Natural Language Processing
with Deep Learning

CS224N/Ling284

P

Yejin Choi
Lecture 14: Reasoning 2/2

Announcement

* A4 is due this Thursday. We highly recommend to start working on it now, since it
involves querying APIs. If everyone is working on it all right before the deadline, we’ll
get rate limit issues.

 The Project Milestone instructions are out now, and we will be doing our best to get
the Project Proposals graded with feedback tonight/tomorrow morning.

Lecture Plan

* Speculative decoding (20 mins)
Off-policy, on-policy, online RL, off-line RL

q? Off-policy drift & on-policy distillation (20 mins) ATl ey el

On-policy distillation

Long context extension (25 mins)

Inference-time scaling (15 min)

Speculative decoding

 Problem: Generating with a large LM takes a long time
Intuition: Not all tokens are equally hard to generate!

upon a time t here*;
upon -~ a --, time --, there ? T ? T

ol B -

Draft : |Draft ||| Draft i Draft
model : model ' model ' model

s e

Target model

once. “»upon “» a “» time * f T f
upon a time there
Stepl: Autoregressive generation Step2: Parallel verification

e ldea: Use a generation from small LM to assist large LM generation

* Same idea independently proposed from Google Research (Leviathan et al., Nov 2022)
and DeepMind (Chen et al., Feb 2023)

4 Image credit: https://medium.com/@genai.works/speed-up-lim-inference-with-speculative-decoding-1fc79701e9d6

Speculative decoding

e First, sample a draft of length K (=5 in this example) from a small LM Mp
Y1 ~pC1x),y2 ~pC %Y1, Y5 ~ PC 1% Y1, Y2, Y3, Va)

* Then, compute the token distribution at each time step with a large target LM M,

q(1%),qC 1%,y1),9C [x,y1,¥2), -, q(1%, y1, -, ¥s5)

* Note: This can be computed in a single forward pass of Mq) Why?)

* Llet'sdenotep; = p(: |x,¥1, ,yi-1)and q; = q([, Y1, Yi-1)
e.g., 4 = q(- |x,y1) ,i.e. next token distribution predicted by the target model M,

when given x and 'y
I 5

Speculative decoding

* Now, we can compare the probability of each token assigned by draft model M, and
target model M,

Y1 Y2 Y3 §Z! Ys

dogs love chasing after cars

Draft model (1B) Di 0.8 0.7 0.9 0.8 0.7
Target model (100B) qi 0.9 0.8 0.8 0.3 0.8

 Starting from y,, decide whether to accept the tokens generated by the draft model.

Speculative decoding

* Now, we can compare the probability of each token assigned by draft model M, and
target model M,

Y1 Y2 Y3 §Z! Ys

dogs love chasing after cars

Draft model (1B) D 0.8 0.7 0.9 0.8 0.7
Target model (100B) qi 0.9 0.8 0.8 0.3 0.8

 Starting from y; ,decide whether to accept the tokens generated by the draft model.

 Casel:q; = p;
The target model (100B) likes this token, even more than the draft model.
=> Accept this token!

Generation after step 1:
dogs

Speculative decoding

* Now, we can compare the probability of each token assigned by draft model M, and
target model M,

Y1 Y2 Y3 §Z! Ys

dogs love chasing after cars

Draft model (1B) Di 0.8 0.7 0.9 0.8 0.7
Target model (100B) qi 0.9 0.8 0.8 0.3 0.8

 Starting from y; ,decide whether to accept the tokens generated by the draft model.
« Case 2:(q; < p;) accept)
Target model doesn't like this token as much as the draft model...

=> Accept it with the probability q—l: Generation after step 3:
pi dogs love chasing
(assuming we accepted chasing w/ prob 0.8/09)

Speculative decoding

* Now, we can compare the probability of each token assigned by draft model M, and
target model M,

Y1 Y2 Y3 YVa Ys

dogs love chasing aft cars

Draft model (1B) Di 0.8 0.7 0.9 0.8 0.7
Target model (100B) qi 0.9 0.8 0.8 0.3 0.8

 Starting from y; ,decide whether to accept the tokens generated by the draft model.
* Case 3: q; < p;) reject)
If g; >>>p; ,we likely would have rejected it.

In this case, we sample a new token from target model
=> Specifically, we sample from (q; — ;) +

i

Speculative decoding

* But why specifically (q; — p;)+?
* because our goal: to cover target LM distribution g;
 Casel:q; = p;
Accept this token.
* Case 2: q; < p;) accept)
qi

Accept it with the probability o

* Case 3: q; < p;) reject)
If q; >>>p; ,we likely would have rejected it.
In this case, we sample a new token from target model
=> Specifically, we sample from (q; — v;) +

Note: This sampling procedure,

though sampling from small LM (p_i), has

the same effect as sampling from target LM (g_i).
Formal proof in Appendix | of (Chen et al., 2023)

10

Speculative decoding

e Speculative sampling is a form of rejection sampling.
* To sample from an easy-to-sample distribution p (small LM), in order to ample from a
more complex distribution q (large LM).
* Using 60M LM (T5-small) as a draft model and 11B (T5-XXL) LM as a target model,
we get 2~3x acceleration with identical outputs!

M, encoder
m— M, encoder

=7

>
m m— M, decoder
L s M, decoder
o~
[
un
©

Wall time -

Figure 5. A simplified trace diagram for a full encoder-decoder Transformer stack. The top row shows speculative decoding with v = 7
so each of the calls to M, (the purple blocks) is preceded by 7 calls to M, (the blue blocks). The yellow block on the left is the call to the
encoder for M, and the orange block is the call to the encoder for M,. Likewise the middle row shows speculative decoding with v = 3,

and the bottom row shows standard decoding.

11

Dynamic speculative decoding

e adaptively adjusts the "lookahead” size (the number of candidate tokens) at each iteration
by using a lightweight classifier or confidence threshold to decide on-the-fly whether the
draft model should continue drafting or switch to the target model for verification.

 See more: Mamou et al., 2024 & https://huggingface.co/blog/dynamic_speculation_lookahead

Universal speculative decoding

e Original spec decoding requires identical tokenization between draft and target models

 Models with heterogeneous tokenization can be supported via re-encoding and alignment
techniques.

e See more: https://huggingface.co/blog/universal_assisted_generation

12

https://huggingface.co/blog/dynamic_speculation_lookahead
https://huggingface.co/blog/universal_assisted_generation

Even better speculative decoding algorithms are rapidly developed,
and all your favorite inference engines support several options!

Algorithm VLLM TRT-LLM HF TGI HF Transformers SGlLang
EAGLE-3 (Native) (Opt) X r%ag;/'anual
SuffixDecoding (Arctic) X)4 X (Beta)
Medusa (SOTA) (Pipeline)
Draft-Target (Universal)

DFlash (2026) /A (Fork) (Custom))4 X /\ (Fork)

EAGLE-3 (Extrapolation Algo for Greater LM Efficiency)

The Evolution: EAGLE 1, 2, and 3

EAGLE-1
Target LLM
Top Layer
Features
Draft Head
(Single Layer)
Target LLM l
Linear
Prediction
Sequence

EAGLE-2
Target LLM
Top Layer
Features
Draft Head
(Single Layer)
Target LLM '

S

R

Speculation Tree
(Dynamic Branches)

Source : Generated by nano banana pro

14

EAGLE-3

Target LLM

High Layer

Middle Layer

Low Layer

> ¥ <
Fused Features

Draft Head
(Multi-Layer Fusion)

4

Key ideas:

Eagle-1: let the draft model
“read the mind” of the target
model by sneaking into its
internal representation
(“features-level” speculation)

Speculation Tree
(Candidate Branches)

Eagle-2: context-aware
dynamic draft trees!

Eagle-3: “fused features”
across different layers

Image credit: https://docs.jarvislabs.ai/blog/speculative-decoding-vlim-faster-lim-inference & nano banana pro

https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference

EAGLE-3 (Extrapolation Algo for Greater LM Efficiency)

Vanilla Speculative sampling Medusa HASS EAGLE EAGLE-2 EAGLE-3
5.6x
| 4 an 5.0x
4.1x : 4,1x

g* 3.1x 30X 3 2x o 3.4x
g3 '
%2 1.9X2'1X

1 1.0x 1.0x 1.0x 1.0x

0 Vicuna 13B LLaMA-Instruct 3.1 8B LLaMA-Instruct 3.3 70B DeepSeek R1 LLaMA 8B

Figure 2: Speedup ratios of different methods at temperature=0. For the standard speculative sampling, Vicuna-13B
uses Vicuna-68M as the draft model. In Table 1, we present comparisons with additional methods, but this figure
only showcases a subset. Chat model’s evaluation dataset is MT-bench, and the reasoning model’s evaluation dataset
1s GSMB8K. DeepSeek R1 LLaMA 8B refers to DeepSeek-R1-Distill-LLaMA 8B.

15

Suffix Decoding: Extreme Speculative Decoding (oliaro et al., 2025)

O
Ongoing / \ / \
Inference ® ® ®
® ® © o O O
8[5/4|8|5 G) @ S ® @ D @
® o O D
®
() ® Expansion> ® Scoring 1 @ | Venfy (LLM>
& O ® O
- ONONOBORO ®e s[s[a[8]5]1]3
@}) ONO, Speculation Tree
Previous RO Speculation Tree Verification &

Outputs Suffix Trees \ Candidates / \ Generation /

Figure 1: Overview of SuffixDecoding’s algorithm. Two suffix trees track ongoing inference (top-left)
and previous outputs (bottom-left). SuffixDecoding uses these trees to find matching patterns based
on recently generated tokens. It constructs a speculation tree (middle) by selecting the most likely
continuations, scoring them based on frequency statistics. Finally, the best candidate is verified by
the LLLM in a single forward pass (right), with accepted tokens (shown in green) being added to the
output and used for the next round of speculation.

Suffix Decoding: Extreme Speculative Decoding (oliaro et al., 2025)

Speculative Speedups over Vanilla Decoding
3.3x

5.2% Baselines
I vanilla BB Token Reeycling
EE Eagle [Suffix (linear)
B Cagle2 B Suffix (tree)
0 Eagle 3 0 Hybrid (linear)
3 rLD B Hybrid (tree)

Spec-Bench AgenticSQL
Benchmarks

Mean Accepted Tokens per Step

8 i
7.5 7.6
7.3

Mean Accepted Tokens
(tokens/step)
=N

Spec-Bench AgenticSQL SWE-Bench
Benchmarks

Suffix Decoding vs Eagle-3

Feature SuffixDecoding (2025/2026) EAGLE-3 (2025/2026)
Model-Free: Uses a Suffix Tree to Model-Based: Uses a small, trained
Mechanism cache and match repetitive sequences | Transformer head to predict future

in the prompt and past outputs.

hidden features of the target model.

Compute Location

CPU-Bound: Runs speculation on the
CPU while the GPU handles the target
model's verification.

GPU-Bound: The draft head runs on
the GPU, sharing VRAM with the main
model.

Drafting Speed

~20 S\musSs per token (Ultra-fast).

Slower (requires a GPU forward pass).

Best Performance

Highly repetitive tasks (Coding,
Agentic loops, RAG, SQL generation).

Open-ended tasks (Creative writing,
general chat, unpredictable
reasoning).

Training Needs

Zero. It is a "plug-and-play" data
structure.

Requires training a small auxiliary
head on the target model’s feature
space.

Even better speculative decoding algorithms are rapidly developed,
and all your favorite inference engines support several options!

Algorithm VLLM TRT-LLM HF TGI HF Transformers SGlLang
EAGLE-3 (Native) (Opt) X r%ag;/'anual
SuffixDecoding (Arctic) X)4 X (Beta)
Medusa (SOTA) (Pipeline)
Draft-Target (Universal)

DFlash (2026) /A (Fork) (Custom))4 X /\ (Fork)

Lecture Plan

(3w Speculative decoding (20 mins)
Off-policy, on-policy, online RL, off-line RL
; Off-policy drift & on-policy distillation (20 mins) RL infra and off-policy drift
On-policy distillation
Long context extension (25 mins)

Inference-time scaling (15 min)

20

21

¢

Online RL: The agents can interact with the env during training

Offline RL (Batch RL): Learning happens strictly from a pre-recorded dataset (human logs or
previous agents). The agent cannot "explore" or test new actions.

On-Policy RL: The data used for training is generated exactly by the *current® policy. Once the
policy updates, old data from the old policy is discarded as "stale."

REINFORCE, PPO, GRPO

Off-Policy RL: The agent learns from data generated by any policy (older policy, different
policy, or even humans). It saves experiences in a *Replay Buffer* for repeated use.

DQN (Deep Q-Network)

22

[:} Online vs Offline RL: whether the agent can interact with the environment

On-policy vs Off-policy RL: whether rollouts for training are from the up-to-date policy

Offline On-Policy RL? Online Off-Policy RL?

* no true offline on-policy RL * This is very common. An agent interacts with a
(unless the interpretation is simulator (Online) but stores everything in a
somewhat stretched...) replay buffer to learn from later (Off-Policy),

like DQN.

* Asynchronous RL

* PPO with “off-policy drift” due to RL infra
optimization

Asynchronous RLHF (Noukhovitch et al., 2024)

* "Why": Classic RLHF is synchronous, which wastes GPU throughput

Slow Generation gt(fv) — Y 9t+1($) — Yt+1 0t+2(3§') — Y42
GPU1 | | I J(It J(
GPU 2 | J(J(Il I I |
On-Policy Training Vgtr(a:, yt) Vng'r'(:L‘, yt+1) v9,+g”'(37a yt+2)

Fast Generation (@) = ¥ Op1(®) = Y1 Or2(T) = Yeyo
GPU1 | J(J(J
GPU 2 [J() J
Off-Policy Training Vem’f' (’U Yt) V9,+2 7'(37 s Yi+1) v9f+3 r (’C , ’yt+2)
I 23

PipelineRL: in-flight weight updates & (Piché et al., 2025)

The generation engine receives new model weights mid-generation — briefly pausing,

loading fresh weights, then continuing in-progress sequences. This creates mixed-policy

sequences where early tokens are generated by a staler policy and later tokens by a
fresher one.

inference batch size decreases constant batch size inference

77, < o I | '
v I % % - I ' I weights t/hrough time
ST £ E r © / Optim Optim Optim 7
r I S & — /‘I % step0 step1 step2 GPU idle
Time Time
a) Conventional RL. b) Pipeline RL with inflight weight updates.

Figure 1: a) Conventional RL alternates between using all the GPUs for generation and then training. b)

PipelineRL runs generation and training concurrently, always using the freshest model weights for generations
thanks to the in-flight weight updates.

24

Why off-policy situations arise in practice

The Two-Engine Architecture

1. The Rollout Generator
Input: The current policy (g)
Output: Rollouts

2. The Learner

Input: Batches of rollouts from the
generator.

Output: Updated policy (mg41)

25

* Why rollouts become “stale"

Deliberate asynchronous RL
Multiple gradient steps per batch
Large replay buffers

Separate generation and training
clusters (one cluster optimized for
inference, while another cluster
optimized for gradient computation)
require weight transfer between
clusters, which introduce latency

Off-policy mitigations

Why off-policy is a problem

26

Biased gradient estimates
Importance weight explosion
Reward hacking amplification

7T9(at|8t)
7T9otd(at|3t)

ri(6) =

LCHP(9) = E, |min(r,(0) A, clip(r4(8),1 — €, 1 + E)At)}

Mitigation strategies
* PPO clipping
* KL penalty against the reference policy

 Algorithms without critiques/advantages
(reducing the window of off-policy drifts)
such as GRPO or REINFORCE

* Less epochs

e SGLang / vLLM’s continuous batching with
weight streaming

* Pipeline RL’s in-flight weight update

Lecture Plan

(m» Speculative decoding (20 mins)

Off-policy, on-policy, online RL, off-line RL

q? Off-policy drift & on-policy distillation (20 mins' ' ATl ey el

On-policy distillation

Long context extension (25 mins)

Inference-time scaling (15 min)

27

On-policy distillation (aka, generalized knowledge distillation)

e Firstintroduced by (Gu et al, 2023) and (Agarwal et al, 2023), and later amplified by
Qwen3’5 Tech report and Thin kingMaChine’S blog (https://thinkingmachines.ai/blog/on-policy-distillation/)

* Prior distillation methods were teacher-centric (thus off-policy w.r.t the learner)

* On-policy distillation is student-centric (thus on-policy w.r.t the learner)

~

|—~ Teacher Yo P l |—' Teacher P l

— 16 b Forward KLD i Prompt x — Student —>%—1¢ . Reverse KLD
Prometx — Gl - £(0) = KL[pllgs] | i \ L) = KLlg|lp] |
S | ____OnPolicyDistillation__ _ ___ .
VL(6) VL(6) (Section 2.2)
Sequence-Level KD MiniLLM (Ours)

Figure 3: Comparison between sequence-level KD (left) and MINILLM (right). Sequence-level
KD forces the student to memorize all samples generated by the teacher model, while MINILLM
improves its generated texts with the teacher model’s feedback.

28

Guetal. 2023

https://thinkingmachines.ai/blog/on-policy-distillation/
https://thinkingmachines.ai/blog/on-policy-distillation/
https://thinkingmachines.ai/blog/on-policy-distillation/
https://thinkingmachines.ai/blog/on-policy-distillation/
https://thinkingmachines.ai/blog/on-policy-distillation/

KL Divergence: how Q differs from the target P

Forward KL — "Mean-seeking” or “mass-covering”

KL(p|lq) = 1E$~p[10g ()] Zp) log = ;

* Weighted by P(x): penalizes Q where P has mass but Q does not
* Q covers all modes of P - over-estimates support

* Used in variational inference (ELBO)
Reverse KL — "Mode-seeking” or “mode-collapsing”

KL(q | p) ZIE:CNq[log } Zq) log g

* Weighted by Q(x): penalizes Q where Q has mass but P does not
* Q concentrates on one mode of P - under-estimates support
I * Used in RLHF: KL penalty keeps policy close to reference model
29

On-policy distillation vs standard knowledge distillation

Let pr = teacher, pg=student, y * = ground truth, x = input

 Knowledge distillation (Hinton et al., 2015)

T
loss = f d KL * j
0ss Orar Lxp = — Zpr(lf) (v | Yot :I:) log péﬂ (’U ‘ Yt 33)
=1 vey

 Sequential knowledge distillation (Kim & Rush, 2016)

loss = NLL

L"SquD —
off-policy t

* On-policy knowledge distillation (Gu et al., 2023; Agarwal et al, 2023)

T
log po(Ys | Y<¢,) where §~ pr(-|z)
—1

T
loss =reversekL Lggp = Z ZP@('U | §<t, x) [log po(v | G<t,) —logpr(v | J<t, T)]

where § ~ po(| z)

30

loss context Hard vs soft Learning style

SFT NLL on gold output Ground-truth context Hard labels
KD Forward KL Ground-truth context Soft dist Mass-covering
SegKD NLL on teacher’s output Teacher-generated context Hard labels Mass-covering
GKD Reverse KL Student-generated context Soft dist Mode-seeking
Supervised Fine-Tuning Supervised KD SegKD GKD (On-policy)
XSum (Summarization) WMT (Translation) GSM8K (Reasoning w/ CoT)

7] [—— T2 (leacher) o o] === mimimimimm 530 . _ e A

L D E

3 - 525

3 20 5 27.5 O

Q 18 g ’ ~

= T e s 215

g 16 £ 0

— -.E 26.0 o 10

@) (- . -

et Q -

C 14 o O 5

& 25.5 3

T5-Small T5-Base T5-Large T5-Small T5-Base T5-Large T5-Small T5-Base T5-Large
(77M) (250M) (800M) (77M) (250M) (800M) (77M) (250M) (800M)
Student (params) Student (params) Student (params)

Agarwal et al. 2023

On-policy distillation

32

The implication of reverse-KL: the context
comes from the student’s own generation.

This eliminates train-test mismatch (exposure
bias): the student learns to recover from its

owh mistakes. —— Target Distribution :',\‘
0.4 7 Forward KLD ! \
The mode-seeking property encourages the -=- Reverse KLD (ours) |
student to be sharp and confident on its best 0-27 /
behaviors rather than diffusely covering all of 0o
the teacher's modes. 00 25 50 75 100 125

Figure 2: The toy experiment. We fit
a Gaussian mixture distribution with a

single Gaussian distribution using for-
ward KLD and reverse KLD.

Guetal. 2023

On policy distillation vs RL

* On policy distillation can be viewed as the best of both worlds of SFT and RL ---

Supervised fine-tuning Off-policy dense light
Reinforcement learning On-policy sparse heavy
On-policy distillation On-policy dense light

Table 21: Comparison of reinforcement learning and on-policy distillation on Qwen3-8B. Numbers in
parentheses indicate pass@64 scores.

Method AIME24 AIME’25 MATH500 LiveCodeBench MMLU — GPQA | GPU
v5 -Redux -Diamond | Hours

Off-policy Distillation 55.0 (90.0) 42.8 (83.3) 92.4 42.0 86.4 55.6 -

+ Reinforcement Learning 67.6 (90.0) 55.5 (83.3) 94.8 529 86.9 61.3 17,920

+ On-policy Distillation ~ 74.4 (93.3) 65.5 (86.7) 97.0 60.3 88.3 63.3 1,800

33

On-policy distillation for domain-specific adaptation

 One very cool use case of on-policy distillation is domain-specific adaptation of OSS
models, e.g., fine-tuning Qwen-8B on a domain-specific corpus (i.e., internal
documents of a company), which can be viewed as a form of midtraining.

* Doing this in a naive way (applying midtraining on top of the off-the-shelf OOS model
which has been already post-trained) will cause degradation of capabilities acquired
through the previous post-training (e.g., instruction following)

* On-policy distillation (on an instruction-tuning dataset, 30%) recovers the instruction
following capability after acquiring the new domain-specific knowledge thru mid-
training (70%)

Model Internal QA Eval (Knowledge) IF-eval (Chat)
Qwen3-8B 18% 85%
+ midtrain (100%) 43% 45%
@ + midtrain (70%) 36% 79%

@ + midtrain (70%) + distill 41% 83%

34

Lecture Plan

(3w Speculative decoding (20 mins)

Off-policy, on-policy, online RL, off-line RL
4? Off-policy drift & on-policy distillation (20 mins) RL infra and off-policy drift

On-policy distillation
» Long context extension (25 mins)

Inference-time scaling (15 min)

35

Scaling reasoning requires scaling long-context

 When applications require very long-context windows (100k to 2 million tokens):
* Software engineering tasks that demand understanding the entire repository
* Legal analysis that involves careful review of documents spanning hundreds of pages
* Personalized chat interactions conditioned on prolonged interaction histories

* Solving extremely challenging math problems that require elaborate sequences of
trial and error across different problem-solving strategies

36

Scaling reasoning requires scaling long-context

What makes long-context challenging for LLMs

e Data limitation: most internet documents aren’t long enough to support pre-training
with extremely long context windows

* Compute/memory limitation: standard attention requires quadratic computation

* Generalization limitation of positional embeddings: models trained on shorter
sequences doesn’t generalize well on longer sequences

37

Typical document lengths of internet data

Source Type

Typical Length (Approx. Tokens)

Description

Common Crawl (Web)

600 — 1,200

Includes blog posts, news, and landing pages.
Many "documents” are highly fragmented.

Wikipedia

500 - 1,500

While some entries are long, the median article is
relatively concise.

Scientific Papers (arXiv)

5,000 — 10,000+

These are among the longest "natural” documents
in most sets.

Books (Project Gutenberg)

50,000 — 100,000+

The "long-tail" of the data; rare but critical for
long-range dependency.

GitHub (Code)

100 - 5,000

Code files vary wildly; many scripts are quite
short, while libraries are long.

38

Sinusoidal positional embeddings (Vaswani et al., 2017)

Output
Probabilities
s 3)
- : 2i/d =
— t
PE (pos, 2i) = sin(pos/10000°/%) ——
PE(pos, 2i + 1) = cos(pos/10000%/4) (o™
Feed
. . . . " e . . . Forward
 Where pos is the position index, i is the dimension index, y
. . . Add &
and d is the model dimension. (~(AsdErom) | | S
. . . . Feed Attention
e Used in the original Transformer (Vaswani et al., 2017) Forward 7 7 J N
. _‘
* We are revisiting this because it helps to learn RoPE N | ey || LN
L. . . . =, Masked
(Rotary positional embedding) that is recently important e e Wit o
for LLMs and long-context extension t N —
e J . —
Positional Positional
Encoding D & Encodin

Qutput
Embedding

Input
Embedding

Inputs Outputs
(shifted right)

39

1.0 o

o o p0 o1 p2 p3
04
02 o 0.000 0.841 0.909 0141 | j=
0.0 ,

-0.2 2

-0.4

-0.6

-0.8 0.000 0.638 0.983 0.875 i=2
-1.0

100
0.8 1.000 0.770 0.186 -0.484 | i=

0.6 1 o

0.4 -
0.2 A
0.0 T T T T T T T T T
0o 2 4 6 ¢ 10 12 14 16 18 20 .
04 o PE105,2i) = sin(
06
0.8

-1.0- (o] pos
104 o) PE(POSQHU - COS(100002i/dm0de1)
0.8 o
064 O
0.4 H
0.2 o

0.0(

_p.2 4 2 4 6 8 10 12 14 16 '8 20 .
04 Settings: d = 50
:2;22 The value of each positional encoding depends on
_: 26 the position (pos) and dimension (d). We calculate

-
m
o1}
iy
o
iy
n

14 '6 18 20 1.000 0.540 -0.416 -0.990 | i=1

Positional Encoding

pos)
100002/ Imodel

A d

1 © result for every index (i) to get the whole vector.

0.4 -

0.2 - (o)

0.0 T T T T T T T T T
02 2 4 6 8 10 12 14 16 18 20
~0.4 -

-0.6 o
-0.8 <
-1.04

https://erdem.pl/2021/05/understanding-positional-encoding-in-transformers

Sinusoidal positional embeddings (Vaswani et al., 2017)

PE(pos, 2i) = sin(pos/10000%"/4)
PE(pos, 2i + 1) = cos(pos/10000%/4)

* Where pos is the position index, i is the dimension index, and d is the model dimension.
* Why this particular sinusoidal form?

* Uniqgue absolute positional embedding pre-defined for any position (whether seen
during training or not)

* Captures relative distance! For any offset k, PE,,,sk can be represented as a linear
function of PE,,

 Two important things to note:
* Positional embedding is “added” to the token embedding

* Previously unseen positional embeddings during training, while can be defined, are
. still unseen to the model, thus the model can’t interpret them

Learned positional embeddings

42

Randomly initialized, and then learned via backprop

Used broadly in early days of LLMs, such as BERT, Roberta, GPT-2, GPT-3, Albert, Electra,
BART

It is not possible to define the positional embedding for a previously unseen position.
Also doesn’t generalize to positions beyond those seen during training.
But performance was better when the model learns the positional encoding themselves

This became a major bottleneck for long-context extension however, thus no longer used
In recent LLMs

RoPE: Rotary Position Embedding (Su et al., 2021)

 Recall Attention

Q=WyX, K=WgX, V=WpX

KT
Attention(Q,K, V) — softmax Q 174 After query and key.vectors
\/d_k; are computed, multiply

them with the rotation
(m) 7

im = R k. = Rk

dm o dm " e \ Rotations are applied to just
YK T query and key vectors,

Attention(Q, K,V) = softmax(¢) |4

not value vectors!

I 43

RoPE: Rotary Position Embedding (Su et al., 2021)

, . Where m is the position index, i is
Zg; \ _ (cos(mb;) — sin(mb;) L2 the dimension index, 8; = b=2/% s
, - .

Lo;11 Sln(mﬁi) Cos(mé’i) L2i+1 the frequency for dimension pair i,

and b is the base frequency
(typically b = 10,000)

The full rotation matrix of ROPE would then look like this:

/ cosmb; —sinmb, 0 0 0 0 \
sinmfy cosmb, 0 0 0 0
0 0 cosmbs — sinmbs 0 0
Rd@ - 0 0 sinmbfs cosmbs 0 0

0 0 oo cosmbg, —sinmbg)o
h \ 0 0 0 0 -+ sinmbg /o cosm@d/g/

RoPE: Rotary Position Embedding (Su et al., 2021)

Where m is the position index, i is

(:Bf‘zz) B (COS(in) —sin(m@i)) (o;) the dimension index, 8; = b~2/% s

/ — - the frequency for dimension pair i
T, sin(m@: cos(m@; To: quency pairt,
2i+1 (?’) (?’) 2+l and b is the base frequency

(typically b = 10,000)

* ROPE encodes position by *rotating* the query and key vectors in the 2D plane.

A
¥

Recall the rotation matrix:

cosf —sinf]
R(O)=| | .

| sinf cosf |
[a:’] _ |cos® —sinf]| [z EB

Y | sinf cosf ||y | -

45 X

RoPE: Rotary Position Embedding (Su et al., 2021)

46

RoPE encodes position by *rotating™ the query and key vectors in the 2D plane.

High-frequency dimensions (small i): rotate rapidly, encoding fine-grained local positional
information. These dimensions cycle through many full rotations over the training length.

Low-frequency dimensions (large i): rotate slowly, encoding broad/global positional
information. These dimensions complete very few full rotations even over very long
sequences.

Dimension pair 0: 8, = 1.0 — highest frequency, one full rotation every ~ 6.28 tokens
Dimension pair 31: 6537 = 0.01 — one rotation every ~ 628 tokens
Dimension pair 63: 8,3 = 0.0001 — one rotation every ~ 62,832 tokens

RoPE: Rotary Position Embedding (Su et al., 2021)

e Attention with RoPE

Q = WpX, K =WgkX, V=WyX “Taylor” and “Swift” at
. (m) = (n) position 10 and 11 will get
dm = R@ dm, kn = R@ kn the exact same result as

. QKT “Taylor and “Swift” at
Attention(Q, K,V) = softmax |74

position 100 and 101!
Vdg

 Relative distance

* because the transposed R rotates backward, we hav While their corresponding
(m)T p(n) (n—m) rotation matrices are all
R R\™ = R\"™ / different, by the time q and

- o)\ |) T (nem) k are multiplied, the
dmkn = qm(R@) R@ kn = qpn R@ kn rotational angle becomes
I identicall @v
47

RoPE: Roterary Positional Embedding (Su et al., 2021)

Feature Original Sinusoidal (2017) RoPE (LLaMA, PaLM, etc.)

Inteeration Additive: Added to the input Multiplicative: Applied to SQS and SKS at
8 embedding before the first layer every attention layer

Norm Increases the token embedding’s

preservation norm Preserves the token embedding’s norm

Mathematically captured, but due
Relative to the additive integration, the
Distance information gets muddled up by the

time QKV attention is computed

Mathematically captured via the rotation
angle and the information is cleanly available
when the QKV attention is computed

Allows for additional long context extension
Extrapolation Struggles significantly techniques such as "Position Interpolation”,
"NTK scaling”, and YARN

48

Long context extension practices ,8

1. Position Encoding Modifications
RoPE scaling appears to be the most common family of approaches (as of 2026):

49

Linear interpolation (Position Interpolation): Scales position indices down by a factor so the
model sees familiar relative positions. Introduced by Meta for extending LLaMA from

2K—>32K+. Requires light fine-tuning.
NTK-aware interpolation: Adjusts the rotary base frequency rather than linearly

compressing positions. Better preserves high-frequency components. Has "dynamic NTK"
variants that adapt scaling based on sequence length at inference.

YaRN (Yet another RoPE extensioN): Combines NTK scaling with an attention temperature
correction and a ramp function that treats different frequency bands differently —
interpolating low frequencies while extrapolating high frequencies.

Long context extension practices ,8

2. Progressive / Staged Training

A common recipe (used by LongLLaMA, LongAlign, Llama 3.1, etc.):

50

Start from a base model (e.g., 4K—8K context).
Apply position encoding modification.

Continual pretraining on long documents with progressively increasing sequence lengths
(e.g., 8K - 32K - 64K - 128K), often with a relatively small amount of data (billions of
tokens, not trillions).

Fine-tune on long-context instruction data.

The key insight is that you don't need the full pretraining budget —typically 0.1-1% of
original pretraining tokens suffices for adaptation.

Long context extension practices ,8

3. Data Engineering

51

Upsampling long documents in the continued pretraining mix (books, code repos, long-
form articles, concatenated related documents).

Synthetic long-context tasks: Needle-in-a-haystack retrieval, long-range QA, multi-
document summarization.

LongAlign-style instruction tuning with tasks specifically requiring the model to use
information spread across the full context.

Self-instruct for long contexts: Using a capable model to generate long-context instruction-
response pairs.

Long context extension practices ,8

4. Attention Architecture Modifications

« Sparse / sliding window attention combined with global attention tokens (Longformer-
style).

« Flash Attention (and FlashAttention-2/3) to reduce memory from O(n?) to O(n) during
training.

* Grouped Query Attention (GQA) or Multi-Query Attention (MQA): Reduces KV cache
memory, enabling longer contexts at inference.

52

Lecture Plan

(m» Speculative decoding (20 mins)

Off-policy, on-policy, online RL, off-line RL
4? Off-policy drift & on-policy distillation (20 mins) RL infra and off-policy drift

On-policy distillation

Long context extension (20 mins)

Inference-time scaling (10 min)

Test time compute scaling 5?

* This notion was intensely popularized by OpenAl’s O1 release in Sep 2024
 Though it was preceded by the GDM paper from Aug 2024
 And it also appeared less explicitly in the “Let’s verify step by step” paper from May 2023

Google DeepMind 202+

Scaling LLM Test-Time Compute Optimally can
be More Effective than Scaling Model Parameters

$,2 s 2

Charlie Snell®*’ 1, Jaehoon Leez, Kelvin Xu and Aviral Kumar

Let’s Verify Step by Step

Hunter Lightman”* Vineet Kosaraju® Yura Burda™ Harri Edwards
Bowen Baker Teddy Lee Jan Leike John Schulman Ilya Sutskever

Karl Cobbe™

54 OpenAl

Test time compute scaling 87 Instead of scaling only training time compute,
what if we scale test time compute?

o1 AIME accuracy o1 AIME accuracy
during training at test time
100 - 100 -
80 A 80 A
[
[
> o >
& 3
5 60 e © "5 60 A °
O ® o
O ® ® ®)
i ks .
® ° ®
9@ 40 A @ 40 - .
(40] qv]
(o} o o
[
20 -
Instead of training more,
0 what if we let the model think more?

train-time compute (log scale) test-time compute (log scale)

TeS t t| me com p u t e sca | | N g g Scaling LLM Test-Time Compute Optimally can

56

Google DeepMind

be More Effective than Scaling Model Parameters

Charlie Snell® 1, Jaehoon Leez, Kelvin Xu® 2 and Aviral Kumar®' 2

This paper challenges the dominant paradigm in LLM development by demonstrating that

intelligently scaling test-time compute can yield larger performance gains than simply
scaling model parameters

For a fixed inference budget, smaller models using smart test-time compute strategies
can outperform larger models using standard decoding

For compute-optimal allocation, seek an optimal balance between
* Model size (pretraining FLOPs)

* Number of generated samples or revision steps (test-time FLOPs)

Google DeepMind

: : Scaling LLM Test-Time Compute Optimally can
Te St t Ime com p U te SCd l In g g be More Effective than Scaling Model Parameters

Charlie Snell® 1, Jaehoon Leez, Kelvin Xu® 2 and Aviral Kumar®' 2

e Test-time compute scaling strategies evaluated:
* Best-of-N sampling: Generate N independent solutions, select best via verifier

Weighted Best-of-N: Sample from compute-optimal temperature distributions

Sequential revisions: Iteratively refine single solutions using model self-critique

Beam search with PRMs: Maintain multiple solution candidates, pruning based on
step-level rewards

Diverse beam search: Encourage exploration across different solution approaches
e Verification methods evaluated:
e Outcome-supervised reward models (ORMs): Trained to predict solution correctness

* Process-supervised reward models (PRMs): Trained to evaluate correctness at each
reasoning step

* Domain-specific verifiers: For problems with checkable solutions (e.g., code execution)

57

40

35

30

25

20

MATH Test Accuracy (%)

15

10

Comparing PRM Search Methods

2 2

5

== Best-of-N Weighted
== Majority

=@= Beam; M := sqrt(N)
«@= Beam;, M =4
== 1 Step Lookahead; M := sqrt(N)
== 3 Step Lookahead; M := sqrt(N)
== 3 Step Lookahead; M := 4

2’ 2’

Generation Budget

80

MATH Test Accuracy (%)
ey (o]
o o

N
o

o

Comparing Beam Search and Best-of-N by Difficulty Level

. Beam Search
Best-of-N Weighted

|‘ Majority
al

|| Ill‘ IlII ==mll __ _
4

Test Questions Binned by Increasing Difficulty Level

Figure 3 | Left: Comparing different methods for conducting search against PRM verifiers. We see that at low generation
budgets, beam search performs best, but as we scale the budget further the improvements diminish, falling below the best-of-N
baseline. Lookahead-search generally underperforms other methods at the same generation budget. Right: Comparing beam
search and best-of-N binned by difficulty level. The four bars in each difficulty bin correspond to increasing test-time compute
budgets (4, 16, 64, and 256 generations). On the easier problems (bins 1 and 2), beam search shows signs of over-optimization
with higher budgets, whereas best-of-N does not. On the medium difficulty problems (bins 3 and 4), we see beam search
demonstrating consistent improvements over best-of-N.

58

Google DeepMind

TeS t t| me com p u t e sca | | N g g Scaling LLM Test-Time Compute Optimally can

be More Effective than Scaling Model Parameters

Charlie Snell® 1, Jaehoon Leez, Kelvin Xu® 2 and Aviral Kumar®' 2
L] L]
.
* Key findings:

* On MATH-500, a 14B parameter model with optimized test-time compute matched or
exceeded the performance of models 4% larger

 The compute-optimal strategy allocated roughly equal FLOPs to pretraining and
inference for their experimental setup

* Sequential revision strategies showed particularly strong scaling on tasks requiring
refinement and error correction

* PRMs enabled 4-8x more efficient compute usage compared to ORMs w/ beam search
e Practical takeaways:

* Don't default to the largest model!

* Invest in verification!

* High-quality reward models, especially PRMs, dramatically improve test-time scaling

59

	intro
	Slide 1: Natural Language Processing with Deep Learning CS224N/Ling284
	Slide 2: Announcement
	Slide 3: Lecture Plan

	speculative decoding
	Slide 4: Speculative decoding
	Slide 5: Speculative decoding
	Slide 6: Speculative decoding
	Slide 7: Speculative decoding
	Slide 8: Speculative decoding
	Slide 9: Speculative decoding
	Slide 10: Speculative decoding
	Slide 11: Speculative decoding
	Slide 12: Dynamic speculative decoding
	Slide 13
	Slide 14: EAGLE-3 (Extrapolation Algo for Greater LM Efficiency)
	Slide 15: EAGLE-3 (Extrapolation Algo for Greater LM Efficiency)
	Slide 16
	Slide 17
	Slide 18
	Slide 19

	RL infra
	Slide 20: Lecture Plan
	Slide 21
	Slide 22
	Slide 23: Asynchronous RLHF (Noukhovitch et al., 2024)
	Slide 24: PipelineRL: in-flight weight updates 🛫 (Piché et al., 2025)
	Slide 25: Why off-policy situations arise in practice
	Slide 26: Off-policy mitigations

	distillation vs RL
	Slide 27: Lecture Plan
	Slide 28: On-policy distillation (aka, generalized knowledge distillation)
	Slide 29: KL Divergence: how Q differs from the target P
	Slide 30: On-policy distillation vs standard knowledge distillation
	Slide 31
	Slide 32: On-policy distillation
	Slide 33: On policy distillation vs RL
	Slide 34: On-policy distillation for domain-specific adaptation 🥳

	long context
	Slide 35: Lecture Plan
	Slide 36: Scaling reasoning requires scaling long-context
	Slide 37: Scaling reasoning requires scaling long-context
	Slide 38: Typical document lengths of internet data
	Slide 39: Sinusoidal positional embeddings (Vaswani et al., 2017)
	Slide 40
	Slide 41: Sinusoidal positional embeddings (Vaswani et al., 2017)
	Slide 42: Learned positional embeddings
	Slide 43: RoPE: Rotary Position Embedding (Su et al., 2021)
	Slide 44: RoPE: Rotary Position Embedding (Su et al., 2021)
	Slide 45: RoPE: Rotary Position Embedding (Su et al., 2021)
	Slide 46: RoPE: Rotary Position Embedding (Su et al., 2021)
	Slide 47: RoPE: Rotary Position Embedding (Su et al., 2021)
	Slide 48: RoPE: Roterary Positional Embedding (Su et al., 2021)
	Slide 49: Long context extension practices 🧵
	Slide 50: Long context extension practices 🧵
	Slide 51: Long context extension practices 🧵
	Slide 52: Long context extension practices 🧵

	test time compute scaling
	Slide 53: Lecture Plan
	Slide 54: Test time compute scaling 🚀
	Slide 55
	Slide 56: Test time compute scaling 🚀
	Slide 57: Test time compute scaling 🚀
	Slide 58
	Slide 59: Test time compute scaling 🚀

