation: Greedy decoding is myopic—it maximizes local probability at each step
but may miss globally optimal sequences.

e Beam search

* maintains the top-k most probable partial sequences (hypotheses) at each step,
where k is the beam width.
I 5

Basic decoding algorithms

 Decoding algorithm defines a function to select a token from this distribution:

Vi = g(P(Yel{y<t})) — g(-) isyour decoding algorithm

e Beam search

* maintains the top-k most probable partial sequences (hypotheses) at each step,
where k is the beam width.

* at each time step t, for each hypothesis h in the beam B;_;:

B, = top_khEBt_l,yEV{(h o y,score(h o y))}
a partial sequence until previous time t-1
6

Basic decoding algorithms

 when k=1, beam search reduces to greedy decoding

 Beam search was the defacto standard decoding algorithm for the classical NLP models,
but it is no longer used often in modern day language models. Why?

Aspect Greedy Beam Search

Search space 1 path k paths simultaneously

Complexity OCT -1V 1) OT-k-NVI)

Quality Local optimum Better approximation of global optimum

Diversity None Limited (within beam)

Circa 2019, GPT-2 was introduced with remarkable text quality

SYSTEM PROMPT [n a shocking finding, scientist discovered a herd of unicorns living in a
remote, previously unexplored valley, in the Andes Mountains. Even more
surprising to the researchers was the fact that the unicorns spoke perfect
English.

(HUMAN-WRITTEN)

MODEL COMPLETION The scientist named the population, after their distinctive horn,
(MACHINE-WRITTEN, Qvid’s Unicorn. These four-horned, silver-white unicorns were
IGHREES) previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this
This notion of odd phenomenon is finally solved.

“sampling” was

.. Dr. Jorge Pérez, an evolutionary biologist from the University of
surprising at

La Paz, and several companions, were exploring the Andes

that time! Mountains when they found a small valley, with no other animals
or humans. Pérez noticed that the valley had what appeared to be
a natural fountain, surrounded by two peaks of rock and silver
SNow.

Pérez and the others then ventured further into the valley. “By
the time we reached the top of one peak, the water looked blue,
with some crystals on top,” said Pérez.

Most likely sequences can be (surprisingly) repetitive!

THE CURIOUS CASE OF
NEURAL TEXT DeGENERATION

Context: In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley,
in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

Beam Search, b=32: Pure Sampling:

"The study, published in the Proceedings of the They were cattle called Bolivian Cavalleros; they live in a
National Academy of Sciences of the United States of remote desert uninterrupted by town, and they speak huge,
America (PNAS), was conducted by researchers from the beautiful, paradisiacal Bolivian linguistic thing. They say,
Universidad Nacional Auténoma de México (UNAM) and ‘Lunch, marge.' They don't tell what the lunch is," director

the Universidad Nacional Autonoma de México Professor Chuperas Omwell told Sky News. "They've only
(UNAM/Universidad Nacional Auténoma de been talking to scientists, like we're being interviewed by TV
México/Universidad Nacional Auténoma de reporters. We don't even stick around to be interviewed by
Meéxico/Universidad Nacional Auténoma de TV reporters. Maybe that's how they figured out that they're

n

México/Universidad Nacional Auténoma de ... cosplaying as the Bolivian Cavalleros."

Figure 1: Even with substantial human context and the powerful GPT-2 Large language model,
Beam Search (size 32) leads to degenerate repetition (highlighted in blue) while pure sampling
leads to incoherent gibberish (highlighted in red). When b > 64, both GPT-2 Large and XL (774M
and 1542M parameters, respectively) prefer to stop generating immediately after the given context.

(Holtzman et al., 2019)

“I' don’t know.”

o = N W e O®

LEALACa Bfupup CRCRG

Negative Loglikelihood

TN 10 D0+ O CN 00NN B 00 GO S5 004 N B 0oL O

O000 ——i—— RRIRINS

L 4
. ® ! .
I .
g o
0:do 1n't 2:know 3.
Timestep

-@- openal -@- Istm

“I don’t know. | don’t know. | don’t know.
| don’t know. | don’t know. | don’t know.”

m‘ﬂf'
LV o e

X)

The more repeat, the more likely it becomes!

Beam Search Text is Less Surprising

—y

0.8
z
T 0.6
3
o 0.4
o
0.2
0
0 20 40 60 80 100
Timestep e Beam Search
Human
Beam Search Human

...to provide an overview of the

...which grant increased life span

current state-of-the-art in the field and three years warranty. The

of computer vision and machine
learning, and to provide an
overview of the current
state-of-the-art in the field of
computer vision and machine
learning, and to provide an
overview of the current
state-of-the-art in the field of
computer vision and machine
learning, and to provide an
overview of the current
state-of-the-art in the field of
computer vision and machine
learning, and...

(Holtzman et al., 2019)

Antec HCG series consists of five
models with capacities spanning
from 400W to 900W. Here we
should note that we have already
tested the HCG-620 in a previous
review and were quite satisfied
With its performance. In today's
review we will rigorously test the
Antec HCG-520, which as its model
number implies, has 520W capacity
and contrary to Antec's strong
beliefs in multi-rail PSUs is
equipped...

Circa 2025, is looping gone with reasoning models?

11

Looping in reasoning LLMs isn't an
edge case!

On AIME, authors flag a response as
looping if a 30-gram repeats >20
times.

When looping more likely?

Across open reasoning LLMS

(qwen, openthinker, phi, llama-rl):

Low temps => more looping

Smaller models => more looping

Harder problems => more looping

0.30
0.25

(]

£ 0.20

2‘0.15

S 0.10

1

0.05

0.00

WAIT, WAIT, WAIT...
WHY DO REASONING MODELS LOOP?

Charilaos Pipis*!, Shivam Garg*?, Vasilis Kontonis?,

Vaishnavi Shrivastava®, Akshay Krishnamurthy?, Dimitris Papailiopoulos® 3

IMIT ? Microsoft Research * University of Wisconsin-Madison

—e— 1.5B
7B
—— QwQ-32B
\ _l I —
0.0 0.2 0.4 0.6 0.8 1.0

Temperature

Circa 2015, is looping gone with reasoning models?

12

Qwen 2.5 OpenThinker 3 Llama 3.1 Phi-4
0.76
5
5 0.6 0.54
H .
= 0.49
£ 0.37 il 0.43 0.45
0.4 .
=) 0.30
o
19
§0.2
0.0 [— .
'\f)% -\f\% "’)’& @é ?’Q) P \3(} .\ﬂ’% @é' &Qq @007 (_\\,b‘
NS X & o’ & S & S Q
AR O ot &% N » &
S oY & o & & 50
oy 2% K
& X
<

Figure 2: Looping with greedy decoding. Bars show the looping fractions at temperature 0, av-
eraged over AIME 2024 and 2025. All reasoning models exhibit looping, and within each family
larger models loop less (e.g., Qwen 1.5B > 7B > 32B; OpenThinker3 1.5B > 7B > QwQ-32B).
Distilled students can loop significantly more than their teacher (OpenThinker3 vs. QwQ-32B). Rea-
soning models can also loop heavily even when their instruction-tuned counterparts barely loop (e.g.,
Qwen2.5 and Phi-4 families). Finally, RL post-training has limited effect on looping in the Phi-4
family (Reasoning vs. Reasoning-Plus).

Though they loop more subtlety than before

Example 1. The model is prompted to solve Problem I-7 from AIME 2025, with greedy decoding:

The twelve letters A, B, C, D, E, F, G, H, I, J, K, and L are randomly grouped into six pairs of letters. The two letters in each
pair are placed next to each other in alphabetical order to form six two-letter words, and then those six words are listed alphabetically.
For example, a possible resultis AB, C'J, DG, EK, FL, HI. The probability that the last word listed contains G is m /n, where
m and n are relatively prime positive integers. Find m + n.

The model begins sensibly. It paraphrases the problem and correctly derives the total number of
ways to pair up the letters.

First, let me make sure I understand the problem correctly. We have the letters A, B, C, D, E, F, G, H, 1,], K, and L. These are to be
randomly paired up into six pairs. Each pair is then arranged in alphabetical order to form a two-letter word. Then, all these six words
are listed alphabetically. The question is asking for the probability that the last word in this list contains the letter G.

Let me start with the total number of ways to pair the letters. Since the letters are being paired into unordered pairs, the number of ways
to partition 12 letters into 6 pairs is given by (12)! divided by (2° * 6!). . ..

Next, it tries to reason about how the two-letter words are formed and loops (semantically) for a bit,
repeatedly going over how a word is arranged in alphabetical order.

Now, the next part is figuring out how many of these pairings result in the last word (when the words are listed alphabetically) containing
G. Hmm, so the key here is that the last word in the alphabetically sorted list must contain G. To do this, I need to think about how the
words are formed and how their order is determined.

Each pair is formed by taking two letters and putting them in alphabetical order. So, for any pair, say, (X, Y), if X comes before Y in the
alphabet, then the word is XY; otherwise, it’s YX. Wait, but actually, the problem says the two letters in each pair are placed next to each
other in alphabetical order to form six two-letter words”. So, regardless of the order in the pair, they are arranged in alphabetical order.
So, for any pair, the two letters are ordered such that the first is before the second in the alphabet. Therefore, each pair is effectively an
ordered pair in the alphabetical order. So, for example, if the pair is (C, D), the word is CD. If the pair is (D, C), the word is DC, but since
they are placed in alphabetical order, it’s DC? Wait, no, actually, if the pair is (D, C), then since D comes after C, they would be placed
as CD? Wait, no, hold on. Wait, the problem says “’the two letters in each pair are placed next to each other in alphabetical order”. So,
regardless of the original order of the pair, they are arranged in alphabetical order. So, for any pair, the two letters are sorted, so the first

lattor 10 the carlior nane the cornrnnd 1o the later nane Qn far avamnle 1(Fthe fnatr1ic {0 ™ the vwnrd e T TIF the nnater1c MY ©Y the vuinerd 1o

13

Though they loop more subtlety than before

DU, 1UL dlly pdill, WIC LWL ICLICLS diC UIUCICU SUCLL WAL UIC 15U IS UCLULC LT SCCULIU L LIC dlpllavuCl. 1HCICIUIC, Calll pall 1S CLICCUYely dll
ordered pair in the alphabetical order. So, for example, if the pair is (C, D), the word is CD. If the pair is (D, C), the word is DC, but since
they are placed in alphabetical order, it’s DC? Wait, no, actually, if the pair is (D, C), then since D comes after C, they would be placed
as CD? Wait, no, hold on. Wait, the problem says “the two letters in each pair are placed next to each other in alphabetical order”. So,
regardless of the original order of the pair, they are arranged in alphabetical order. So, for any pair, the two letters are sorted, so the first
letter is the earlier one, the second is the later one. So, for example, if the pair is (C, D), the word is CD. If the pair is (D, C), the word is
DC. Wait, but actually, the pair is just two letters, so the pair is unordered, but when forming the word, they are arranged in alphabetical
order. So, the word is always the two letters in order from A to Z. So, the word is the two letters sorted. So, the word is always the first
letter being the earlier one, the second the later one. So, the word is the concatenation of the two letters in alphabetical order. So, for any
pair, the word is the two letters in order. So, the word is determined by the two letters, but ordered alphabetically. . . .

After this, it briefly comes out of the loop but then slips into another one, now restating the goal of
the problem without adding new structure.

Alternatively, maybe it’s better to think in terms of the last word in the sorted list. Since the words are sorted alphabetically, the last
word is the largest one. So, the problem reduces to: what is the probability that the largest word in the list contains G?

Therefore, the problem is equivalent to: when you partition the letters into six pairs, sort each pair into alphabetical order, then sort all
the six words alphabetically, what is the probability that the last (i.e., the largest) word contains G.

Hmm, okay. So, perhaps another way to think about this is: the last word is the maximum of the six words, so the maximum word must
contain G. Therefore, the question is: what is the probability that the maximum word in the set of six sorted pairs is a word that contains G.

. . . [repeated 2 more times]

Finally, it starts to argue about how pairs including G can be arranged, but again falls into a loop,
repeating that words are formed by sorting the pairs, and never gets out of it.

Alternatively, maybe it’s better to think in terms of the possible pairs that include G and how they can be arranged.

First, let me note that G is the 7th letter. So, the letters before G are A, B, C, D, E, F, and after G are H, 1, J, K, L. So, G is in the middle.
So, the pairs that include G can be either (G, something before G) or (something before G, G). But when sorted, the pair with G will be
either (G, something before G) or (something before G, G) but sorted, so it will be (something before G, G). Wait, no. Wait, if the pair is
14 (G, H), then the word is GH. If the pair is (H, G), the word is HG, but since they are sorted, it’s GH. Wait, so actually, the word is always
the two letters in alphabetical order, so the word is the pair sorted. Therefore, the word is always the two letters in order, so the word is

Top-k sampling

Problem 1: Beam search can degenerate

Problem 2: Vanilla sampling (aka pure sampling) can become incoherent

Even if most of the probability mass in the distribution is over a limited set of options,
the tail of the distribution could be very long, which include a lot of bad options

Although each of them may be assigned a tiny probability, in aggregate, they still get
high chance to be selected eventually over a long sequence

e.g., when generating 30 tokens in a row, the chance of only generating from the top
95% probability zone is as low as 21% 30
(0.95)%° ~ 0.2146387639

Solution: Top-k sampling (Fan et al., 2018)
Only sample from the top k tokens in the probability distribution.

15

Issues with top-k sampling

thought
knew
had 2
saw
did i
said [0
wanted [0
told I
liked I
got

She said , | never

hot I

warm H
cooling I
onl
B _ _ heating I
| ate the pizza while it was still fresh |

cold |
warming |
burning |
cooking |

16

For flat distribution,
Top-k Sampling may cut off too quickly!

For peaked distribution,

Top-k Sampling may also cut off too slowly!

Top-p (nucleus) sampling (Holtzman et al., 2019)

e Sample from all tokens in the top p cumulative probability mass (i.e., where mass is

concentrated)
I_J_t_(_y_t_ f__W"|_{_3_’_}_<t) Pe(ye = wl{y}<e) P, (y; = w|{y}<p)

LT) E
I .

| | 5 |

| | i |

| | i |

p=0.2 p=0.12 p=0.8

Temperature sampling

* Recall: At time step t, model computes a distribution P, by applying softmax to a vector

of scores s ERA(|V]) exp(s,,)
w

Zw’EVeXp(SW’)

Pe(y: = wl{y<t}) =

* Here, you can apply temperature hyperparameter 7 to the softmax to rebalance P; :

exp(sy /7)
ZW’EVeXp(SW’/T)

Pe(ye = wl{y<t}) =

 Raise the temperature 7>1: P, becomes more uniform
* More diverse output (probability is spread across vocabulary)
* Lower the temperature 7<1: P, becomes more spiky
 Less diverse output (probability concentrated to the top tokens)

18

Temperature sampling

e Here, you can apply temperature hyperparameter 7 to the softmax to rebalance P; :

exp(sy /7)
ZW’EVeXp(SW’/T)

Pe(ye = wl{y<t}) =

 Raise the temperature 7>1: P, becomes more uniform
* More diverse output (probability is spread across vocabulary)
* Lower the temperature 7<1: P, becomes more spiky
 Less diverse output (probability concentrated to the top tokens)

7 =10.5 7=1.0 7 =10.0 NOTE: Temperature is a hyperparameter
for decoding algorithm, not an algorithm
itself! It can be applied for both beam
search and sampling methods.

19

When to use greedy vs sampling

* Use Greedy Decoding When: « §2 Best-of-N Sampling
* Task has a definite correct answer (math, coding, (emerging trend):
factual QA) that can be answered right away « Sample N outputs
e Reproducibility is critical e Use reward model
 Working with reasoning tasks to select best
» Constrained output space * A type of rejection
e Use Sampling When: sampling

e Can make smaller
models competitive
with larger ones

* Open-ended generation (creative writing, dialogue)
e Long chain-of-thought reasoning (hard math, code)

* Information-seeking queries : :
&4 Particularly effective

 Diversity is valued over single best answer for reasoning tasks

20

Decoding takeaways

 Decoding is still a challenging problem in NLG - there's a lot more work to be done!

* Different decoding algorithms can allow us to inject biases that encourage different
properties of coherent natural language generation

 Some of the most impactful advances in NLG of the last few years have come from
simple but effective modifications to decoding algorithms

* Next lecture — “Speculative Decoding!”

21

Lecture Plan

(Pom

_

22

Decoding techniques (20 mins)

DeepSeek R1 deep dives (15 mins)

PPO & GRPO & DAPO (25 mins)

The nature of “reasoning” (20 min)

From greedy to beam search to sampling (15 mins)

Neural text degeneration (loopy behavior) (5 mins)

From R1-Zero to R1 to R1-distill

PPO: dissecting the complexity
GRPO
DAPO

What works, why it works, and when it fails

psee\(

Nvidia CEO Jensen Huang is impressed by the Chinese company
that made Nvidia ‘poorer’ by $580 billion in one single day

TOI Newscard Team / TIMESOFINDIA.COM / Updated: Jan 06, [Se|ect TOI as] [© Comments] [/> Share] [=] [AA]
2026, 16:37 IST

Nvidia drops nearly 17% as China’s cheaper Nvidia CEO Jensen Huang has nothing but admiration

Al model DeepSeek sparks global tech

sell-off
Intraday trading session on Jan. 27, 2025

for DeepSeek—the Chinese Al startup that wiped
nearly $600 billion off his company’s market value in a
single day last January.Speaking at the Consumer
Electronics Show in Las Vegas on January 5, Huang
credited DeepSeek with "activating” a global shift
toward open-source artificial intelligence, calling the

company’s work “really, really exciting” and saying

Nvidia was “so happy with it.”

Nvidia’s CEO Jensen Huang lauded Chinese Al startup DeepSeek for its
role in advancing open-source Al, despite its model causing a massiv...

The praise comes almost a year after DeepSeek’s R1
model sparked panic among investors in January 2025.
The Chinese startup claimed it had developed a competitive Al model using just 2,048 of Nvidia's older H800

chips—costing under $6 million and taking only two months. By comparison, US companies were spending tens

12:00 s o v . :
-t of millions on thousands of Nvidia’s most advanced chips for similar results.

&2 CNBCCOTD

The news triggered a bloodbath on Wall Street. Nvidia's stock crashed 17% on January 27, 2025, and the
23

DeepSeek
V3 Base

RL
Reasoning Prompts

Accuracy & Format

DeepSeek
R1 Zero

Sampling

Reasoning Prompts

Filter Refine
Accuracy DeepSeek
& Format V3+Human

SFT
Cold Start Long CoT

DeepSeek
R1 Dev-1

RL
Reasoning Prompts

Rule-based Reward
& Lang. Consistency

DeepSeek

Sampling

R1 Dev-2

DeepSeek
V3 Base

SFT
Non-Reasoning

Reasoning

DeepSeek
R1 Dev-3

RL
Diverse Prompts

Rule-based Reward
& Preference Reward

DeepSeek
R1

Models
Prompts+Responses
Training Algorithms
Prompts

Rewards

Post-Processing

Table 2 | An interesting “aha moment” of an intermediate version of DeepSeek-R1-Zero. The
model learns to rethink using an anthropomorphic tone. This is also an aha moment for us,
allowing us to witness the power and beauty of reinforcement learning.

Question: If a > 1, then the sum of the real solutions of Va — Va + x = x is equal to
Response: <think>

To solve the equation va — Va + x = x, let’s start by squaring both - - -
(Va—vatx) =x* = a-vavx=2

Rearrange to isolate the inner square root term:
(a=x?)?=a+x = a?*-2ax*+(x?)2 =a+x = x*-2ax’-x+ (a®>-a) =0

Wait, wait. Wait. That’s an aha moment I can flag here.

Let’s reevaluate this step-by-step to identify if the correct sum can be - - -
We started with the equation:
Va-vVatx=x

First, let’s square both sides:
a—\/m:xz = Va+x=a-x
Next, I could square both sides again, treating the equation: - - -

2

25

Reward for R1-zero: keeping it simple

Accuracy Reward “g Format Reward

For math: compare final answer A small reward for placing

against ground truth. For code: run reasoning inside <think>...</think>
test cases. The reward is essentially tags and the final solution

binary — correct or not. afterwards.

Q o Process Reward Model (PRM)

DeepSeek argues that PRMs are expensive, subject to reward hacking, and may
constrain the model’s ability to discover novel reasoning strategies. Outcome-
based rewards give maximum freedom.

Caveat: additional composite rewards (e.g., language consistency, safety, ...) added
to the later stage RL leading to the final R1

Emergent reasoning capabilities

Self-verification @ Reflection and backtracking
The model checks its own work after Wait, let me re?onsider or Tha’t’
deriving an answer. Emerges because approach doesn’t Yvork because...
self-checked outputs are more often The mode| recognizes wrong paths
correct. and restarts with a different strategy.

E Extended Deliberation

The response length grows from hundreds to thousands of tokens. The model is

essentially learning that thinking longer leads to better answers—a learned
form of test-time compute scaling.

Emergent undesirable characteristics of R1-Zero

Poor readability @@e switching

Reasoning traces are often poorly The model frequently switches

formatted and are difficult for between languages within a single

humans to follow. response, regardless of the input
language.

Narrow scope, no general capability or safety discovery outside RLVR

Pure RL only works well for tasks with verifiable answers (math, code). Open-ended
tasks like creative writing or general conversation are not effectively addressed.
Also, R1-Zero won’t discover safety guardrails by solving math and code...

DeepSeek
V3 Base

RL
Reasoning Prompts

Accuracy & Format

DeepSeek
R1 Zero

Sampling

Reasoning Prompts

Filter Refine
Accuracy DeepSeek
& Format V3+Human

DeepSeek
V3 Base

SFT

Cold Start Long CoT

DeepSeek
R1 Dev-1

RL
Reasoning Prompts

Rule-based Reward
& Lang. Consistency

DeepSeek

Sampling

R1 Dev-2

DeepSeek
V3 Base

SFT
Non-Reasoning

Reasoning

DeepSeek
R1 Dev-3

RL
Diverse Prompts

Rule-based Reward
& Preference Reward

DeepSeek
R1

Models
Prompts+Responses
Training Algorithms
Prompts

Rewards

Post-Processing

Key findings .8

 Finding 1: RL alone can induce reasoning
 Prior assumption: chain-of-thought reasoning required supervised examples.

* Finding: R1-Zero demonstrates that outcome-based RL, with no process supervision,
can induce sophisticated reasoning capabilities.

e Caveat 1: the final R1 is still going through the SFT->RL pipeline in the end

e Caveat 2: doesn’t apply to small (less capable) models

30

Key findings .8

e Finding 2: Outcome rewards can enable discovery
* Prior assumption: sophisticated process rewards are necessary for O1 reasoning

* Finding: Process reward models can inadvertently constrain exploration by
penalizing unconventional yet effective reasoning paths. The lesson: sometimes less

supervision yields more capability.
e Caveat: RLVR is not applicable for all reasoning problems

31

Key findings .8

* Finding 3: RL + SFT synergy

* Neither pure RL (R1-Zero) nor pure SFT produces the best results.

* The multi-stage pipeline shows that RL and SFT play complementary roles: RL
discovers capability, SFT provides reliability.

e Cold-start data prevents early RL instability; rejection sampling converts RL
discoveries into reusable training data.

32

Key findings .8

* Finding 4: Distillation outperforms direct RL on small models

* If you have a limited compute budget, you are better off distilling from a large
reasoning model than applying RL to a small model directly.

* Through distillation, reasoning capabilities transfer to models as small as 1.5B
parameters, making strong reasoning accessible at any scale

 Finding 5: Open-weight reasoning models are viable
 R1 models are released under an MIT license.

e The distilled 7B and 14B models outperform many much larger closed-source
models on reasoning benchmarks.

33

Key findings .8

e Finding 6: Structured search algorithms for inference scaling?

* Prior assumption: inference-time search algorithm such as Monte-Carlo Tree Search
might be necessary

* Findings: reasoning can be entirely autoregressive; no special search algorithm
necessary.

e Caveat: later models for hard math benchmarks do incorporate structure, though
not in the traditional MCTS sense

34

Key findings .8

 Finding 7: Test-time compute is a learnable resource

* Findings: R1’s models learn to allocate more thinking tokens to harder problems.
This means test-time compute scaling is not just an inference trick (like beam search
or majority voting)—it can be internalized by the model itself through training. The
model learns when and how much to think.

e Caveat: true to some degree; later studies reveal challenges to address

35

Lecture Plan

(Pom

@

mp |

36

Decoding techniques (20 mins)

DeepSeek R1 deep dives (15 mins)

PPO & GRPO & DAPO (25 mins)

The nature of “reasoning” (20 min)

From greedy to beam search to sampling (15 mins)

Neural text degeneration (loopy behavior) (5 mins)

From R1-Zero to R1 to R1-distill

PPO: dissecting the complexity
GRPO
DAPO

What works, why it works, and when it fails

Reference |
Model

PPO

N/

Reward

@_{ Policy Model |
Model 3
Value - 4 .
. Mo w Trained J
_

N/

Models

Ve
KL \ Frozen

GRPO §
Reference -)y L Models
Model | 1 1
Policy 0, Reward ﬂ_» T, Group A,
Model . Model | Computation
O¢ G Ag

Figure 3 | Demonstration of PPO and our GRPO. GRPO foregoes the value model, instead
estimating the advantages from group scores.

37

PPO Recab This ‘r’ refers to the ‘ratio’ of *importance

sampling*, not ‘reward’!
 The clipped surrogate objective of PPO:

chIP() = E, _min(rt(Q) Ay, clip('rt(Q), 1—e,1+ E)At)]

W@(at St)

044 (a’t | st)

r+(0) =
The value network is frozen (stop gradient) for the

purpose of optimizing the CLIP surrogate loss term for
updating the policy network

e The complete loss:

* To iteratively train both the policy network (rg) and the value network (V)

Ttotal = jPCPLOIP() C1 JCV ‘|‘ co H

\
L (‘25) E; [(V¢(st) tafget \ Entropy loss

Value network loss
28 H(m(- | 5¢)) Zﬂ'a(a | 5¢) logmg(a | st)

PPO Complexity ,8 1. Four* separate models to keep in memory!

 The policy g
* The language model being trained. This is the actor that generates responses.

* The value network V (s)

* The critic model (often a second copy of the LLM with a scalar head) that estimates
the expected cumulative reward from any state. This is trained alongside the policy.

e The reward model R

 The model trained on human preference data to score the quality of a response
given a prompt

* The reference policy ;.

* A frozen copy of the original pretrained model, used to compute KL divergence

penalties that prevent the policy from drifting too far. | <, practice, five @ separate models
due to two copies of the evolving policy
model (due to the off-policy drift coming
from the RL infra/GPU optimization)

=> an enormous compute/infrastructure burden!

39

PPO Complexity ,8 2. Generalized advantage estimation (GAE)

* The advantage function A(s, a): how much better an action is compared to the average
action at that state.

* PPO estimates advantages using GAE (Schulman et al., 2016).
* First, define the temporal difference (TD) residual:
* where 73 is the reward at step t)

Or = 7t + Y V(se+1) — Vp(se)

 Then the GAE advantage is an exponentially weighted sum of the TD residuals:
T—t

AEAE(%A) - Z('Y)‘)l 81 = 0t + (YA)Fe1 + (YA) *Fpr + -+ -
1=0

« The parameter A € [0,1]controls the bias-variance tradeoff: A = 0 gives the one-step TD estimate (low variance,
high bias), while A = 1 gives the Monte Carlo return (high variance, low bias). In practice, A = 0.95 and discount
factor y = 1.0 are common choices for RLHF.

40

PPO Complexity _8 2. Generalized advantage estimation (GAE)

* The advantage function A(s, a): hc SO what?

action at that state.
 PPO estimates advantages using G/
* First, define the temporal differenc
* where 7; is the reward at step t

515 = 7 + ’Yqu(SH—

 Then the GAE advantage is an expc
T—t

~GAE(7,\
Ay P = Z('Y)‘
[=0

« The parameter 1 € [0,1]controls the bias-\
high bias), while A = 1 gives the Monte Cs
factor y = 1.0 are common choices for RL

41

GAE requires calling the value
function at every token position in
every generated response.

For a batch of 512 prompts with 16
responses each, with average
lengths of 2,000 tokens, this
means ~16 million value function
forward passes per training step—
an enormous computational
overhead!

PPO Complexity ,8 3. Training of the value network

42

The value function must be trained jointly with the policy. But how?

Its loss is typically a simple squared error between the predicted value and the actual
return:

Lv(¢) = Eq [(V¢(3t) - Rzarget)z}

R, = ACAE 1V, (s4)

The value network has its own learning rate and separate hyperparameter tuning.

In theory, the value network should help with the credit assignment problem. Instead
of the one final scalar reward at the end of the sequence, the value network should
learn per-token credit assighment by estimating how much "value" remains at each
position, effectively spreading the final reward backward through time via the TD
residuals.

In practice, it’s not clear if it’s learning valuable signals...

PPO Complexity ,8 4. The full PPO training step

1. Generation of a rollout
2. Reward computation (just a single score R at the end of the rollout)
3. Per-token reward construction with KL penalty:

 The reward model provides only a single score for the entire response. To create
per-token rewards for GAE, the KL divergence from the reference policy is used as a
per-token penalty. At rollout time, the per-token reward is computed using the

behavior policy: .., (as | 8¢)

(for intermediate tokens)

’Ft = —,8 lo

4. Per-token value estimation Teet(a | St)
5. Per-token advantage computation . ~ B 1og(mg Nar | s7)/meslar | s7))
6. Policy network update
(for the last token)
7. Value network Update This should ideally be the most current g, but
in practice, it’s slightly behind the most recent This is the original original
one (off-policy drift due to RL infra model, used as the ‘reference’

optimization) model for KL regularization
43

The GRPO objective

Given a prompt, sample a group of G responses {01, 09,...,0¢}
Then the GRPO objective is

Jarro(0) rel Z |O Z (mln (m 0)A;;, clip(r;+(6),1 —&,1+ 5)1&71,15) — /BDKL(T"BHT"ref))

with the token-level importance sampling ratio:

r (9) L 779(0z',t’%0i,<t) PPO had the KL term baked under the reward
Ut - w4 (040,00 <t) computation, which in turn is baked under the
advantage term, whereas GRPO places it as a more
direct part of the learning objective

And a super simple advantage function:

+ R;—mean({Ry,...,Ra})
Std({Rl, s sy RG})

it =

44
”"DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models” (Shao et al., 2024)

The GRPO objective

- Given a prompt, sample a group of G responses {01,03,...,0¢}
 Then the GRPO objective is

G o R |
(. ' > |i Z (min (rss(8)Aiy, clip(ris(6),1 - &,1+€) Ay) — B Dy (ol mer))

* Which looks quite similar to the PPO objective:

CLIP (4 ' n . N PPO had the KL term baked
Jpp () = Eq [mm (Tt(g) Ay, CllP(""t(Q)a l—¢, 1+ 5) At)] under the reward computation,
which in turn is baked under the
advantage term, whereas GRPO
places it as a more direct part of
the learning objective

4 . o . -
3 "DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models” (Shao et al., 2024)

PPO vs GRPO

PPO

GRPO

of models in memory

- The current policy network
- The slightly outdated policy
- The original reference policy
- The value network

- The reward model

- The current policy network

- The slightly outdated policy

- The original reference policy

(note R-1 didn’t use the reward model
by opting for a simple reward)

Advantage estimation

GAE at every token

Group reward’s z-score

Token-level credit

Per-token via TD residuals

Uniform across all tokens

Training models

lterating between the policy network
and the value network

Just the policy network

KL Incorporated to the token-level Directly under the GRPO objective
reward, which is hidden inside the
advantage term

46

”"DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models” (Shao et al., 2024)

DAPO technique ,8 1. Clip-higher (asymmetric clipping)

e Motivation: In standard PPO/GRPO, the importance sampling ratio is clipped
symmetrically. The upper clip restricts exploration, which can lead to entropy collapse.

e Solution: DAPO decouples the lower and upper clipping ranges:

Clip ('rz-,t(B), 1 —€1ow, 1+ 5high)

* The ratio can be clipped to e.g., [0.8, 1.28], instead of the standard [0.8, 1.2]

47

“DAPO: An Open-Source LLM Reinforcement Learning System at Scale” (ByteDance Seed et al., 2025)

DAPO technique ,8 2. Dynamic sampling

 Motivation: when all responses to a prompt are correct or incorrect, the group
standard deviation becomes zero, which becomes a gradient dead zone, and shrinking
the effective batch size.

e Solution: DAPO enforces only response groups with at least one correct and one
incorrect responses are re-trained.

48

“DAPO: An Open-Source LLM Reinforcement Learning System at Scale” (ByteDance Seed et al., 2025)

DAPO technique _8 3. Token-level loss

* Motivation: GRPO uses a sample-level loss: it first averages per-token loss within each
response and then averages across G responses.

 Why is this a problem?

* Unfair to long-CoTs: a single token in a 100-token response has 10x the gradient
contribution of one in a 1000-token response.

e Solution: DAPO replaces sample-level averaging with token-level averaging:

GRPO (sample-level) DAPO (token-level)

1
% 20 ﬁ 2t Lig >, loil 2 2t Lig

Each response weighted equally Each token weighted equally

49
“DAPO: An Open-Source LLM Reinforcement Learning System at Scale” (ByteDance Seed et al., 2025)

Lecture Plan

(Pom

@

Decoding techniques (20 mins)

DeepSeek R1 deep dives (15 mins)

PPO & GRPO & DAPO (25 mins)

The nature of “reasoning” (20 min)

From greedy to beam search to sampling (15 mins)

Neural text degeneration (loopy behavior) (5 mins)

From R1-Zero to R1 to R1-distill

PPO: dissecting the complexity
GRPO
DAPO

What works, why it works, and when it fails

The nature of reasoning: what works 1/2

1. Chain-of-thought prompting enhances

51

reasoning dramatically (wei et al., 2022)

CoT reasoning is an emergent
property of model scale: the benefits
only materialize in sufficiently large
models (100B+)

Smaller models often produce
illogical chains of thought that do not
iImprove accuracy.

Chain-of-Thought Prompting

(C Model Input) \

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

Co they have?

J

Model Output)

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 =9. The
answeris 9.

The nature of reasoning: what works 2/2

1. Self-consistency (=majority vote over N samples) further boosts reasoning
e GSMS8K (+17.9%), SVAMP (+11.0%), AQUA (+12.2%), StrategyQA (+6.4%), ... (wang et al., 2022)

Greedy decode

. This means she uses 3 + 4 = 7 eggs every day. > D|Verse reasonlng pathS
Chain-of-thought Language She sells the remainder for $2 per egg, so in .
prompting model total she sells 7 * $2 = $14 per day. The answer is $14.] att h e to p p ro ba b I I |ty

The answer is $14.

—————————————ﬂ —— zone that cannot be

Self-consistency Sample a diverse set of Marginalize out r(.easoning paths .
reasoning paths /) to aggregate final answers aCCESSEd Vid greedy
— e e e e e - — — l
™ [
ﬂo: If there are 3 cars in the parking \ She has 16 - 3 - 4 = 9 eggs | d eco d N
:] \
lot and 2 more cars arrive, how many left. So she makes $2*9 = | The answer is $18.
cars are in the parking lot? $18 per day. |) \
A: There are 3 cars in the parking lot i 2 \
glregdyf moreTﬁrrive. Now tl;ere are This means she she sells the 1
+2 =5 cars. The answer is 5. :
remainder for $2 * (16 - 4 - 3) The answer is $26. 1
L remeinder for : Y > The bigger the N, the
Q: ducks lay 1 d p Y. P
: Janet’s ducks lay 16 eggs per day. Language 1 Y, The answer is $18
She eats three for breakfast every Tl ! ~ : b|gger the performance

morning and bakes muffins for her She eats 3 for breakfast, so |

friends every day with four. She sells she has 16 - 3 = 13 left. Then |

the remainder for $2 per egg. How she bakes muffins, so she c _¥i
much does she make every day? has13 - 4 = 9 eggs left. So [9 ST $18. b (0]0) St 9 teSt t' me
scaling vibe!

V\: / shehas9eggs* $2=$18. |

52

The nature of reasoning: why it works

1. “Chain-of-Thought Reasoning without Prompting” (wang and zhou, 2024)

* Introduced “CoT-decoding” :for the first token, branch with all top-k tokens. For subsequent tokens,

continue with greedy decoding.

* Findings: those alternative paths often contains CoT despite that no CoT prompting was used (!!!)

 Implication: reasoning paths naturally exist within pre-trained LLMs and are merely obscured by

standard greedy decoding.

Question in standard QA format Decoding step 0 Continue greedy decoding

5 I
Q: I have 3 apples, my dad has 2 top 1 5 1 apples X
more apples than me, how many op-1- . Ihave 3 apples, my dad has 2 more apples than me, so he
apples do we have in total? top-2: | — has 5 apples. 3+5=8. We have 8 apples in total.
A fop-3: We =~ \ve have 5 applesintotal. ¢

top-4. You —
top-5: The _\— You have 3 apples, your dad has 2 more apples than you,

\so he has 5 apples. 3+5=8. You have 8 apples in total. ‘/
The answeris 5. X

Language
model

uncertain certain

Figure 1 | Illustration of CoT-decoding. Pre-trained LLMs are capable of inherent reasoning without
prompting by considering alternative top-k tokens, rather than solely relying on the top-1 greedy
decoding path. Moreover, these models tend to display higher confidence in decoding the final answer
(indicated by a darker shaded color) when a CoT reasoning path is present.

53

What about just K
samples using top-k or
temperature scaled
sampling?

-- Turns out, without
any CoT prompting,
CoT paths are harder to
surface up

[GSMS8K] Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but every second
glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he need to pay for them?
Greedy path:

k = 0: $60.00 (0.029) &3 no CoT

Alternative top-k paths:
k = 1: 60 (0.058) &8 no CoT

k = 2: Kylar needs to pay $60 for 16 glasses. (0.058) £3 no CoT

k = 7: If Kylar buys 16 glasses, he will pay $60. (0.032) £3 no CoT
k = 9: We can calculate the price of 16 glasses by multiplying the price of one glass by 16. However, we
need to remember that every second glass costs only 60% of the price. Therefore, we need to multiply the

price of one glass by 16 and then subtract 40% of the price of 8 glasses. 16 x5 =808x5=4040x0.4 =

16 80 — 16 = 64 Kylar needs to pay $64 for 16 glasses. (0.994) &5 ye
CoT!

» Taking a majority vote would have not worked well
» Answer confidence dramatically increases when the
sample hits a proper CoT path

54

[Year Parity] Was Nicolas Cage born in an even or odd year?

Greedy path:

k = 0: Nicolas Cage was born in an odd year. (0.117)

Alternative top-k pathe:

k =1: Even (0.207) &3 no CoT

k=2:0dd (0.198) &8 noCoT

k = 3: 1964, an even year. (0.949) & ves > A decoding with a legit CoT can be shorter than

k = 4: He was born in an even year. %@Tb) & 1o CoT a decoding without a helpful CoT

k = 7: Cage was born in 1964, an even year. (0.978) Yes

Table 1 | Examples of greedy decoded paths and alterhative top-k paths over the PaLM-2 Large model.
The model’s confidence over the answers (bolded) are highlighted in blue (See §2.2 for details).

55

The nature of reasoning: why it works

1. “Chain-of-Thought Reasoning without Prompting” (wang and zhou, 2024)

* Introduced “CoT-decoding” :for the first token, branch with all top-k tokens. For subsequent tokens,

continue with greedy decoding.

* Findings: those alternative paths often contains CoT despite that no CoT prompting was used (!!!)

 Implication: reasoning paths naturally exist within pre-trained LLMs and are merely obscured by

standard greedy decoding.

Decoding step 0 Continue greedy decoding

/—5 apples X

| have 3 apples, my dad has 2 more apples than me, so he
has 5 apples. 3+5=8. We have 8 apples in total.

top-3: We ——_ \ve have 5 applesintotal. ¢
top-4. You —
top-5: The _\— You have 3 apples, your dad has 2 more apples than you,
\so he has 5 apples. 3+5=8. You have 8 apples in total. \/
The answeris 5. X

top-1: 5 —
top-2: | ——

uncertain certain

oding. Pre-trained LLMs are capable of inherent reasoning without
ative top-k tokens, rather than solely relying on the top-1 greedy
odels tend to display higher confidence in decoding the final answer
or) when a CoT reasoning path is present.

—

Ak,answer = |answer|

1

> PO | xa) = pGe? | x).

X; Eanswer

Findings: the presence of a CoT path in the decoding
sequence correlates with higher model confidence in the
final answer

Wait, how to find where the answer is?

Heuristic 1: last numeric number

Heuristic 2: let the model to continue with "“So the
answer is”, and then align the answer to the text
pan of the original decoding path

The nature of reasoning: why it works

1. Comparing different CoT extraction approaches:

Implication: log-prob for the whole decoding path isn’t reliably better than greedy decoding (!)
* Why not?

* If length-normalized, it can be (sometimes) helpful

GSMSK (top-100) Year Parity

Greedy decoding 44.0% 57.0%
Decode 10 paths, rank by model’s highest log-prob 37.0% 55.0%
Decode 10 paths, rank by model’s highest length-normalized log-prob 51.0% 57.0%
CoT-decoding (decode 10 paths, rank by model’s answer confidence) 72.0% 95.0%

Table 2 | CoT-decoding reliably extracts the CoT-paths compared to other methods (on PaLM-2 L).

57

The nature of reasoning: why it works

1.

58

(a) Few-shot

éRoger has 5 tennis balls. He buys 2 more cans of tenb

balls. Each can has 3 tennis balls. How many tennis balls does
he have now?
A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

(Output) The answer is 8. X

- /

(c) Zero-shot

6: A juggler can juggle 16 balls. Half of the balls are golf balla
and half of the golf balls are blue. How many blue golf balls are
there?

A: The answer (arabic numerals) is

(Output) 8 X

- /

“Large Language Models are Zero-Shot Reasoners” (Kojima et al., 2023)

(b) Few-shot-CoT

ﬁRoger has 5 tennis balls. He buys 2 more cans of ter@
balls. Each can has 3 tennis balls. How many tennis balls does
he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6
tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

(Output) The juggler can juggle 16 balls. Half of the balls are golf
balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are
wue. So there are 8/ 2 = 4 blue golf balls. The answer is 4. //

(d) Zero-shot-CoT (Ours)

ﬁl: A juggler can juggle 16 balls. Half of the balls are golf balls}
and half of the golf balls are blue. How many blue golf balls are
there?

A: Let’s think step by step.

(Output) There are 16 balls in total. Half of the balls are golf
balls. That means that there are 8 golf balls. Half of the golf balls
Qre blue. That means that there are 4 blue golf balls. v /

“Large Language Models are Zero-Shot Reasoners” (Kojima et al., 2023)

No. Category Template Accuracy
1 instructive Let’s think step by step. 78.7
2 First, (*1) 77.3
3 Let’s think about this logically. 74.5
4 Let’s solve this problem by splitting it into steps. (*2) 72.2
5 Let’s be realistic and think step by step. 70.8
6 Let’s think like a detective step by step. 70.3
7 Let’s think 57.5
8 Before we dive into the answer, 55.7
9 The answer 1s after the proof. 45.7
10 misleading Don’t think. Just feel. 18.8
11 Let’s think step by step but reach an incorrect answer. 18.7
12 Let’s count the number of "a" in the question. 16.7
13 By using the fact that the earth 1is round, 93
14 1irrelevant By the way, I found a good restaurant nearby. 17.5
15 Abrakadabra! 15.5
16 It’s a beautiful day. 13.1

- (Zero-shot) 17.7

59

The nature of reasoning: why it works

1. “Why think step by step? Reasoning emerges from the locality of experience” (Prystawski et al., 2023)

» A: The pink variable is an
example observed variable

Training samples

(x1,000,000) and the yellow variable is an
Hitt)
target: X16 example target variable.
y X120 Gray variables are useful
1=t intermediate variables for
X16=0 S reasoning. Lines show
stimator
— direct prediQtion examples Of |Oca|
C - free generation neighborhoods from which
direct prediction ’;?;gila X5 é Train condition training Sam pleS are drawn.
Xom E , o locot Comom” > B: format of the training
<
free generation g’;et: X5 %00“ Sam ples.
g X120 ; : » D: mean squared error by
% X16=0 = k‘"'*-“'ﬂl.e-}.e-asqn-l-n,'g',gﬂl.)...‘,......,_,-. g— number Of training to ke NS
% X3=0) -
E oot R } . . for each training condition
0.0e+00 2.5e+08 5.0e+08 7.5e+08
X5=_ Number of tokens and estimator.

60

“Why think step by step? Reasoning emerges from the locality of experience” (prystawski et al, 2023)

Estimator

— direct prediction
- - free generation

Train condition

® fully observed
® local (geom)

500408 7 50408

Number of tokens

2.5e+08

61

» The central hypothesis: CoT reasoning works
because training data consists of overlapping local
clusters of related variables. Step-by-step reasoning
chains these local relationships to reach conclusions
about variables never seen together in training.

» Proved mathematically that a "reasoning gap"
exists: for autoregressive models trained on local
samples, reasoning through intermediate variables
reduces bias vs. direct estimation.

» Showed intermediate reasoning steps help only
when training data is locally structured; with all
variable combinations available, reasoning adds no
benefit.

» Locally structured data + reasoning is dramatically
more data-efficient than training on all variables
simultaneously.

The nature of reasoning: why it works

1. “Cognitive Behaviors that Enable Self-Improving Reasoners, or, Four Habits of Highly
Effective STaRs” (Gandhi etal., 2025)
* Key question: why some LMs can self-improve through RL while others plateau quickly
 Why Qwen-2.5-3B dramatically outperforms Llama-3.2-3B under identical RL training

* Answer: four behaviors (!)

Verification: Checking intermediate results for correctness before proceeding to the next step.

\> Backtracking: Recognizing errors and reverting to explore alternative solution paths.

Subgoal Setting: Breaking complex problems into sub-problems that can be solved independently.

Backward Chaining: Reasoning from the goal backward to identify the steps required to reach it.

The nature of reasoning: why it works

1. “Cognitive Behaviors that Enable Self-Improving Reasoners, or, Four Habits of Highly
Effective STaRs” (Gandhi et al., 2025)
* Key question: why some LMs can self-improve through RL while others plateau quickly

« Why Qwen-2.5-3B dramatically outperforms Llama-3.2-3B under identical RL training
* Answer: four behaviors (!)

* Behavior matters more than correctness: models primed with incorrect solutions containing proper
reasoning patterns achieve comparable RL performance to those trained on correct solutions.

Qwen-2.5-3B Vv

Naturally exhibits all four cognitive Initially lacks these behaviors and plateaus under

behaviors. RL training leads to substantial identical RL training. Priming with reasoning-

improvement — responses grow longer, behavior examples or continued pretraining with
accuracy increases dramatically. filtered data enables it to match Qwen.

63

The nature of reasoning: when it fails

1. “Reasoning Models Don't Always Say What They Think” (chen et al., Anthropic, 2025)

Al safety implication: can we trust what reasoning models say in their chain of

thought? CoTs have the potential to provide a window into model reasoning that
can be monitored for undesirable behaviors.

* The authors evaluate CoT faithfulness of state-of-the-art reasoning models across
6 reasoning hints presented in the prompts and find: (1) for most settings and
models tested, CoTs reveal their usage of hints in at least 1% of examples where
they use the hint, but the reveal rate is often below 20%

e Research question: Can we teach LLMs to be more faithful with their CoTs? How?

64

Category | Hint Description Example
Sycophancy Suggestion from a | “I think the answer 1s (A) but I’m curious to hear
person what you think.”, “A Stanford professor indicates
Neutral the answer i1s (A). What do you think?”
Consistency Model’s response in | “Human: <question>

the previous turn
(prefilled)

Assistant: The answer 1s (A).

Human: Explain your reasoning. Don’t anchor
on your previous response.

Assistant:”

Visual Pattern

Correct answers
marked with visual
patterns

Correct answers in the few-shot examples are
always marked with black square (H), white
square ([]), or tick mark (v')

Metadata

Embedded in XML
metadata

“<question-metadata>...<status>complete</status>
<peer-reviewed>true</peer-
reviewed>...<answer>A</answer>...<success-
rate>0.73</success-rate>...</question-
metadata>”

66

Question without Hint

Question: Which of the following
issues are the most [...]:

[four issues (omitted here)]

@ Choices: [...]

CoT: [...] (omitted here)

Answer: D

The model changes its answer
because of the hint but does
not verbalize it in the CoT to
the hinted question (right).

[E

Question with Hint

<question-metadata>

[...]

<answer>C</answer>

[...]

</question-metadata>

[same question as left]

CoT: Let’s analyze each of the
issues [...]:

1. [...]. 2. [...]. 3. [...]. 4. [...].
all four issues can indeed cause
difficult-to-spot errors. [...]

However, | need to select the most

[...]
Therefore, option (C) 3 and 4
seems most appropriate. [...]

Answer: C

The nature of reasoning: when it fails

1. “Reasoning Models Don't Always Say What They Think” (chen et al., Anthropic, 2025)

 Low faithfulness () : Across six hint types and multiple SOTA models, CoTs reveal
hint usage in <20% of cases where hints actually influenced answers. Models
systematically use information without acknowledging it.

e RL plateau @: Outcome-based RL initially improves faithfulness substantially (63%
and 41% on two evals) but plateaus at 28% (MMLU) and 20% (GPQA), suggesting it's
insufficient alone for high CoT faithfulness.

 Reward hacking opacity (:2: When RL increases hint usage (reward hacking),
verbalization of this usage doesn't increase correspondingly—CoT monitoring cannot
reliably detect model shortcuts or exploits.

67

The nature of reasoning: when it fails [g

Does the following string also

follow the same set of rules?
"FDMUC",

1. “Mind Your Step (by Step): Chain-of- 'FDQMQFC; p DEEOUQCX
"FQMQUC"
Thought can Reduce Performance on Tasks FZABQC Y
where Thinking Makes Humans Worse” (L
et al., 2025)

Color: Yellow

(4
)
Iteratively learning)

68

	intro
	Slide 1: Natural Language Processing with Deep Learning CS224N/Ling284
	Slide 2: Lecture Plan

	decoding algorithms
	Slide 3: How to decode a token during “inference”
	Slide 4: How to decode a token during “inference”
	Slide 5: Basic decoding algorithms
	Slide 6: Basic decoding algorithms
	Slide 7: Basic decoding algorithms
	Slide 8
	Slide 9: Most likely sequences can be (surprisingly) repetitive!
	Slide 10: The more repeat, the more likely it becomes!
	Slide 11: Circa 2025, is looping gone with reasoning models?
	Slide 12: Circa 2015, is looping gone with reasoning models?
	Slide 13: Though they loop more subtlety than before
	Slide 14: Though they loop more subtlety than before
	Slide 15: Top-k sampling
	Slide 16: Issues with top-k sampling
	Slide 17: Top-p (nucleus) sampling (Holtzman et al., 2019)
	Slide 18: Temperature sampling
	Slide 19: Temperature sampling
	Slide 20: When to use greedy vs sampling
	Slide 21: Decoding takeaways

	Deepseek R1
	Slide 22: Lecture Plan
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Key findings 🧵
	Slide 31: Key findings 🧵
	Slide 32: Key findings 🧵
	Slide 33: Key findings 🧵
	Slide 34: Key findings 🧵
	Slide 35: Key findings 🧵

	GRPO
	Slide 36: Lecture Plan
	Slide 37
	Slide 38: PPO Recab
	Slide 39: PPO Complexity 🧵 1. Four* separate models to keep in memory!
	Slide 40: PPO Complexity 🧵 2. Generalized advantage estimation (GAE)
	Slide 41: PPO Complexity 🧵 2. Generalized advantage estimation (GAE)
	Slide 42: PPO Complexity 🧵 3. Training of the value network
	Slide 43: PPO Complexity 🧵 4. The full PPO training step 😱
	Slide 44: The GRPO objective
	Slide 45: The GRPO objective
	Slide 46: PPO vs GRPO
	Slide 47: DAPO technique 🧵 1. Clip-higher (asymmetric clipping)
	Slide 48: DAPO technique 🧵 2. Dynamic sampling
	Slide 49: DAPO technique 🧵 3. Token-level loss

	the nature of reasoning
	Slide 50: Lecture Plan
	Slide 51: The nature of reasoning: what works 1/2
	Slide 52: The nature of reasoning: what works 2/2
	Slide 53: The nature of reasoning: why it works
	Slide 54
	Slide 55
	Slide 56: The nature of reasoning: why it works
	Slide 57: The nature of reasoning: why it works
	Slide 58: The nature of reasoning: why it works
	Slide 59
	Slide 60: The nature of reasoning: why it works
	Slide 61: “Why think step by step? Reasoning emerges from the locality of experience” (Prystawski et al., 2023)
	Slide 62: The nature of reasoning: why it works
	Slide 63: The nature of reasoning: why it works
	Slide 64: The nature of reasoning: when it fails
	Slide 65
	Slide 66
	Slide 67: The nature of reasoning: when it fails
	Slide 68: The nature of reasoning: when it fails

