
Natural Language Processing
with Deep Learning

CS224N/Ling284

Yejin Choi

Lecture 13: Reasoning 1/2

Lecture Plan

2

Decoding techniques (20 mins)
From greedy to beam search to sampling (15 mins)

Neural text degeneration (loopy behavior) (5 mins)

DeepSeek R1 deep dives (15 mins) From R1-Zero to R1 to R1-distill

PPO & GRPO & DAPO (25 mins)
PPO: dissecting the complexity

GRPO

DAPO

The nature of “reasoning” (20 min) What works, why it works, and when it fails

How to decode a token during “inference”

3
Lecture 4: Natural Language Generation

...
𝑦𝑡−4 𝑦𝑡−3 𝑦𝑡−2 𝑦𝑡−1

𝑆

Softmax

𝑃(𝑦𝑡|{𝑦<𝑡})

• At each time step t, our model computes a vector of scores for each token in our
vocabulary, 𝑆 ∈ . Then, we compute a probability distribution 𝑃 over 𝑤 ∈ 𝑉
using these scores:

Autoregressive Neural Language Models

4

• At each time step t, our model computes a vector of scores for each token in our
vocabulary, 𝒔 ∈ :

• Then, we compute a probability distribution 𝑃 over 𝑤 ∈ 𝑉 using these scores:

• Decoding algorithm defines a function to select a token from this distribution:

𝒔 = 𝑓({𝑦<𝑡}; 𝜃) 𝑓(⋅; 𝜃) is your model

𝑃(𝑦𝑡 = 𝑤|{𝑦<𝑡}) =
exp(𝒔𝒘)

∑𝑤′∈𝑉exp(𝒔𝒘′)

How to decode a token during “inference”

ො𝑦𝑡 = 𝑔(𝑃(𝑦𝑡|{𝑦<𝑡})) 𝑔(⋅) is your decoding algorithm

5

• Decoding algorithm defines a function to select a token from this distribution:

• Greedy decoding

• Limitation: Greedy decoding is myopic—it maximizes local probability at each step
but may miss globally optimal sequences.

• Beam search

• maintains the top-k most probable partial sequences (hypotheses) at each step,
where k is the beam width.

Basic decoding algorithms

ො𝑦𝑡 = 𝑔(𝑃(𝑦𝑡|{𝑦<𝑡})) 𝑔(⋅) is your decoding algorithm

argmax𝑤∈𝑉 𝑃(𝑦𝑡 = 𝑤|𝑦<𝑡)ො𝑦𝑡 =

6

• Decoding algorithm defines a function to select a token from this distribution:

• Beam search

• maintains the top-k most probable partial sequences (hypotheses) at each step,
where k is the beam width.

• at each time step 𝑡, for each hypothesis ℎ in the beam 𝐵𝑡−1:

• score ℎ ∘ 𝑦𝑡 = score ℎ + log 𝑃 𝑦𝑡 ℎ

• final sequence output 𝑦∗ = argmaxℎ’∈𝐵𝑇
log 𝑃 ℎ’

Basic decoding algorithms

ො𝑦𝑡 = 𝑔(𝑃(𝑦𝑡|{𝑦<𝑡})) 𝑔(⋅) is your decoding algorithm

a partial sequence until previous time t-1

𝐵𝑡 = top−kℎ∈𝐵𝑡−1,𝑦∈𝑉{ ℎ ∘ 𝑦, score ℎ ∘ 𝑦 }

• when k=1, beam search reduces to greedy decoding

• Beam search was the defacto standard decoding algorithm for the classical NLP models,
but it is no longer used often in modern day language models. Why?

Basic decoding algorithms

7

Aspect Greedy Beam Search

Search space 1 path 𝑘 paths simultaneously

Complexity 𝑂 𝑇 ⋅∥ 𝑉 ∥ 𝑂 𝑇 ⋅ 𝑘 ⋅∥ 𝑉 ∥

Quality Local optimum Better approximation of global optimum

Diversity None Limited (within beam)

Circa 2019, GPT-2 was introduced with remarkable text quality

8

This notion of
“sampling” was
surprising at
that time!

Most likely sequences can be (surprisingly) repetitive!

(Holtzman et al., 2019)

The more repeat, the more likely it becomes!

“I don’t know.”

“I don’t know. I don’t know. I don’t know.
I don’t know. I don’t know. I don’t know.”

(Holtzman et al., 2019)

Circa 2025, is looping gone with reasoning models?

11

• Looping in reasoning LLMs isn't an
edge case!

• On AIME, authors flag a response as
looping if a 30-gram repeats >20
times.

• When looping more likely?

• Across open reasoning LLMS
(qwen, openthinker, phi, llama-r1):

• Low temps => more looping

• Smaller models => more looping

• Harder problems => more looping

Circa 2015, is looping gone with reasoning models?

12

Though they loop more subtlety than before

13

Though they loop more subtlety than before

14

Top-k sampling

15

Problem 1: Beam search can degenerate

Problem 2: Vanilla sampling (aka pure sampling) can become incoherent

Even if most of the probability mass in the distribution is over a limited set of options,
the tail of the distribution could be very long, which include a lot of bad options

Although each of them may be assigned a tiny probability, in aggregate, they still get
high chance to be selected eventually over a long sequence

e.g., when generating 30 tokens in a row, the chance of only generating from the top
95% probability zone is as low as 21%

Solution: Top-k sampling (Fan et al., 2018)

 Only sample from the top k tokens in the probability distribution.

Issues with top-k sampling

16

For flat distribution,
Top-k Sampling may cut off too quickly!

For peaked distribution,

Top-k Sampling may also cut off too slowly!

Top-p (nucleus) sampling (Holtzman et al., 2019)

17

• Sample from all tokens in the top 𝑝 cumulative probability mass (i.e., where mass is
concentrated)

p=0.2

𝑃𝑡(𝑦𝑡 = 𝑤|{𝑦}<𝑡) 𝑃𝑡(𝑦𝑡 = 𝑤|{𝑦}<𝑡)

p=0.12 p=0.8

𝑃𝑡(𝑦𝑡 = 𝑤|{𝑦}<𝑡)

Temperature sampling

18

• Recall: At time step t, model computes a distribution 𝑃𝑡 by applying softmax to a vector
of scores s ∈ℝ^(|𝑉|)

• Here, you can apply temperature hyperparameter 𝜏 to the softmax to rebalance 𝑃𝑡 :

• Raise the temperature 𝜏>1: 𝑃𝑡 becomes more uniform

• More diverse output (probability is spread across vocabulary)

• Lower the temperature 𝜏<1: 𝑃𝑡 becomes more spiky

• Less diverse output (probability concentrated to the top tokens)

𝑃𝑡(𝑦𝑡 = 𝑤|{𝑦<𝑡}) =
exp(𝒔𝑤)

∑𝑤′∈𝑉exp(𝒔𝑤′)

𝑃𝑡(𝑦𝑡 = 𝑤|{𝑦<𝑡}) =
exp(𝒔𝑤/𝜏)

∑𝑤′∈𝑉exp(𝒔𝑤′/𝜏)

Temperature sampling

19

• Here, you can apply temperature hyperparameter 𝜏 to the softmax to rebalance 𝑃𝑡 :

• Raise the temperature 𝜏>1: 𝑃𝑡 becomes more uniform

• More diverse output (probability is spread across vocabulary)

• Lower the temperature 𝜏<1: 𝑃𝑡 becomes more spiky

• Less diverse output (probability concentrated to the top tokens)

𝑃𝑡(𝑦𝑡 = 𝑤|{𝑦<𝑡}) =
exp(𝒔𝑤/𝜏)

∑𝑤′∈𝑉exp(𝒔𝑤′/𝜏)

NOTE: Temperature is a hyperparameter
for decoding algorithm, not an algorithm
itself! It can be applied for both beam
search and sampling methods.

When to use greedy vs sampling

20

• Use Greedy Decoding When:

• Task has a definite correct answer (math, coding,
factual QA) that can be answered right away

• Reproducibility is critical

• Working with reasoning tasks

• Constrained output space

• Use Sampling When:

• Open-ended generation (creative writing, dialogue)

• Long chain-of-thought reasoning (hard math, code)

• Information-seeking queries

• Diversity is valued over single best answer

• Best-of-N Sampling
(emerging trend):

• Sample N outputs

• Use reward model
to select best

• A type of rejection
sampling

• Can make smaller
models competitive
with larger ones

• Particularly effective
for reasoning tasks

Decoding takeaways

21

• Decoding is still a challenging problem in NLG - there's a lot more work to be done!

• Different decoding algorithms can allow us to inject biases that encourage different
properties of coherent natural language generation

• Some of the most impactful advances in NLG of the last few years have come from
simple but effective modifications to decoding algorithms

• Next lecture – “Speculative Decoding!”

Lecture Plan

22

Decoding techniques (20 mins)
From greedy to beam search to sampling (15 mins)

Neural text degeneration (loopy behavior) (5 mins)

DeepSeek R1 deep dives (15 mins) From R1-Zero to R1 to R1-distill

PPO & GRPO & DAPO (25 mins)
PPO: dissecting the complexity

GRPO

DAPO

The nature of “reasoning” (20 min) What works, why it works, and when it fails

23

25

Accuracy Reward

For math: compare final answer
against ground truth. For code: run
test cases. The reward is essentially
binary — correct or not.

Format Reward

A small reward for placing
reasoning inside <think>…</think>
tags and the final solution
afterwards.

No Process Reward Model (PRM)

DeepSeek argues that PRMs are expensive, subject to reward hacking, and may
constrain the model’s ability to discover novel reasoning strategies. Outcome-
based rewards give maximum freedom.

Reward for R1-zero: keeping it simple

Caveat: additional composite rewards (e.g., language consistency, safety, …) added
to the later stage RL leading to the final R1

Self-verification

The model checks its own work after
deriving an answer. Emerges because
self-checked outputs are more often
correct.

Reflection and backtracking

“Wait, let me reconsider” or “That
approach doesn’t work because…”
The model recognizes wrong paths
and restarts with a different strategy.

Extended Deliberation

The response length grows from hundreds to thousands of tokens. The model is
essentially learning that thinking longer leads to better answers—a learned
form of test-time compute scaling.

Emergent reasoning capabilities

Poor readability

Reasoning traces are often poorly
formatted and are difficult for
humans to follow.

Code switching

The model frequently switches
between languages within a single
response, regardless of the input
language.

Narrow scope, no general capability or safety discovery outside RLVR

Pure RL only works well for tasks with verifiable answers (math, code). Open-ended
tasks like creative writing or general conversation are not effectively addressed.
Also, R1-Zero won’t discover safety guardrails by solving math and code…

Emergent undesirable characteristics of R1-Zero

Key findings

30

• Finding 1: RL alone can induce reasoning

• Prior assumption: chain-of-thought reasoning required supervised examples.

• Finding: R1-Zero demonstrates that outcome-based RL, with no process supervision,
can induce sophisticated reasoning capabilities.

• Caveat 1: the final R1 is still going through the SFT->RL pipeline in the end

• Caveat 2: doesn’t apply to small (less capable) models

Key findings

31

• Finding 2: Outcome rewards can enable discovery

• Prior assumption: sophisticated process rewards are necessary for O1 reasoning

• Finding: Process reward models can inadvertently constrain exploration by
penalizing unconventional yet effective reasoning paths. The lesson: sometimes less
supervision yields more capability.

• Caveat: RLVR is not applicable for all reasoning problems

Key findings

32

• Finding 3: RL + SFT synergy

• Neither pure RL (R1-Zero) nor pure SFT produces the best results.

• The multi-stage pipeline shows that RL and SFT play complementary roles: RL
discovers capability, SFT provides reliability.

• Cold-start data prevents early RL instability; rejection sampling converts RL
discoveries into reusable training data.

Key findings

33

• Finding 4: Distillation outperforms direct RL on small models

• If you have a limited compute budget, you are better off distilling from a large
reasoning model than applying RL to a small model directly.

• Through distillation, reasoning capabilities transfer to models as small as 1.5B
parameters, making strong reasoning accessible at any scale

• Finding 5: Open-weight reasoning models are viable

• R1 models are released under an MIT license.

• The distilled 7B and 14B models outperform many much larger closed-source
models on reasoning benchmarks.

Key findings

34

• Finding 6: Structured search algorithms for inference scaling?

• Prior assumption: inference-time search algorithm such as Monte-Carlo Tree Search
might be necessary

• Findings: reasoning can be entirely autoregressive; no special search algorithm
necessary.

• Caveat: later models for hard math benchmarks do incorporate structure, though
not in the traditional MCTS sense

Key findings

35

• Finding 7: Test-time compute is a learnable resource

• Findings: R1’s models learn to allocate more thinking tokens to harder problems.
This means test-time compute scaling is not just an inference trick (like beam search
or majority voting)—it can be internalized by the model itself through training. The
model learns when and how much to think.

• Caveat: true to some degree; later studies reveal challenges to address

Lecture Plan

36

Decoding techniques (20 mins)
From greedy to beam search to sampling (15 mins)

Neural text degeneration (loopy behavior) (5 mins)

DeepSeek R1 deep dives (15 mins) From R1-Zero to R1 to R1-distill

PPO & GRPO & DAPO (25 mins)
PPO: dissecting the complexity

GRPO

DAPO

The nature of “reasoning” (20 min) What works, why it works, and when it fails

37

PPO Recab

38

• The clipped surrogate objective of PPO:

• The complete loss:

• To iteratively train both the policy network (𝜋𝜃) and the value network (𝑉)

Entropy loss

Value network loss

The value network is frozen (stop gradient) for the
purpose of optimizing the CLIP surrogate loss term for
updating the policy network

This ‘r’ refers to the ‘ratio’ of *importance
sampling*, not ‘reward’!

PPO Complexity 1. Four* separate models to keep in memory!

39

• The policy 𝜋𝜃

• The language model being trained. This is the actor that generates responses.

• The value network 𝑉𝜙 𝑠

• The critic model (often a second copy of the LLM with a scalar head) that estimates
the expected cumulative reward from any state. This is trained alongside the policy.

• The reward model 𝑅

• The model trained on human preference data to score the quality of a response
given a prompt

• The reference policy 𝜋𝑟𝑒𝑓

• A frozen copy of the original pretrained model, used to compute KL divergence
penalties that prevent the policy from drifting too far.

=> an enormous compute/infrastructure burden!

*In practice, five separate models
due to two copies of the evolving policy
model (due to the off-policy drift coming
from the RL infra/GPU optimization)

PPO Complexity 2. Generalized advantage estimation (GAE)

40

• The advantage function 𝐴 𝑠, 𝑎 : how much better an action is compared to the average
action at that state.

• PPO estimates advantages using GAE (Schulman et al., 2016).

• First, define the temporal difference (TD) residual:

• where ෥𝑟𝑡 is the reward at step t)

• Then the GAE advantage is an exponentially weighted sum of the TD residuals:

• The parameter 𝜆 ∈ 0,1 controls the bias-variance tradeoff: 𝜆 = 0 gives the one-step TD estimate (low variance,
high bias), while 𝜆 = 1 gives the Monte Carlo return (high variance, low bias). In practice, 𝜆 = 0.95 and discount
factor 𝛾 = 1.0 are common choices for RLHF.

PPO Complexity 2. Generalized advantage estimation (GAE)

41

• The advantage function 𝐴 𝑠, 𝑎 : how much better an action is compared to the average
action at that state.

• PPO estimates advantages using GAE (Schulman et al., 2016).

• First, define the temporal difference (TD) residual:

• where ෥𝑟𝑡 is the reward at step t

• Then the GAE advantage is an exponentially weighted sum of the TD residuals:

• The parameter 𝜆 ∈ 0,1 controls the bias-variance tradeoff: 𝜆 = 0 gives the one-step TD estimate (low variance,
high bias), while 𝜆 = 1 gives the Monte Carlo return (high variance, low bias). In practice, 𝜆 = 0.95 and discount
factor 𝛾 = 1.0 are common choices for RLHF.

So what?
• GAE requires calling the value

function at every token position in
every generated response.

• For a batch of 512 prompts with 16
responses each, with average
lengths of 2,000 tokens, this
means ~16 million value function
forward passes per training step—
an enormous computational
overhead!

PPO Complexity 3. Training of the value network

42

• The value function must be trained jointly with the policy. But how?

• Its loss is typically a simple squared error between the predicted value and the actual
return:

• The value network has its own learning rate and separate hyperparameter tuning.

• In theory, the value network should help with the credit assignment problem. Instead
of the one final scalar reward at the end of the sequence, the value network should
learn per-token credit assignment by estimating how much "value" remains at each
position, effectively spreading the final reward backward through time via the TD
residuals.

• In practice, it’s not clear if it’s learning valuable signals…

1. Generation of a rollout

2. Reward computation (just a single score R at the end of the rollout)

3. Per-token reward construction with KL penalty:

• The reward model provides only a single score for the entire response. To create
per-token rewards for GAE, the KL divergence from the reference policy is used as a
per-token penalty. At rollout time, the per-token reward is computed using the
behavior policy:

4. Per-token value estimation

5. Per-token advantage computation

6. Policy network update

7. Value network update

PPO Complexity 4. The full PPO training step

43

(for intermediate tokens)

(for the last token)
This should ideally be the most current 𝜋𝜃, but
in practice, it’s slightly behind the most recent
one (off-policy drift due to RL infra
optimization)

This is the original original
model, used as the ‘reference’
model for KL regularization

• Given a prompt, sample a group of G responses

• Then the GRPO objective is

• with the token-level importance sampling ratio:

• And a super simple advantage function:

The GRPO objective

44

PPO had the KL term baked under the reward
computation, which in turn is baked under the
advantage term, whereas GRPO places it as a more
direct part of the learning objective

”DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models” (Shao et al., 2024)

• Given a prompt, sample a group of G responses

• Then the GRPO objective is

• Which looks quite similar to the PPO objective:

The GRPO objective

45

PPO had the KL term baked
under the reward computation,
which in turn is baked under the
advantage term, whereas GRPO
places it as a more direct part of
the learning objective

”DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models” (Shao et al., 2024)

PPO vs GRPO

46

PPO GRPO

of models in memory - The current policy network
- The slightly outdated policy
- The original reference policy
- The value network
- The reward model

- The current policy network
- The slightly outdated policy
- The original reference policy
(note R-1 didn’t use the reward model
by opting for a simple reward)

Advantage estimation GAE at every token Group reward’s z-score

Token-level credit Per-token via TD residuals Uniform across all tokens

Training models Iterating between the policy network
and the value network

Just the policy network

KL Incorporated to the token-level
reward, which is hidden inside the
advantage term

Directly under the GRPO objective

”DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models” (Shao et al., 2024)

DAPO technique 1. Clip-higher (asymmetric clipping)

47

• Motivation: In standard PPO/GRPO, the importance sampling ratio is clipped
symmetrically. The upper clip restricts exploration, which can lead to entropy collapse.

• Solution: DAPO decouples the lower and upper clipping ranges:

• The ratio can be clipped to e.g., [0.8, 1.28], instead of the standard [0.8, 1.2]

“DAPO: An Open-Source LLM Reinforcement Learning System at Scale” (ByteDance Seed et al., 2025)

DAPO technique 2. Dynamic sampling

48

• Motivation: when all responses to a prompt are correct or incorrect, the group
standard deviation becomes zero, which becomes a gradient dead zone, and shrinking
the effective batch size.

• Solution: DAPO enforces only response groups with at least one correct and one
incorrect responses are re-trained.

“DAPO: An Open-Source LLM Reinforcement Learning System at Scale” (ByteDance Seed et al., 2025)

DAPO technique 3. Token-level loss

49

• Motivation: GRPO uses a sample-level loss: it first averages per-token loss within each
response and then averages across G responses.

• Why is this a problem?

• Unfair to long-CoTs: a single token in a 100-token response has 10× the gradient
contribution of one in a 1000-token response.

• Solution: DAPO replaces sample-level averaging with token-level averaging:

GRPO (sample-level) DAPO (token-level)

Each response weighted equally Each token weighted equally

“DAPO: An Open-Source LLM Reinforcement Learning System at Scale” (ByteDance Seed et al., 2025)

Lecture Plan

50

Decoding techniques (20 mins)
From greedy to beam search to sampling (15 mins)

Neural text degeneration (loopy behavior) (5 mins)

DeepSeek R1 deep dives (15 mins) From R1-Zero to R1 to R1-distill

PPO & GRPO & DAPO (25 mins)
PPO: dissecting the complexity

GRPO

DAPO

The nature of “reasoning” (20 min) What works, why it works, and when it fails

The nature of reasoning: what works 1/2

51

1. Chain-of-thought prompting enhances
reasoning dramatically (wei et al., 2022)

• CoT reasoning is an emergent
property of model scale: the benefits
only materialize in sufficiently large
models (100B+)

• Smaller models often produce
illogical chains of thought that do not
improve accuracy.

1. Self-consistency (=majority vote over N samples) further boosts reasoning

• GSM8K (+17.9%), SVAMP (+11.0%), AQuA (+12.2%), StrategyQA (+6.4%), … (wang et al., 2022)

➢ Diverse reasoning paths
at the top probability
zone that cannot be
accessed via greedy
decoding

➢ The bigger the N, the
bigger the performance
boost → test-time
scaling vibe!

The nature of reasoning: what works 2/2

52

1. “Chain-of-Thought Reasoning without Prompting” (wang and zhou, 2024)

• Introduced “CoT-decoding” :for the first token, branch with all top-k tokens. For subsequent tokens,
continue with greedy decoding.

• Findings: those alternative paths often contains CoT despite that no CoT prompting was used (!!!)

• Implication: reasoning paths naturally exist within pre-trained LLMs and are merely obscured by
standard greedy decoding.

The nature of reasoning: why it works

53

What about just K
samples using top-k or
temperature scaled
sampling?
-- Turns out, without
any CoT prompting,
CoT paths are harder to
surface up

54

 no CoT

 no CoT

 no CoT

 no CoT

 Yes
CoT!

➢ Taking a majority vote would have not worked well
➢ Answer confidence dramatically increases when the

sample hits a proper CoT path

55

 no CoT

 Yes
CoT!

 no CoT

 no CoT

 Yes
CoT!

➢ A decoding with a legit CoT can be shorter than
a decoding without a helpful CoT

1. “Chain-of-Thought Reasoning without Prompting” (wang and zhou, 2024)

• Introduced “CoT-decoding” :for the first token, branch with all top-k tokens. For subsequent tokens,
continue with greedy decoding.

• Findings: those alternative paths often contains CoT despite that no CoT prompting was used (!!!)

• Implication: reasoning paths naturally exist within pre-trained LLMs and are merely obscured by
standard greedy decoding.

The nature of reasoning: why it works

56

• Findings: the presence of a CoT path in the decoding
sequence correlates with higher model confidence in the
final answer

• Wait, how to find where the answer is?

• Heuristic 1: last numeric number
• Heuristic 2: let the model to continue with "So the

answer is”, and then align the answer to the text
pan of the original decoding path

57

1. Comparing different CoT extraction approaches:

• Implication: log-prob for the whole decoding path isn’t reliably better than greedy decoding (!)

• Why not?

• If length-normalized, it can be (sometimes) helpful

The nature of reasoning: why it works

58

1. “Large Language Models are Zero-Shot Reasoners” (Kojima et al., 2023)

The nature of reasoning: why it works

“Large Language Models are Zero-Shot Reasoners” (Kojima et al., 2023)

59

60

1. “Why think step by step? Reasoning emerges from the locality of experience” (Prystawski et al., 2023)

The nature of reasoning: why it works

➢ A: The pink variable is an
example observed variable
and the yellow variable is an
example target variable.
Gray variables are useful
intermediate variables for
reasoning. Lines show
examples of local
neighborhoods from which
training samples are drawn.

➢ B: format of the training
samples.

➢ D: mean squared error by
number of training tokens
for each training condition
and estimator.

61

“Why think step by step? Reasoning emerges from the locality of experience” (Prystawski et al., 2023)

➢ The central hypothesis: CoT reasoning works
because training data consists of overlapping local
clusters of related variables. Step-by-step reasoning
chains these local relationships to reach conclusions
about variables never seen together in training.

➢ Proved mathematically that a "reasoning gap"
exists: for autoregressive models trained on local
samples, reasoning through intermediate variables
reduces bias vs. direct estimation.

➢ Showed intermediate reasoning steps help only
when training data is locally structured; with all
variable combinations available, reasoning adds no
benefit.

➢ Locally structured data + reasoning is dramatically
more data-efficient than training on all variables
simultaneously.

62

1. “Cognitive Behaviors that Enable Self-Improving Reasoners, or, Four Habits of Highly
Effective STaRs” (Gandhi et al., 2025)

• Key question: why some LMs can self-improve through RL while others plateau quickly

• Why Qwen-2.5-3B dramatically outperforms Llama-3.2-3B under identical RL training

• Answer: four behaviors (!)

The nature of reasoning: why it works

Verification: Checking intermediate results for correctness before proceeding to the next step.

Backtracking: Recognizing errors and reverting to explore alternative solution paths.

Subgoal Setting: Breaking complex problems into sub-problems that can be solved independently.

Backward Chaining: Reasoning from the goal backward to identify the steps required to reach it.

63

1. “Cognitive Behaviors that Enable Self-Improving Reasoners, or, Four Habits of Highly
Effective STaRs” (Gandhi et al., 2025)

• Key question: why some LMs can self-improve through RL while others plateau quickly

• Why Qwen-2.5-3B dramatically outperforms Llama-3.2-3B under identical RL training

• Answer: four behaviors (!)

• Behavior matters more than correctness: models primed with incorrect solutions containing proper
reasoning patterns achieve comparable RL performance to those trained on correct solutions.

The nature of reasoning: why it works

Qwen-2.5-3B ✓

Naturally exhibits all four cognitive
behaviors. RL training leads to substantial
improvement — responses grow longer,
accuracy increases dramatically.

Llama-3.2-3B ✗

Initially lacks these behaviors and plateaus under
identical RL training. Priming with reasoning-
behavior examples or continued pretraining with
filtered data enables it to match Qwen.

64

1. “Reasoning Models Don't Always Say What They Think” (Chen et al., Anthropic, 2025)

• AI safety implication: can we trust what reasoning models say in their chain of
thought? CoTs have the potential to provide a window into model reasoning that
can be monitored for undesirable behaviors.

• The authors evaluate CoT faithfulness of state-of-the-art reasoning models across
6 reasoning hints presented in the prompts and find: (1) for most settings and
models tested, CoTs reveal their usage of hints in at least 1% of examples where
they use the hint, but the reveal rate is often below 20%

• Research question: Can we teach LLMs to be more faithful with their CoTs? How?

The nature of reasoning: when it fails

66

67

1. “Reasoning Models Don't Always Say What They Think” (Chen et al., Anthropic, 2025)

• Low faithfulness : Across six hint types and multiple SOTA models, CoTs reveal
hint usage in <20% of cases where hints actually influenced answers. Models
systematically use information without acknowledging it.

• RL plateau : Outcome-based RL initially improves faithfulness substantially (63%
and 41% on two evals) but plateaus at 28% (MMLU) and 20% (GPQA), suggesting it's
insufficient alone for high CoT faithfulness.

• Reward hacking opacity : When RL increases hint usage (reward hacking),
verbalization of this usage doesn't increase correspondingly—CoT monitoring cannot
reliably detect model shortcuts or exploits.

The nature of reasoning: when it fails

68

The nature of reasoning: when it fails

1. “Mind Your Step (by Step): Chain-of-
Thought can Reduce Performance on Tasks
where Thinking Makes Humans Worse” (Liu

et al., 2025)

	intro
	Slide 1: Natural Language Processing with Deep Learning CS224N/Ling284
	Slide 2: Lecture Plan

	decoding algorithms
	Slide 3: How to decode a token during “inference”
	Slide 4: How to decode a token during “inference”
	Slide 5: Basic decoding algorithms
	Slide 6: Basic decoding algorithms
	Slide 7: Basic decoding algorithms
	Slide 8
	Slide 9: Most likely sequences can be (surprisingly) repetitive!
	Slide 10: The more repeat, the more likely it becomes!
	Slide 11: Circa 2025, is looping gone with reasoning models?
	Slide 12: Circa 2015, is looping gone with reasoning models?
	Slide 13: Though they loop more subtlety than before
	Slide 14: Though they loop more subtlety than before
	Slide 15: Top-k sampling
	Slide 16: Issues with top-k sampling
	Slide 17: Top-p (nucleus) sampling (Holtzman et al., 2019)
	Slide 18: Temperature sampling
	Slide 19: Temperature sampling
	Slide 20: When to use greedy vs sampling
	Slide 21: Decoding takeaways

	Deepseek R1
	Slide 22: Lecture Plan
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Key findings 🧵
	Slide 31: Key findings 🧵
	Slide 32: Key findings 🧵
	Slide 33: Key findings 🧵
	Slide 34: Key findings 🧵
	Slide 35: Key findings 🧵

	GRPO
	Slide 36: Lecture Plan
	Slide 37
	Slide 38: PPO Recab
	Slide 39: PPO Complexity 🧵 1. Four* separate models to keep in memory!
	Slide 40: PPO Complexity 🧵 2. Generalized advantage estimation (GAE)
	Slide 41: PPO Complexity 🧵 2. Generalized advantage estimation (GAE)
	Slide 42: PPO Complexity 🧵 3. Training of the value network
	Slide 43: PPO Complexity 🧵 4. The full PPO training step 😱
	Slide 44: The GRPO objective
	Slide 45: The GRPO objective
	Slide 46: PPO vs GRPO
	Slide 47: DAPO technique 🧵 1. Clip-higher (asymmetric clipping)
	Slide 48: DAPO technique 🧵 2. Dynamic sampling
	Slide 49: DAPO technique 🧵 3. Token-level loss

	the nature of reasoning
	Slide 50: Lecture Plan
	Slide 51: The nature of reasoning: what works 1/2
	Slide 52: The nature of reasoning: what works 2/2
	Slide 53: The nature of reasoning: why it works
	Slide 54
	Slide 55
	Slide 56: The nature of reasoning: why it works
	Slide 57: The nature of reasoning: why it works
	Slide 58: The nature of reasoning: why it works
	Slide 59
	Slide 60: The nature of reasoning: why it works
	Slide 61: “Why think step by step? Reasoning emerges from the locality of experience” (Prystawski et al., 2023)
	Slide 62: The nature of reasoning: why it works
	Slide 63: The nature of reasoning: why it works
	Slide 64: The nature of reasoning: when it fails
	Slide 65
	Slide 66
	Slide 67: The nature of reasoning: when it fails
	Slide 68: The nature of reasoning: when it fails

