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Lecture Plan 
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Decoding techniques (20 mins)
From greedy to beam search to sampling (15 mins)

Neural text degeneration (loopy behavior) (5 mins)

DeepSeek R1 deep dives (15 mins) From R1-Zero to R1 to R1-distill

PPO & GRPO & DAPO (25 mins)
PPO: dissecting the complexity

GRPO

DAPO

The nature of “reasoning” (20 min) What works, why it works, and when it fails



How to decode a token during “inference”

3
Lecture 4: Natural Language Generation

...
𝑦𝑡−4 𝑦𝑡−3 𝑦𝑡−2 𝑦𝑡−1

𝑆

Softmax

𝑃(𝑦𝑡|{𝑦<𝑡})

• At each time step t, our model computes a vector of scores for each token in our 
vocabulary, 𝑆 ∈ . Then, we compute a probability distribution 𝑃 over 𝑤 ∈ 𝑉
using these scores:

Autoregressive Neural Language Models
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• At each time step t, our model computes a vector of scores for each token in our 
vocabulary, 𝒔 ∈      :

• Then, we compute a probability distribution 𝑃 over 𝑤 ∈ 𝑉 using these scores:

• Decoding algorithm defines a function to select a token from this distribution:

𝒔 = 𝑓({𝑦<𝑡}; 𝜃) 𝑓(⋅; 𝜃) is your model

𝑃(𝑦𝑡 = 𝑤|{𝑦<𝑡}) =
exp(𝒔𝒘)

∑𝑤′∈𝑉exp(𝒔𝒘′)

How to decode a token during “inference”

ො𝑦𝑡 = 𝑔(𝑃(𝑦𝑡|{𝑦<𝑡})) 𝑔(⋅) is your decoding algorithm



5

• Decoding algorithm defines a function to select a token from this distribution:

• Greedy decoding

• Limitation: Greedy decoding is myopic—it maximizes local probability at each step 
but may miss globally optimal sequences.

• Beam search 

• maintains the top-k most probable partial sequences (hypotheses) at each step, 
where k is the beam width. 

Basic decoding algorithms

ො𝑦𝑡 = 𝑔(𝑃(𝑦𝑡|{𝑦<𝑡})) 𝑔(⋅) is your decoding algorithm

argmax𝑤∈𝑉 𝑃(𝑦𝑡 = 𝑤|𝑦<𝑡)ො𝑦𝑡 =
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• Decoding algorithm defines a function to select a token from this distribution:

• Beam search 

• maintains the top-k most probable partial sequences (hypotheses) at each step, 
where k is the beam width. 

• at each time step 𝑡, for each hypothesis ℎ in the beam 𝐵𝑡−1:

• score ℎ ∘ 𝑦𝑡 = score ℎ + log 𝑃 𝑦𝑡 ℎ

• final sequence output 𝑦∗ = argmaxℎ’∈𝐵𝑇
log 𝑃 ℎ’

Basic decoding algorithms

ො𝑦𝑡 = 𝑔(𝑃(𝑦𝑡|{𝑦<𝑡})) 𝑔(⋅) is your decoding algorithm

a partial sequence until previous time t-1 

𝐵𝑡 = top−kℎ∈𝐵𝑡−1,𝑦∈𝑉{ ℎ ∘ 𝑦, score ℎ ∘ 𝑦 }



• when k=1, beam search reduces to greedy decoding

• Beam search was the defacto standard decoding algorithm for the classical NLP models, 
but it is no longer used often in modern day language models. Why?

Basic decoding algorithms
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Aspect Greedy Beam Search

Search space 1 path 𝑘 paths simultaneously 

Complexity 𝑂 𝑇 ⋅∥ 𝑉 ∥ 𝑂 𝑇 ⋅ 𝑘 ⋅∥ 𝑉 ∥

Quality Local optimum Better approximation of global optimum

Diversity None Limited (within beam)



Circa 2019, GPT-2 was introduced with remarkable text quality
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This notion of 
“sampling” was 
surprising at 
that time!



Most likely sequences can be (surprisingly) repetitive! 

(Holtzman et al., 2019)



The more repeat, the more likely it becomes!

“I don’t know.”

“I don’t know. I don’t know. I don’t know. 
I don’t know. I don’t know. I don’t know.”

(Holtzman et al., 2019)



Circa 2025, is looping gone with reasoning models?
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• Looping in reasoning LLMs isn't an 
edge case! 

• On AIME, authors flag a response as 
looping if a 30-gram repeats >20 
times. 

• When looping more likely?

• Across open reasoning LLMS 
(qwen, openthinker, phi, llama-r1): 

• Low temps => more looping

• Smaller models => more looping 

• Harder problems => more looping



Circa 2015, is looping gone with reasoning models?
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Though they loop more subtlety than before
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Though they loop more subtlety than before
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Top-k sampling
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Problem 1: Beam search can degenerate

Problem 2: Vanilla sampling (aka pure sampling) can become incoherent

Even if most of the probability mass in the distribution is over a limited set of options, 
the tail of the distribution could be very long, which include a lot of bad options

Although each of them may be assigned a tiny probability, in aggregate, they still get 
high chance to be selected eventually over a long sequence

e.g., when generating 30 tokens in a row, the chance of only generating from the top 
95% probability zone is as low as 21%

Solution: Top-k sampling (Fan et al., 2018)

 Only sample from the top k tokens in the probability distribution.



Issues with top-k sampling
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For flat distribution,
Top-k Sampling may cut off too quickly!

For peaked distribution,

Top-k Sampling may also cut off too slowly!



Top-p (nucleus) sampling (Holtzman et al., 2019)
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• Sample from all tokens in the top 𝑝 cumulative probability mass (i.e., where mass is 
concentrated)

p=0.2

𝑃𝑡(𝑦𝑡 = 𝑤|{𝑦}<𝑡) 𝑃𝑡(𝑦𝑡 = 𝑤|{𝑦}<𝑡)

p=0.12 p=0.8

𝑃𝑡(𝑦𝑡 = 𝑤|{𝑦}<𝑡)



Temperature sampling
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• Recall: At time step t, model computes a distribution 𝑃𝑡  by applying softmax to a vector 
of scores s ∈ℝ^(|𝑉|)

• Here, you can apply temperature hyperparameter 𝜏 to the softmax to rebalance 𝑃𝑡  :

 

• Raise the temperature 𝜏>1: 𝑃𝑡 becomes more uniform

• More diverse output (probability is spread across vocabulary)

• Lower the temperature 𝜏<1: 𝑃𝑡  becomes more spiky

• Less diverse output (probability concentrated to the top tokens)

𝑃𝑡(𝑦𝑡 = 𝑤|{𝑦<𝑡}) =
exp(𝒔𝑤)

∑𝑤′∈𝑉exp(𝒔𝑤′)

𝑃𝑡(𝑦𝑡 = 𝑤|{𝑦<𝑡}) =
exp(𝒔𝑤/𝜏)

∑𝑤′∈𝑉exp(𝒔𝑤′/𝜏)



Temperature sampling
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• Here, you can apply temperature hyperparameter 𝜏 to the softmax to rebalance 𝑃𝑡  :

 

• Raise the temperature 𝜏>1: 𝑃𝑡 becomes more uniform

• More diverse output (probability is spread across vocabulary)

• Lower the temperature 𝜏<1: 𝑃𝑡  becomes more spiky

• Less diverse output (probability concentrated to the top tokens)

𝑃𝑡(𝑦𝑡 = 𝑤|{𝑦<𝑡}) =
exp(𝒔𝑤/𝜏)

∑𝑤′∈𝑉exp(𝒔𝑤′/𝜏)

NOTE: Temperature is a hyperparameter 
for decoding algorithm, not an algorithm 
itself! It can be applied for both beam 
search and sampling methods.



When to use greedy vs sampling
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• Use Greedy Decoding When:

• Task has a definite correct answer (math, coding, 
factual QA) that can be answered right away

• Reproducibility is critical

• Working with reasoning tasks

• Constrained output space

• Use Sampling When:

• Open-ended generation (creative writing, dialogue)

• Long chain-of-thought reasoning (hard math, code)

• Information-seeking queries

• Diversity is valued over single best answer

•  Best-of-N Sampling 
(emerging trend):

• Sample N outputs

• Use reward model 
to select best

• A type of rejection 
sampling

• Can make smaller 
models competitive 
with larger ones

• Particularly effective 
for reasoning tasks



Decoding takeaways
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• Decoding is still a challenging problem in NLG - there's a lot more work to be done!

•  Different decoding algorithms can allow us to inject biases that encourage different 
properties of coherent natural language generation

•  Some of the most impactful advances in NLG of the last few years have come from 
simple but effective modifications to decoding algorithms

• Next lecture – “Speculative Decoding!”



Lecture Plan 

22

Decoding techniques (20 mins)
From greedy to beam search to sampling (15 mins)

Neural text degeneration (loopy behavior) (5 mins)

DeepSeek R1 deep dives (15 mins) From R1-Zero to R1 to R1-distill

PPO & GRPO & DAPO (25 mins)
PPO: dissecting the complexity

GRPO

DAPO

The nature of “reasoning” (20 min) What works, why it works, and when it fails
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Accuracy Reward

For math: compare final answer 
against ground truth. For code: run 
test cases. The reward is essentially 
binary — correct or not.

Format Reward

A small reward for placing 
reasoning inside <think>…</think> 
tags and the final solution 
afterwards.

No Process Reward Model (PRM)

DeepSeek argues that PRMs are expensive, subject to reward hacking, and may 
constrain the model’s ability to discover novel reasoning strategies. Outcome-
based rewards give maximum freedom.

Reward for R1-zero: keeping it simple

Caveat: additional composite rewards (e.g., language consistency, safety, …) added 
to the later stage RL leading to the final R1



Self-verification

The model checks its own work after 
deriving an answer. Emerges because 
self-checked outputs are more often 
correct.

Reflection and backtracking

“Wait, let me reconsider” or “That 
approach doesn’t work because…” 
The model recognizes wrong paths 
and restarts with a different strategy.

Extended Deliberation

The response length grows from hundreds to thousands of tokens. The model is 
essentially learning that thinking longer leads to better answers—a learned 
form of test-time compute scaling.

Emergent reasoning capabilities 



Poor readability

Reasoning traces are often poorly 
formatted and are difficult for 
humans to follow.

Code switching

The model frequently switches 
between languages within a single 
response, regardless of the input 
language.

Narrow scope, no general capability or safety discovery outside RLVR

Pure RL only works well for tasks with verifiable answers (math, code). Open-ended 
tasks like creative writing or general conversation are not effectively addressed. 
Also, R1-Zero won’t discover safety guardrails by solving math and code…

Emergent undesirable characteristics of R1-Zero 





Key findings 

30

• Finding 1: RL alone can induce reasoning

• Prior assumption: chain-of-thought reasoning required supervised examples. 

• Finding: R1-Zero demonstrates that outcome-based RL, with no process supervision, 
can induce sophisticated reasoning capabilities. 

• Caveat 1: the final R1 is still going through the SFT->RL pipeline in the end

• Caveat 2: doesn’t apply to small (less capable) models



Key findings 
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• Finding 2: Outcome rewards can enable discovery

• Prior assumption: sophisticated process rewards are necessary for O1 reasoning

• Finding: Process reward models can inadvertently constrain exploration by 
penalizing unconventional yet effective reasoning paths. The lesson: sometimes less 
supervision yields more capability.

• Caveat: RLVR is not applicable for all reasoning problems



Key findings 
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• Finding 3: RL + SFT synergy

• Neither pure RL (R1-Zero) nor pure SFT produces the best results. 

• The multi-stage pipeline shows that RL and SFT play complementary roles: RL 
discovers capability, SFT provides reliability. 

• Cold-start data prevents early RL instability; rejection sampling converts RL 
discoveries into reusable training data.



Key findings 
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• Finding 4: Distillation outperforms direct RL on small models

• If you have a limited compute budget, you are better off distilling from a large 
reasoning model than applying RL to a small model directly. 

• Through distillation, reasoning capabilities transfer to models as small as 1.5B 
parameters, making strong reasoning accessible at any scale 

• Finding 5: Open-weight reasoning models are viable

• R1 models are released under an MIT license. 

• The distilled 7B and 14B models outperform many much larger closed-source 
models on reasoning benchmarks. 



Key findings   
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• Finding 6: Structured search algorithms for inference scaling?

• Prior assumption: inference-time search algorithm such as Monte-Carlo Tree Search 
might be necessary

• Findings: reasoning can be entirely autoregressive; no special search algorithm 
necessary. 

• Caveat: later models for hard math benchmarks do incorporate structure, though 
not in the traditional MCTS sense



Key findings   
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• Finding 7: Test-time compute is a learnable resource

• Findings: R1’s models learn to allocate more thinking tokens to harder problems. 
This means test-time compute scaling is not just an inference trick (like beam search 
or majority voting)—it can be internalized by the model itself through training. The 
model learns when and how much to think.

• Caveat: true to some degree; later studies reveal challenges to address



Lecture Plan 
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Decoding techniques (20 mins)
From greedy to beam search to sampling (15 mins)

Neural text degeneration (loopy behavior) (5 mins)

DeepSeek R1 deep dives (15 mins) From R1-Zero to R1 to R1-distill

PPO & GRPO & DAPO (25 mins)
PPO: dissecting the complexity

GRPO

DAPO

The nature of “reasoning” (20 min) What works, why it works, and when it fails
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PPO Recab
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• The clipped surrogate objective of PPO:

• The complete loss:

• To iteratively train both the policy network (𝜋𝜃) and the value network (𝑉)

Entropy loss

Value network loss

The value network is frozen (stop gradient) for the 
purpose of optimizing the CLIP surrogate loss term for 
updating the policy network

This ‘r’ refers to the ‘ratio’ of *importance 
sampling*, not ‘reward’!



PPO Complexity  1. Four* separate models to keep in memory!
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• The policy 𝜋𝜃

• The language model being trained. This is the actor that generates responses.

• The value network 𝑉𝜙 𝑠

•  The critic model (often a second copy of the LLM with a scalar head) that estimates 
the expected cumulative reward from any state. This is trained alongside the policy.

• The reward model 𝑅

• The model trained on human preference data to score the quality of a response 
given a prompt 

• The reference policy 𝜋𝑟𝑒𝑓

• A frozen copy of the original pretrained model, used to compute KL divergence 
penalties that prevent the policy from drifting too far.

=> an enormous compute/infrastructure burden!

*In practice, five  separate models 
due to two copies of the evolving policy 
model (due to the off-policy drift coming 
from the RL infra/GPU optimization) 



PPO Complexity  2. Generalized advantage estimation (GAE)
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• The advantage function 𝐴 𝑠, 𝑎 : how much better an action is compared to the average 
action at that state. 

• PPO estimates advantages using GAE (Schulman et al., 2016). 

• First, define the temporal difference (TD) residual:

• where ෥𝑟𝑡 is the reward at step t)

• Then the GAE advantage is an exponentially weighted sum of the TD residuals:

• The parameter 𝜆 ∈ 0,1 controls the bias-variance tradeoff: 𝜆 =  0 gives the one-step TD estimate (low variance, 
high bias), while 𝜆 =  1 gives the Monte Carlo return (high variance, low bias). In practice, 𝜆 = 0.95 and discount 
factor 𝛾 =  1.0 are common choices for RLHF.



PPO Complexity  2. Generalized advantage estimation (GAE)
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• The advantage function 𝐴 𝑠, 𝑎 : how much better an action is compared to the average 
action at that state. 

• PPO estimates advantages using GAE (Schulman et al., 2016). 

• First, define the temporal difference (TD) residual:

• where ෥𝑟𝑡  is the reward at step t 

• Then the GAE advantage is an exponentially weighted sum of the TD residuals:

• The parameter 𝜆 ∈ 0,1 controls the bias-variance tradeoff: 𝜆 =  0 gives the one-step TD estimate (low variance, 
high bias), while 𝜆 =  1 gives the Monte Carlo return (high variance, low bias). In practice, 𝜆 = 0.95 and discount 
factor 𝛾 =  1.0 are common choices for RLHF.

So what?
• GAE requires calling the value 

function at every token position in 
every generated response. 

• For a batch of 512 prompts with 16 
responses each, with average 
lengths of 2,000 tokens, this 
means ~16 million value function 
forward passes per training step—
an enormous computational 
overhead!



PPO Complexity  3. Training of the value network
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• The value function must be trained jointly with the policy. But how?

• Its loss is typically a simple squared error between the predicted value and the actual 
return:

• The value network has its own learning rate and separate hyperparameter tuning.

• In theory, the value network should help with the credit assignment problem. Instead 
of the one final scalar reward at the end of the sequence, the value network should 
learn per-token credit assignment by estimating how much "value" remains at each 
position, effectively spreading the final reward backward through time via the TD 
residuals.

• In practice, it’s not clear if it’s learning valuable signals…



1. Generation of a rollout

2. Reward computation (just a single score R at the end of the rollout)

3. Per-token reward construction with KL penalty:

• The reward model provides only a single score for the entire response. To create 
per-token rewards for GAE, the KL divergence from the reference policy is used as a 
per-token penalty. At rollout time, the per-token reward is computed using the 
behavior policy: 

4. Per-token value estimation

5. Per-token advantage computation

6. Policy network update

7. Value network update

PPO Complexity  4. The full PPO training step 

43

(for intermediate tokens) 

(for the last token) 
This should ideally be the most current 𝜋𝜃, but 
in practice, it’s slightly behind the most recent 
one (off-policy drift due to RL infra 
optimization)

This is the original original 
model, used as the ‘reference’ 
model for KL regularization



• Given a prompt, sample a group of G responses

• Then the GRPO objective is

• with the token-level importance sampling ratio:

• And a super simple advantage function:

The GRPO objective
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PPO had the KL term baked under the reward 
computation, which in turn is baked under the 
advantage term, whereas GRPO places it as a more 
direct part of the learning objective

”DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models” (Shao et al., 2024)



• Given a prompt, sample a group of G responses

• Then the GRPO objective is

• Which looks quite similar to the PPO objective:

The GRPO objective

45

PPO had the KL term baked 
under the reward computation, 
which in turn is baked under the 
advantage term, whereas GRPO 
places it as a more direct part of 
the learning objective

”DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models” (Shao et al., 2024)



PPO vs GRPO
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PPO GRPO

# of models in memory - The current policy network
- The slightly outdated policy
- The original reference policy
- The value network
- The reward model

- The current policy network
- The slightly outdated policy
- The original reference policy
(note R-1 didn’t use the reward model 
by opting for a simple reward)

Advantage estimation GAE at every token Group reward’s z-score

Token-level credit Per-token via TD residuals Uniform across all tokens

Training models Iterating between the policy network 
and the value network

Just the policy network

KL Incorporated to the token-level 
reward, which is hidden inside the 
advantage term

Directly under the GRPO objective

”DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models” (Shao et al., 2024)



DAPO technique  1. Clip-higher (asymmetric clipping)
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• Motivation: In standard PPO/GRPO, the importance sampling ratio is clipped 
symmetrically. The upper clip restricts exploration, which can lead to entropy collapse.

• Solution: DAPO decouples the lower and upper clipping ranges:

• The ratio can be clipped to e.g., [0.8, 1.28], instead of the standard [0.8, 1.2]

“DAPO: An Open-Source LLM Reinforcement Learning System at Scale” (ByteDance Seed et al., 2025)



DAPO technique  2. Dynamic sampling
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• Motivation: when all responses to a prompt are correct or incorrect, the group 
standard deviation becomes zero, which becomes a gradient dead zone, and shrinking 
the effective batch size.

• Solution: DAPO enforces only response groups with at least one correct and one 
incorrect responses are re-trained.

“DAPO: An Open-Source LLM Reinforcement Learning System at Scale” (ByteDance Seed et al., 2025)



DAPO technique  3. Token-level loss
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• Motivation: GRPO uses a sample-level loss: it first averages per-token loss within each 
response and then averages across G responses.

• Why is this a problem?

• Unfair to long-CoTs: a single token in a 100-token response has 10× the gradient 
contribution of one in a 1000-token response.

• Solution: DAPO replaces sample-level averaging with token-level averaging:

GRPO (sample-level) DAPO (token-level)

Each response weighted equally Each token weighted equally

“DAPO: An Open-Source LLM Reinforcement Learning System at Scale” (ByteDance Seed et al., 2025)



Lecture Plan 
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Decoding techniques (20 mins)
From greedy to beam search to sampling (15 mins)

Neural text degeneration (loopy behavior) (5 mins)

DeepSeek R1 deep dives (15 mins) From R1-Zero to R1 to R1-distill

PPO & GRPO & DAPO (25 mins)
PPO: dissecting the complexity

GRPO

DAPO

The nature of “reasoning” (20 min) What works, why it works, and when it fails



The nature of reasoning: what works 1/2
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1. Chain-of-thought prompting enhances 
reasoning dramatically (wei et al., 2022)

• CoT reasoning is an emergent 
property of model scale: the benefits 
only materialize in sufficiently large 
models (100B+)

• Smaller models often produce 
illogical chains of thought that do not 
improve accuracy.



1. Self-consistency (=majority vote over N samples) further boosts reasoning 

• GSM8K (+17.9%), SVAMP (+11.0%), AQuA (+12.2%), StrategyQA (+6.4%), … (wang et al., 2022)

➢ Diverse reasoning paths 
at the top probability 
zone that cannot be 
accessed via greedy 
decoding

➢ The bigger the N, the 
bigger the performance 
boost → test-time 
scaling vibe! 

The nature of reasoning: what works 2/2

52



1. “Chain-of-Thought Reasoning without Prompting” (wang and zhou, 2024)

• Introduced “CoT-decoding” :for the first token, branch with all top-k tokens. For subsequent tokens, 
continue with greedy decoding. 

• Findings: those alternative paths often contains CoT despite that no CoT prompting was used (!!!)

• Implication: reasoning paths naturally exist within pre-trained LLMs and are merely obscured by 
standard greedy decoding.

The nature of reasoning: why it works
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What about just K 
samples using top-k or 
temperature scaled 
sampling?
-- Turns out, without 
*any* CoT prompting, 
CoT paths are harder to 
surface up
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 no CoT 

 no CoT 

 no CoT 

 no CoT 

 Yes 
CoT! 

➢ Taking a majority vote would have not worked well
➢ Answer confidence dramatically increases when the 

sample hits a proper CoT path
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 no CoT 

 Yes 
CoT! 

 no CoT 

 no CoT 

 Yes 
CoT! 

➢ A decoding with a legit CoT can be shorter than 
a decoding without a helpful CoT



1. “Chain-of-Thought Reasoning without Prompting” (wang and zhou, 2024)

• Introduced “CoT-decoding” :for the first token, branch with all top-k tokens. For subsequent tokens, 
continue with greedy decoding. 

• Findings: those alternative paths often contains CoT despite that no CoT prompting was used (!!!)

• Implication: reasoning paths naturally exist within pre-trained LLMs and are merely obscured by 
standard greedy decoding.

The nature of reasoning: why it works
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• Findings: the presence of a CoT path in the decoding 
sequence correlates with higher model confidence in the 
final answer

• Wait, how to find where the answer is?

• Heuristic 1: last numeric number
• Heuristic 2: let the model to continue with "So the 

answer is”, and then align the answer to the text 
pan of the original decoding path
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1. Comparing different CoT extraction approaches:

• Implication: log-prob for the whole decoding path isn’t reliably better than greedy decoding (!)

• Why not? 

• If length-normalized, it can be (sometimes) helpful

The nature of reasoning: why it works
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1. “Large Language Models are Zero-Shot Reasoners” (Kojima et al., 2023)

The nature of reasoning: why it works



“Large Language Models are Zero-Shot Reasoners” (Kojima et al., 2023)
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1. “Why think step by step? Reasoning emerges from the locality of experience” (Prystawski et al., 2023)

The nature of reasoning: why it works

➢ A: The pink variable is an 
example observed variable 
and the yellow variable is an 
example target variable. 
Gray variables are useful 
intermediate variables for 
reasoning. Lines show 
examples of local 
neighborhoods from which 
training samples are drawn. 

➢ B: format of the training 
samples. 

➢ D: mean squared error by 
number of training tokens 
for each training condition 
and estimator. 
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“Why think step by step? Reasoning emerges from the locality of experience” (Prystawski et al., 2023)

➢ The central hypothesis: CoT reasoning works 
because training data consists of overlapping local 
clusters of related variables. Step-by-step reasoning 
chains these local relationships to reach conclusions 
about variables never seen together in training.

➢ Proved mathematically that a "reasoning gap" 
exists: for autoregressive models trained on local 
samples, reasoning through intermediate variables 
reduces bias vs. direct estimation.

➢ Showed intermediate reasoning steps help only 
when training data is locally structured; with all 
variable combinations available, reasoning adds no 
benefit.

➢ Locally structured data + reasoning is dramatically 
more data-efficient than training on all variables 
simultaneously.
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1. “Cognitive Behaviors that Enable Self-Improving Reasoners, or, Four Habits of Highly 
Effective STaRs” (Gandhi et al., 2025)

• Key question: why some LMs can self-improve through RL while others plateau quickly

• Why Qwen-2.5-3B dramatically outperforms Llama-3.2-3B under identical RL training

• Answer: four behaviors (!)

The nature of reasoning: why it works

Verification: Checking intermediate results for correctness before proceeding to the next step.

Backtracking: Recognizing errors and reverting to explore alternative solution paths.

Subgoal Setting: Breaking complex problems into sub-problems that can be solved independently.

Backward Chaining: Reasoning from the goal backward to identify the steps required to reach it.
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1. “Cognitive Behaviors that Enable Self-Improving Reasoners, or, Four Habits of Highly 
Effective STaRs” (Gandhi et al., 2025)

• Key question: why some LMs can self-improve through RL while others plateau quickly

• Why Qwen-2.5-3B dramatically outperforms Llama-3.2-3B under identical RL training

• Answer: four behaviors (!)

• Behavior matters more than correctness: models primed with incorrect solutions containing proper 
reasoning patterns achieve comparable RL performance to those trained on correct solutions.

The nature of reasoning: why it works

Qwen-2.5-3B ✓

Naturally exhibits all four cognitive 
behaviors. RL training leads to substantial 
improvement — responses grow longer, 
accuracy increases dramatically.

Llama-3.2-3B ✗

Initially lacks these behaviors and plateaus under 
identical RL training. Priming with reasoning-
behavior examples or continued pretraining with 
filtered data enables it to match Qwen.
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1. “Reasoning Models Don't Always Say What They Think” (Chen et al., Anthropic, 2025)

• AI safety implication: can we trust what reasoning models say in their chain of 
thought? CoTs have the potential to provide a window into model reasoning that 
can be monitored for undesirable behaviors. 

• The authors evaluate CoT faithfulness of state-of-the-art reasoning models across 
6 reasoning hints presented in the prompts and find: (1) for most settings and 
models tested, CoTs reveal their usage of hints in at least 1% of examples where 
they use the hint, but the reveal rate is often below 20% 

• Research question: Can we teach LLMs to be more faithful with their CoTs? How?

The nature of reasoning: when it fails
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1. “Reasoning Models Don't Always Say What They Think” (Chen et al., Anthropic, 2025)

• Low faithfulness : Across six hint types and multiple SOTA models, CoTs reveal 
hint usage in <20% of cases where hints actually influenced answers. Models 
systematically use information without acknowledging it.

• RL plateau : Outcome-based RL initially improves faithfulness substantially (63% 
and 41% on two evals) but plateaus at 28% (MMLU) and 20% (GPQA), suggesting it's 
insufficient alone for high CoT faithfulness.

• Reward hacking opacity : When RL increases hint usage (reward hacking), 
verbalization of this usage doesn't increase correspondingly—CoT monitoring cannot 
reliably detect model shortcuts or exploits.

The nature of reasoning: when it fails
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The nature of reasoning: when it fails

1. “Mind Your Step (by Step): Chain-of-
Thought can Reduce Performance on Tasks 
where Thinking Makes Humans Worse” (Liu 

et al., 2025)
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