
Natural Language Processing
with Deep Learning

CS224N/Ling284

Yejin Choi

Lecture 14: Reasoning 2/2

Announcement

2

• A4 is due this Thursday. We highly recommend to start working on it now, since it
involves querying APIs. If everyone is working on it all right before the deadline, we’ll
get rate limit issues.

• The Project Milestone instructions are out now, and we will be doing our best to get
the Project Proposals graded with feedback tonight/tomorrow morning.

Lecture Plan

3

Speculative decoding (20 mins)

Off-policy drift & on-policy distillation (20 mins)
Off-policy, on-policy, online RL, off-line RL

RL infra and off-policy drift

On-policy distillation

Long context extension (25 mins)

Inference-time scaling (15 min)

Speculative decoding

4

• Problem: Generating with a large LM takes a long time
 Intuition: Not all tokens are equally hard to generate!

• Idea: Use a generation from small LM to assist large LM generation

• Same idea independently proposed from Google Research (Leviathan et al., Nov 2022)
and DeepMind (Chen et al., Feb 2023)

Image credit: https://medium.com/@genai.works/speed-up-llm-inference-with-speculative-decoding-1fc79701e9d6

Speculative decoding

5

• First, sample a draft of length K (= 5 in this example) from a small LM 𝑀𝑝

• Then, compute the token distribution at each time step with a large target LM 𝑀𝑞

• Note: This can be computed in a single forward pass of 𝑀𝑞(Why?)

• Let's denote 𝑝𝑖 = 𝑝(⋅ |𝑥, 𝑦1, ⋯ , 𝑦𝑖−1) and 𝑞𝑖 = 𝑞(⋅ |𝑥, 𝑦1, ⋯ 𝑦𝑖−1)
e.g., 𝑞2 = 𝑞(⋅ |𝑥, 𝑦1) ,i.e. next token distribution predicted by the target model 𝑀𝑞 ,

when given 𝑥 and 𝑦1

• Idea: Use a generation from small LM to assist large LM generation

• Same idea independently proposed from DeepMind and Google - see Chen et al., 2023;
Leviathan et al., 2023

𝑦1 ∼ 𝑝(⋅ |𝑥), 𝑦2 ∼ 𝑝(⋅ |𝑥, 𝑦1),⋯ , 𝑦5 ∼ 𝑝(⋅ |𝑥, 𝑦1, 𝑦2, 𝑦3, 𝑦4)

𝑞(⋅ |𝑥), 𝑞(⋅ |𝑥, 𝑦1), 𝑞(⋅ |𝑥, 𝑦1, 𝑦2),⋯ , 𝑞(⋅ |𝑥, 𝑦1, ⋯ , 𝑦5)

Speculative decoding

6

• Now, we can compare the probability of each token assigned by draft model 𝑀𝑝 and

target model 𝑀𝑞

• Starting from 𝑦1, decide whether to accept the tokens generated by the draft model.

Draft model (1B)

Target model (100B)

dogs love chasing after cars

0.8 0.7 0.9 0.8 0.7

0.9 0.8 0.8 0.3 0.8

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5

𝑝𝑖

𝑞𝑖

Speculative decoding

7

• Now, we can compare the probability of each token assigned by draft model 𝑀𝑝 and

target model 𝑀𝑞

• Starting from 𝑦1 ,decide whether to accept the tokens generated by the draft model.

• Case 1: 𝑞𝑖 ≥ 𝑝𝑖
The target model (100B) likes this token, even more than the draft model.
 => Accept this token!

Draft model (1B)

Target model (100B)

dogs love chasing after cars

0.8 0.7 0.9 0.8 0.7

0.9 0.8 0.8 0.3 0.8

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5

𝑝𝑖

𝑞𝑖

Generation after step 1:
dogs

Speculative decoding

8

• Now, we can compare the probability of each token assigned by draft model 𝑀𝑝 and

target model 𝑀𝑞

• Starting from 𝑦1 ,decide whether to accept the tokens generated by the draft model.

• Case 2: 𝑞𝑖 < 𝑝𝑖(accept)
Target model doesn't like this token as much as the draft model...

=> Accept it with the probability
𝑞𝑖

𝑝𝑖

Draft model (1B)

Target model (100B)

dogs love chasing after cars

0.8 0.7 0.9 0.8 0.7

0.9 0.8 0.8 0.3 0.8

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5

𝑝𝑖

𝑞𝑖

Generation after step 3:
dogs love chasing
(assuming we accepted chasing w/ prob 0.8/09)

Speculative decoding

9

• Now, we can compare the probability of each token assigned by draft model 𝑀𝑝 and

target model 𝑀𝑞

• Starting from 𝑦1 ,decide whether to accept the tokens generated by the draft model.

• Case 3: 𝑞𝑖 < 𝑝𝑖(reject)
If 𝑞𝑖 <<< 𝑝𝑖 ,we likely would have rejected it.
In this case, we sample a new token from target model
=> Specifically, we sample from (𝑞𝑖 − 𝑝𝑖)+

Draft model (1B)

Target model (100B)

dogs love chasing after cars

0.8 0.7 0.9 0.8 0.7

0.9 0.8 0.8 0.3 0.8

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5

𝑝𝑖

𝑞𝑖

𝑞𝑖

𝑝𝑖

Speculative decoding

10

• But why specifically (𝑞𝑖 − 𝑝𝑖)+?

• because our goal: to cover target LM distribution 𝑞𝑖
• Case 1: 𝑞𝑖 ≥ 𝑝𝑖

Accept this token.

• Case 2: 𝑞𝑖 < 𝑝𝑖(accept)

Accept it with the probability
𝑞𝑖

𝑝𝑖

• Case 3: 𝑞𝑖 < 𝑝𝑖(reject)
If 𝑞𝑖 <<< 𝑝𝑖 ,we likely would have rejected it.
In this case, we sample a new token from target model
=> Specifically, we sample from (𝑞𝑖 − 𝑝𝑖)+

𝑞𝑖

𝑝𝑖

Note: This sampling procedure,
though sampling from small LM (𝑝_𝑖), has
the same effect as sampling from target LM (𝑞_𝑖).
Formal proof in Appendix I of (Chen et al., 2023)

Case 1

Case 3

Case 2

Speculative decoding

11

• Speculative sampling is a form of rejection sampling.

• To sample from an easy-to-sample distribution p (small LM), in order to ample from a
more complex distribution q (large LM).

• Using 60M LM (T5-small) as a draft model and 11B (T5-XXL) LM as a target model,
 we get 2~3x acceleration with identical outputs!

Dynamic speculative decoding

12

• adaptively adjusts the "lookahead” size (the number of candidate tokens) at each iteration
by using a lightweight classifier or confidence threshold to decide on-the-fly whether the
draft model should continue drafting or switch to the target model for verification.

• See more: Mamou et al., 2024 & https://huggingface.co/blog/dynamic_speculation_lookahead

Universal speculative decoding

• Original spec decoding requires identical tokenization between draft and target models

• Models with heterogeneous tokenization can be supported via re-encoding and alignment
techniques.

• See more: https://huggingface.co/blog/universal_assisted_generation

https://huggingface.co/blog/dynamic_speculation_lookahead
https://huggingface.co/blog/universal_assisted_generation

Algorithm vLLM TRT-LLM HF TGI HF Transformers SGLang

EAGLE-3 (Native) (Opt)
 (Manual

head)

SuffixDecoding (Arctic) (Beta)

Medusa (SOTA) (Pipeline)

Draft-Target (Universal)

DFlash (2026) (Fork) (Custom) (Fork)

Even better speculative decoding algorithms are rapidly developed,
and all your favorite inference engines support several options!

EAGLE-3 (Extrapolation Algo for Greater LM Efficiency)

14
Image credit: https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference & nano banana pro

Key ideas:
Eagle-1: let the draft model
“read the mind” of the target
model by sneaking into its
internal representation
(“features-level” speculation)

Eagle-2: context-aware
dynamic draft trees!

Eagle-3: “fused features”
across different layers

https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference

15

EAGLE-3 (Extrapolation Algo for Greater LM Efficiency)

Suffix Decoding: Extreme Speculative Decoding (Oliaro et al., 2025)

Suffix Decoding: Extreme Speculative Decoding (Oliaro et al., 2025)

Feature SuffixDecoding (2025/2026) EAGLE-3 (2025/2026)

Mechanism
Model-Free: Uses a Suffix Tree to
cache and match repetitive sequences
in the prompt and past outputs.

Model-Based: Uses a small, trained
Transformer head to predict future
hidden features of the target model.

Compute Location
CPU-Bound: Runs speculation on the
CPU while the GPU handles the target
model's verification.

GPU-Bound: The draft head runs on
the GPU, sharing VRAM with the main
model.

Drafting Speed ~20 μs per token (Ultra-fast). Slower (requires a GPU forward pass).

Best Performance
Highly repetitive tasks (Coding,
Agentic loops, RAG, SQL generation).

Open-ended tasks (Creative writing,
general chat, unpredictable
reasoning).

Training Needs
Zero. It is a "plug-and-play" data
structure.

Requires training a small auxiliary
head on the target model’s feature
space.

Suffix Decoding vs Eagle-3

Algorithm vLLM TRT-LLM HF TGI HF Transformers SGLang

EAGLE-3 (Native) (Opt)
 (Manual

head)

SuffixDecoding (Arctic) (Beta)

Medusa (SOTA) (Pipeline)

Draft-Target (Universal)

DFlash (2026) (Fork) (Custom) (Fork)

Even better speculative decoding algorithms are rapidly developed,
and all your favorite inference engines support several options!

Lecture Plan

20

Speculative decoding (20 mins)

Off-policy drift & on-policy distillation (20 mins)
Off-policy, on-policy, online RL, off-line RL

RL infra and off-policy drift

On-policy distillation

Long context extension (25 mins)

Inference-time scaling (15 min)

21

Online RL: The agents can interact with the env during training

Offline RL (Batch RL): Learning happens strictly from a pre-recorded dataset (human logs or
previous agents). The agent cannot "explore" or test new actions.

On-Policy RL: The data used for training is generated exactly by the *current* policy. Once the
policy updates, old data from the old policy is discarded as "stale."

Off-Policy RL: The agent learns from data generated by any policy (older policy, different
policy, or even humans). It saves experiences in a *Replay Buffer* for repeated use.

REINFORCE, PPO, GRPO

DQN (Deep Q-Network)

22

Online vs Offline RL: whether the agent can interact with the environment

On-policy vs Off-policy RL: whether rollouts for training are from the up-to-date policy

Online Off-Policy RL?

• This is very common. An agent interacts with a
simulator (Online) but stores everything in a
replay buffer to learn from later (Off-Policy),
like DQN.

• Asynchronous RL

• PPO with “off-policy drift” due to RL infra
optimization

Offline On-Policy RL?

• no true offline on-policy RL
(unless the interpretation is
somewhat stretched…)

Asynchronous RLHF (Noukhovitch et al., 2024)

23

• "Why": Classic RLHF is synchronous, which wastes GPU throughput

PipelineRL: in-flight weight updates (Piché et al., 2025)

24

• The generation engine receives new model weights mid-generation — briefly pausing,
loading fresh weights, then continuing in-progress sequences. This creates mixed-policy
sequences where early tokens are generated by a staler policy and later tokens by a
fresher one.

Why off-policy situations arise in practice

The Two-Engine Architecture

1. The Rollout Generator

Input: The current policy (𝜋𝜃)

Output: Rollouts

2. The Learner

Input: Batches of rollouts from the
generator.

Output: Updated policy 𝜋𝜃+1

• Why rollouts become ”stale"

• Deliberate asynchronous RL

• Multiple gradient steps per batch

• Large replay buffers

• Separate generation and training
clusters (one cluster optimized for
inference, while another cluster
optimized for gradient computation)
require weight transfer between
clusters, which introduce latency

25

Off-policy mitigations

Why off-policy is a problem

- Biased gradient estimates

- Importance weight explosion

- Reward hacking amplification
• Mitigation strategies

• PPO clipping

• KL penalty against the reference policy

• Algorithms without critiques/advantages
(reducing the window of off-policy drifts)
such as GRPO or REINFORCE

• Less epochs

• SGLang / vLLM’s continuous batching with
weight streaming

• Pipeline RL’s in-flight weight update

26

Lecture Plan

27

Speculative decoding (20 mins)

Off-policy drift & on-policy distillation (20 mins)
Off-policy, on-policy, online RL, off-line RL

RL infra and off-policy drift

On-policy distillation

Long context extension (25 mins)

Inference-time scaling (15 min)

On-policy distillation (aka, generalized knowledge distillation)

28

• First introduced by (Gu et al, 2023) and (Agarwal et al, 2023), and later amplified by
Qwen3’s Tech report and ThinkingMachine’s blog (https://thinkingmachines.ai/blog/on-policy-distillation/)

• Prior distillation methods were teacher-centric (thus off-policy w.r.t the learner)

• On-policy distillation is student-centric (thus on-policy w.r.t the learner)

Gu et al. 2023

https://thinkingmachines.ai/blog/on-policy-distillation/
https://thinkingmachines.ai/blog/on-policy-distillation/
https://thinkingmachines.ai/blog/on-policy-distillation/
https://thinkingmachines.ai/blog/on-policy-distillation/
https://thinkingmachines.ai/blog/on-policy-distillation/

KL Divergence: how Q differs from the target P

29

Forward KL — "Mean-seeking” or “mass-covering”

• Weighted by P(x): penalizes Q where P has mass but Q does not

• Q covers all modes of P → over-estimates support

• Used in variational inference (ELBO)

Reverse KL — "Mode-seeking” or “mode-collapsing”

• Weighted by Q(x): penalizes Q where Q has mass but P does not

• Q concentrates on one mode of P → under-estimates support

• Used in RLHF: KL penalty keeps policy close to reference model

On-policy distillation vs standard knowledge distillation

30

Let 𝑝𝑇 = teacher, 𝑝𝜃= student, 𝑦 ∗ = ground truth, 𝑥 = input

• Knowledge distillation (Hinton et al., 2015)

• Sequential knowledge distillation (Kim & Rush, 2016)

• On-policy knowledge distillation (Gu et al., 2023; Agarwal et al, 2023)

loss = forward KL

loss = NLL

loss = reverse KL

off-policy

off-policy

on-policy

loss context Hard vs soft Learning style

SFT NLL on gold output Ground-truth context Hard labels

KD Forward KL Ground-truth context Soft dist Mass-covering

SeqKD NLL on teacher’s output Teacher-generated context Hard labels Mass-covering

GKD Reverse KL Student-generated context Soft dist Mode-seeking

Agarwal et al. 2023

On-policy distillation

32

• The implication of reverse-KL: the context
comes from the student’s own generation.

• This eliminates train-test mismatch (exposure
bias): the student learns to recover from its
own mistakes.

• The mode-seeking property encourages the
student to be sharp and confident on its best
behaviors rather than diffusely covering all of
the teacher's modes.

Gu et al. 2023

On policy distillation vs RL

33

sampling Reward signal GPU requirement

Supervised fine-tuning Off-policy dense light

Reinforcement learning On-policy sparse heavy

On-policy distillation On-policy dense light

• On policy distillation can be viewed as the best of both worlds of SFT and RL ---

On-policy distillation for domain-specific adaptation

34

• One very cool use case of on-policy distillation is domain-specific adaptation of OSS
models, e.g., fine-tuning Qwen-8B on a domain-specific corpus (i.e., internal
documents of a company), which can be viewed as a form of midtraining.

• Doing this in a naïve way (applying midtraining on top of the off-the-shelf OOS model
which has been already post-trained) will cause degradation of capabilities acquired
through the previous post-training (e.g., instruction following)

• On-policy distillation (on an instruction-tuning dataset, 30%) recovers the instruction
following capability after acquiring the new domain-specific knowledge thru mid-
training (70%)

Lecture Plan

35

Speculative decoding (20 mins)

Off-policy drift & on-policy distillation (20 mins)
Off-policy, on-policy, online RL, off-line RL

RL infra and off-policy drift

On-policy distillation

Long context extension (25 mins)

Inference-time scaling (15 min)

Scaling reasoning requires scaling long-context

36

• When applications require very long-context windows (100k to 2 million tokens):

• Software engineering tasks that demand understanding the entire repository

• Legal analysis that involves careful review of documents spanning hundreds of pages

• Personalized chat interactions conditioned on prolonged interaction histories

• Solving extremely challenging math problems that require elaborate sequences of
trial and error across different problem-solving strategies

Scaling reasoning requires scaling long-context

37

What makes long-context challenging for LLMs

• Data limitation: most internet documents aren’t long enough to support pre-training
with extremely long context windows

• Compute/memory limitation: standard attention requires quadratic computation

• Generalization limitation of positional embeddings: models trained on shorter
sequences doesn’t generalize well on longer sequences

Typical document lengths of internet data

Source Type Typical Length (Approx. Tokens) Description

Common Crawl (Web) 600 – 1,200
Includes blog posts, news, and landing pages.
Many "documents" are highly fragmented.

Wikipedia 500 – 1,500
While some entries are long, the median article is
relatively concise.

Scientific Papers (arXiv) 5,000 – 10,000+
These are among the longest "natural" documents
in most sets.

Books (Project Gutenberg) 50,000 – 100,000+
The "long-tail" of the data; rare but critical for
long-range dependency.

GitHub (Code) 100 – 5,000
Code files vary wildly; many scripts are quite
short, while libraries are long.

38

Sinusoidal positional embeddings (Vaswani et al., 2017)

39

• Where 𝑝𝑜𝑠 is the position index, 𝑖 is the dimension index,
and 𝑑 is the model dimension.

• Used in the original Transformer (Vaswani et al., 2017)

• We are revisiting this because it helps to learn RoPE
(Rotary positional embedding) that is recently important
for LLMs and long-context extension

https://erdem.pl/2021/05/understanding-positional-encoding-in-transformers

Sinusoidal positional embeddings (Vaswani et al., 2017)

41

• Where 𝑝𝑜𝑠 is the position index, 𝑖 is the dimension index, and 𝑑 is the model dimension.

• Why this particular sinusoidal form?

• Unique absolute positional embedding pre-defined for any position (whether seen
during training or not)

• Captures relative distance! For any offset k, 𝑃𝐸𝑝𝑜𝑠+𝑘 can be represented as a linear

function of 𝑃𝐸𝑝𝑜𝑠

• Two important things to note:

• Positional embedding is “added” to the token embedding

• Previously unseen positional embeddings during training, while can be defined, are
still unseen to the model, thus the model can’t interpret them

Learned positional embeddings

42

• Randomly initialized, and then learned via backprop

• Used broadly in early days of LLMs, such as BERT, Roberta, GPT-2, GPT-3, Albert, Electra,
BART

• It is not possible to define the positional embedding for a previously unseen position.

• Also doesn’t generalize to positions beyond those seen during training.

• But performance was better when the model learns the positional encoding themselves

• This became a major bottleneck for long-context extension however, thus no longer used
in recent LLMs

RoPE: Rotary Position Embedding (Su et al., 2021)

43

Rotations are applied to just
query and key vectors,
not value vectors!

• Recall Attention

• Attention with RoPE

After query and key vectors
are computed, multiply
them with the rotation
matrix!

RoPE: Rotary Position Embedding (Su et al., 2021)

44

The full rotation matrix of RoPE would then look like this:

Where m is the position index, i is
the dimension index, 𝜃𝑖 = 𝑏−2𝑖/𝑑 is
the frequency for dimension pair 𝑖,
and 𝑏 is the base frequency
(typically 𝑏 = 10,000)

RoPE: Rotary Position Embedding (Su et al., 2021)

45

• RoPE encodes position by *rotating* the query and key vectors in the 2D plane.

Recall the rotation matrix:

Where m is the position index, i is
the dimension index, 𝜃𝑖 = 𝑏−2𝑖/𝑑 is
the frequency for dimension pair 𝑖,
and 𝑏 is the base frequency
(typically 𝑏 = 10,000)

RoPE: Rotary Position Embedding (Su et al., 2021)

46

• RoPE encodes position by *rotating* the query and key vectors in the 2D plane.

• High-frequency dimensions (small 𝑖): rotate rapidly, encoding fine-grained local positional
information. These dimensions cycle through many full rotations over the training length.

• Low-frequency dimensions (large 𝑖): rotate slowly, encoding broad/global positional
information. These dimensions complete very few full rotations even over very long
sequences.

• Dimension pair 0: 𝜃0 = 1.0 — highest frequency, one full rotation every ∼ 6.28 tokens

• Dimension pair 31: 𝜃31 = 0.01 — one rotation every ∼ 628 tokens

• Dimension pair 63: 𝜃63 = 0.0001 — one rotation every ∼ 62,832 tokens

RoPE: Rotary Position Embedding (Su et al., 2021)

47

• Attention with RoPE

• Relative distance

• because the transposed R rotates backward, we have While their corresponding
rotation matrices are all
different, by the time q and
k are multiplied, the
rotational angle becomes
identical! v

“Taylor” and “Swift” at
position 10 and 11 will get
the exact same result as
“Taylor and “Swift” at
position 100 and 101!

RoPE: Roterary Positional Embedding (Su et al., 2021)

48

Feature Original Sinusoidal (2017) RoPE (LLaMA, PaLM, etc.)

Integration
Additive: Added to the input
embedding before the first layer

Multiplicative: Applied to Q and K at
every attention layer

Norm
preservation

Increases the token embedding’s
norm

Preserves the token embedding’s norm

Relative
Distance

Mathematically captured, but due
to the additive integration, the
information gets muddled up by the
time QKV attention is computed

Mathematically captured via the rotation
angle and the information is cleanly available
when the QKV attention is computed

Extrapolation Struggles significantly
Allows for additional long context extension
techniques such as "Position Interpolation”,
"NTK scaling”, and YARN

Long context extension practices

49

1. Position Encoding Modifications

RoPE scaling appears to be the most common family of approaches (as of 2026):

• Linear interpolation (Position Interpolation): Scales position indices down by a factor so the
model sees familiar relative positions. Introduced by Meta for extending LLaMA from
2K→32K+. Requires light fine-tuning.

• NTK-aware interpolation: Adjusts the rotary base frequency rather than linearly
compressing positions. Better preserves high-frequency components. Has "dynamic NTK"
variants that adapt scaling based on sequence length at inference.

• YaRN (Yet another RoPE extensioN): Combines NTK scaling with an attention temperature
correction and a ramp function that treats different frequency bands differently—
interpolating low frequencies while extrapolating high frequencies.

Long context extension practices

50

2. Progressive / Staged Training

A common recipe (used by LongLLaMA, LongAlign, Llama 3.1, etc.):

• Start from a base model (e.g., 4K–8K context).

• Apply position encoding modification.

• Continual pretraining on long documents with progressively increasing sequence lengths
(e.g., 8K → 32K → 64K → 128K), often with a relatively small amount of data (billions of
tokens, not trillions).

• Fine-tune on long-context instruction data.

• The key insight is that you don't need the full pretraining budget—typically 0.1–1% of
original pretraining tokens suffices for adaptation.

Long context extension practices

51

3. Data Engineering

• Upsampling long documents in the continued pretraining mix (books, code repos, long-
form articles, concatenated related documents).

• Synthetic long-context tasks: Needle-in-a-haystack retrieval, long-range QA, multi-
document summarization.

• LongAlign-style instruction tuning with tasks specifically requiring the model to use
information spread across the full context.

• Self-instruct for long contexts: Using a capable model to generate long-context instruction-
response pairs.

Long context extension practices

52

4. Attention Architecture Modifications

• Sparse / sliding window attention combined with global attention tokens (Longformer-
style).

• Flash Attention (and FlashAttention-2/3) to reduce memory from O(n²) to O(n) during
training.

• Grouped Query Attention (GQA) or Multi-Query Attention (MQA): Reduces KV cache
memory, enabling longer contexts at inference.

Lecture Plan

53

Speculative decoding (20 mins)

Off-policy drift & on-policy distillation (20 mins)
Off-policy, on-policy, online RL, off-line RL

RL infra and off-policy drift

On-policy distillation

Long context extension (20 mins)

Inference-time scaling (10 min)

Test time compute scaling

54

• This notion was intensely popularized by OpenAI’s O1 release in Sep 2024

• Though it was preceded by the GDM paper from Aug 2024

• And it also appeared less explicitly in the “Let’s verify step by step” paper from May 2023

Test time compute scaling Instead of scaling only training time compute,
what if we scale test time compute?

Instead of training more,
what if we let the model think more?

Test time compute scaling

56

• This paper challenges the dominant paradigm in LLM development by demonstrating that
intelligently scaling test-time compute can yield larger performance gains than simply
scaling model parameters

• For a fixed inference budget, smaller models using smart test-time compute strategies
can outperform larger models using standard decoding

• For compute-optimal allocation, seek an optimal balance between

• Model size (pretraining FLOPs)

• Number of generated samples or revision steps (test-time FLOPs)

Test time compute scaling

57

• Test-time compute scaling strategies evaluated:

• Best-of-N sampling: Generate N independent solutions, select best via verifier

• Weighted Best-of-N: Sample from compute-optimal temperature distributions

• Sequential revisions: Iteratively refine single solutions using model self-critique

• Beam search with PRMs: Maintain multiple solution candidates, pruning based on
step-level rewards

• Diverse beam search: Encourage exploration across different solution approaches

• Verification methods evaluated:

• Outcome-supervised reward models (ORMs): Trained to predict solution correctness

• Process-supervised reward models (PRMs): Trained to evaluate correctness at each
reasoning step

• Domain-specific verifiers: For problems with checkable solutions (e.g., code execution)

58

Test time compute scaling

59

• Key findings:

• On MATH-500, a 14B parameter model with optimized test-time compute matched or
exceeded the performance of models 4× larger

• The compute-optimal strategy allocated roughly equal FLOPs to pretraining and
inference for their experimental setup

• Sequential revision strategies showed particularly strong scaling on tasks requiring
refinement and error correction

• PRMs enabled 4-8× more efficient compute usage compared to ORMs w/ beam search

• Practical takeaways:

• Don't default to the largest model!

• Invest in verification!

• High-quality reward models, especially PRMs, dramatically improve test-time scaling

	intro
	Slide 1: Natural Language Processing with Deep Learning CS224N/Ling284
	Slide 2: Announcement
	Slide 3: Lecture Plan

	speculative decoding
	Slide 4: Speculative decoding
	Slide 5: Speculative decoding
	Slide 6: Speculative decoding
	Slide 7: Speculative decoding
	Slide 8: Speculative decoding
	Slide 9: Speculative decoding
	Slide 10: Speculative decoding
	Slide 11: Speculative decoding
	Slide 12: Dynamic speculative decoding
	Slide 13
	Slide 14: EAGLE-3 (Extrapolation Algo for Greater LM Efficiency)
	Slide 15: EAGLE-3 (Extrapolation Algo for Greater LM Efficiency)
	Slide 16
	Slide 17
	Slide 18
	Slide 19

	RL infra
	Slide 20: Lecture Plan
	Slide 21
	Slide 22
	Slide 23: Asynchronous RLHF (Noukhovitch et al., 2024)
	Slide 24: PipelineRL: in-flight weight updates 🛫 (Piché et al., 2025)
	Slide 25: Why off-policy situations arise in practice
	Slide 26: Off-policy mitigations

	distillation vs RL
	Slide 27: Lecture Plan
	Slide 28: On-policy distillation (aka, generalized knowledge distillation)
	Slide 29: KL Divergence: how Q differs from the target P
	Slide 30: On-policy distillation vs standard knowledge distillation
	Slide 31
	Slide 32: On-policy distillation
	Slide 33: On policy distillation vs RL
	Slide 34: On-policy distillation for domain-specific adaptation 🥳

	long context
	Slide 35: Lecture Plan
	Slide 36: Scaling reasoning requires scaling long-context
	Slide 37: Scaling reasoning requires scaling long-context
	Slide 38: Typical document lengths of internet data
	Slide 39: Sinusoidal positional embeddings (Vaswani et al., 2017)
	Slide 40
	Slide 41: Sinusoidal positional embeddings (Vaswani et al., 2017)
	Slide 42: Learned positional embeddings
	Slide 43: RoPE: Rotary Position Embedding (Su et al., 2021)
	Slide 44: RoPE: Rotary Position Embedding (Su et al., 2021)
	Slide 45: RoPE: Rotary Position Embedding (Su et al., 2021)
	Slide 46: RoPE: Rotary Position Embedding (Su et al., 2021)
	Slide 47: RoPE: Rotary Position Embedding (Su et al., 2021)
	Slide 48: RoPE: Roterary Positional Embedding (Su et al., 2021)
	Slide 49: Long context extension practices 🧵
	Slide 50: Long context extension practices 🧵
	Slide 51: Long context extension practices 🧵
	Slide 52: Long context extension practices 🧵

	test time compute scaling
	Slide 53: Lecture Plan
	Slide 54: Test time compute scaling 🚀
	Slide 55
	Slide 56: Test time compute scaling 🚀
	Slide 57: Test time compute scaling 🚀
	Slide 58
	Slide 59: Test time compute scaling 🚀

