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Announcement

2

• A4 is due this Thursday. We highly recommend to start working on it now, since it 
involves querying APIs. If everyone is working on it all right before the deadline, we’ll 
get rate limit issues.

• The Project Milestone instructions are out now, and we will be doing our best to get 
the Project Proposals graded with feedback tonight/tomorrow morning.



Lecture Plan 
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Speculative decoding (20 mins)

Off-policy drift & on-policy distillation (20 mins)
Off-policy, on-policy, online RL, off-line RL

RL infra and off-policy drift

On-policy distillation

Long context extension (25 mins)

Inference-time scaling (15 min)



Speculative decoding
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•  Problem: Generating with a large LM takes a long time
 Intuition: Not all tokens are equally hard to generate!

• Idea: Use a generation from small LM to assist large LM generation

• Same idea independently proposed from Google Research (Leviathan et al., Nov 2022) 
and DeepMind (Chen et al., Feb 2023)

Image credit: https://medium.com/@genai.works/speed-up-llm-inference-with-speculative-decoding-1fc79701e9d6



Speculative decoding
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•  First, sample a draft of length K (= 5 in this example) from a small LM 𝑀𝑝

• Then, compute the token distribution at each time step with a large target LM 𝑀𝑞

•  Note: This can be computed in a single forward pass of 𝑀𝑞( Why?)

• Let's denote 𝑝𝑖 = 𝑝(⋅ |𝑥, 𝑦1, ⋯ , 𝑦𝑖−1) and 𝑞𝑖 = 𝑞(⋅ |𝑥, 𝑦1, ⋯ 𝑦𝑖−1)
e.g., 𝑞2 = 𝑞(⋅ |𝑥, 𝑦1) ,i.e. next token distribution predicted by the target model 𝑀𝑞  ,

when given 𝑥 and 𝑦1

• Idea: Use a generation from small LM to assist large LM generation

• Same idea independently proposed from DeepMind and Google - see Chen et al., 2023; 
Leviathan et al., 2023

𝑦1 ∼ 𝑝(⋅ |𝑥), 𝑦2 ∼ 𝑝(⋅ |𝑥, 𝑦1),⋯ , 𝑦5 ∼ 𝑝(⋅ |𝑥, 𝑦1, 𝑦2, 𝑦3, 𝑦4)

𝑞(⋅ |𝑥), 𝑞(⋅ |𝑥, 𝑦1), 𝑞(⋅ |𝑥, 𝑦1, 𝑦2),⋯ , 𝑞(⋅ |𝑥, 𝑦1, ⋯ , 𝑦5)



Speculative decoding
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• Now, we can compare the probability of each token assigned by draft model 𝑀𝑝 and 

target model 𝑀𝑞

• Starting from 𝑦1, decide whether to accept the tokens generated by the draft model.

Draft model (1B)

Target model (100B)

dogs love chasing after cars

0.8 0.7 0.9 0.8 0.7

0.9 0.8 0.8 0.3 0.8

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5

𝑝𝑖

𝑞𝑖



Speculative decoding
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• Now, we can compare the probability of each token assigned by draft model 𝑀𝑝 and 

target model 𝑀𝑞

• Starting from 𝑦1 ,decide whether to accept the tokens generated by the draft model.

• Case 1: 𝑞𝑖 ≥ 𝑝𝑖
The target model (100B) likes this token, even more than the draft model.
 => Accept this token!

Draft model (1B)

Target model (100B)

dogs love chasing after cars

0.8 0.7 0.9 0.8 0.7

0.9 0.8 0.8 0.3 0.8

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5

𝑝𝑖

𝑞𝑖

Generation after step 1:
dogs



Speculative decoding
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• Now, we can compare the probability of each token assigned by draft model 𝑀𝑝 and 

target model 𝑀𝑞

• Starting from 𝑦1 ,decide whether to accept the tokens generated by the draft model.

• Case 2: 𝑞𝑖 < 𝑝𝑖( accept)
Target model doesn't like this token as much as the draft model...

=> Accept it with the probability 
𝑞𝑖

𝑝𝑖

Draft model (1B)

Target model (100B)

dogs love chasing after cars

0.8 0.7 0.9 0.8 0.7

0.9 0.8 0.8 0.3 0.8

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5

𝑝𝑖

𝑞𝑖

Generation after step 3:
dogs love chasing
(assuming we accepted chasing w/ prob 0.8/09)



Speculative decoding
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• Now, we can compare the probability of each token assigned by draft model 𝑀𝑝 and 

target model 𝑀𝑞

• Starting from 𝑦1 ,decide whether to accept the tokens generated by the draft model.

• Case 3: 𝑞𝑖 < 𝑝𝑖( reject)
If 𝑞𝑖  <<< 𝑝𝑖  ,we likely would have rejected it.
In this case, we sample a new token from target model
=> Specifically, we sample from (𝑞𝑖 − 𝑝𝑖)+

Draft model (1B)

Target model (100B)

dogs love chasing after cars

0.8 0.7 0.9 0.8 0.7

0.9 0.8 0.8 0.3 0.8

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5

𝑝𝑖

𝑞𝑖

𝑞𝑖

𝑝𝑖



Speculative decoding
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• But why specifically (𝑞𝑖 − 𝑝𝑖)+?

• because our goal: to cover target LM distribution 𝑞𝑖
• Case 1: 𝑞𝑖 ≥ 𝑝𝑖

Accept this token.

• Case 2: 𝑞𝑖 < 𝑝𝑖( accept)

Accept it with the probability 
𝑞𝑖

𝑝𝑖

• Case 3: 𝑞𝑖 < 𝑝𝑖( reject)
If 𝑞𝑖  <<< 𝑝𝑖  ,we likely would have rejected it.
In this case, we sample a new token from target model
=> Specifically, we sample from (𝑞𝑖 − 𝑝𝑖)+

𝑞𝑖

𝑝𝑖

Note: This sampling procedure, 
though sampling from small LM ( 𝑝_𝑖 ), has 
the same effect as sampling from target LM ( 𝑞_𝑖 ).
Formal proof in Appendix I of (Chen et al., 2023)

Case 1

Case 3

Case 2



Speculative decoding
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• Speculative sampling is a form of rejection sampling.

• To sample from an easy-to-sample distribution p (small LM), in order to ample from a 
more complex distribution q (large LM).

•  Using 60M LM (T5-small) as a draft model and 11B (T5-XXL) LM as a target model,
 we get 2~3x acceleration with identical outputs!



Dynamic speculative decoding 
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• adaptively adjusts the "lookahead” size (the number of candidate tokens) at each iteration 
by using a lightweight classifier or confidence threshold to decide on-the-fly whether the 
draft model should continue drafting or switch to the target model for verification.

• See more: Mamou et al., 2024 &  https://huggingface.co/blog/dynamic_speculation_lookahead

Universal speculative decoding 

• Original spec decoding requires identical tokenization between draft and target models

• Models with heterogeneous tokenization can be supported via re-encoding and alignment 
techniques.

• See more: https://huggingface.co/blog/universal_assisted_generation 

https://huggingface.co/blog/dynamic_speculation_lookahead
https://huggingface.co/blog/universal_assisted_generation


Algorithm vLLM TRT-LLM HF TGI HF Transformers SGLang

EAGLE-3  (Native)  (Opt)
 (Manual 

head)

SuffixDecoding  (Arctic)  (Beta)

Medusa  (SOTA)  (Pipeline)

Draft-Target  (Universal)

DFlash (2026)  (Fork)  (Custom)  (Fork)

Even better speculative decoding algorithms are rapidly developed,  
and all your favorite inference engines support several options!



EAGLE-3 (Extrapolation Algo for Greater LM Efficiency)
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Image credit: https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference & nano banana pro

Key ideas: 
Eagle-1: let the draft model 
“read the mind” of the target 
model by sneaking into its 
internal representation 
(“features-level” speculation)

Eagle-2: context-aware 
dynamic draft trees!

Eagle-3: “fused features” 
across different layers

https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
https://docs.jarvislabs.ai/blog/speculative-decoding-vllm-faster-llm-inference
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EAGLE-3 (Extrapolation Algo for Greater LM Efficiency)



Suffix Decoding: Extreme Speculative Decoding (Oliaro et al., 2025) 



Suffix Decoding: Extreme Speculative Decoding (Oliaro et al., 2025) 



Feature SuffixDecoding (2025/2026) EAGLE-3 (2025/2026)

Mechanism
Model-Free: Uses a Suffix Tree to 
cache and match repetitive sequences 
in the prompt and past outputs.

Model-Based: Uses a small, trained 
Transformer head to predict future 
hidden features of the target model.

Compute Location
CPU-Bound: Runs speculation on the 
CPU while the GPU handles the target 
model's verification.

GPU-Bound: The draft head runs on 
the GPU, sharing VRAM with the main 
model.

Drafting Speed ~20 $\mu$s per token (Ultra-fast). Slower (requires a GPU forward pass).

Best Performance
Highly repetitive tasks (Coding, 
Agentic loops, RAG, SQL generation).

Open-ended tasks (Creative writing, 
general chat, unpredictable 
reasoning).

Training Needs
Zero. It is a "plug-and-play" data 
structure.

Requires training a small auxiliary 
head on the target model’s feature 
space.

Suffix Decoding vs Eagle-3



Algorithm vLLM TRT-LLM HF TGI HF Transformers SGLang

EAGLE-3  (Native)  (Opt)
 (Manual 

head)

SuffixDecoding  (Arctic)  (Beta)

Medusa  (SOTA)  (Pipeline)

Draft-Target  (Universal)

DFlash (2026)  (Fork)  (Custom)  (Fork)

Even better speculative decoding algorithms are rapidly developed,  
and all your favorite inference engines support several options!



Lecture Plan 
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Speculative decoding (20 mins)

Off-policy drift & on-policy distillation (20 mins)
Off-policy, on-policy, online RL, off-line RL

RL infra and off-policy drift

On-policy distillation

Long context extension (25 mins)

Inference-time scaling (15 min)
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Online RL: The agents can interact with the env during training

Offline RL (Batch RL): Learning happens strictly from a pre-recorded dataset (human logs or 
previous agents). The agent cannot "explore" or test new actions.

On-Policy RL: The data used for training is generated exactly by the *current* policy. Once the 
policy updates, old data from the old policy is discarded as "stale."

Off-Policy RL: The agent learns from data generated by any policy (older policy, different 
policy, or even humans). It saves experiences in a *Replay Buffer* for repeated use.

REINFORCE, PPO, GRPO

DQN (Deep Q-Network)
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Online vs Offline RL: whether the agent can interact with the environment

On-policy vs Off-policy RL: whether rollouts for training are from the up-to-date policy

Online Off-Policy RL?

• This is very common. An agent interacts with a 
simulator (Online) but stores everything in a 
replay buffer to learn from later (Off-Policy), 
like DQN.

• Asynchronous RL

• PPO with “off-policy drift” due to RL infra 
optimization

Offline On-Policy RL?

• no true offline on-policy RL 
(unless the interpretation is 
somewhat stretched…)



Asynchronous RLHF (Noukhovitch et al., 2024)
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• "Why": Classic RLHF is synchronous, which wastes GPU throughput



PipelineRL: in-flight weight updates  (Piché et al., 2025)
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• The generation engine receives new model weights mid-generation — briefly pausing, 
loading fresh weights, then continuing in-progress sequences. This creates mixed-policy 
sequences where early tokens are generated by a staler policy and later tokens by a 
fresher one. 



Why off-policy situations arise in practice

The Two-Engine Architecture

1. The Rollout Generator

Input: The current policy (𝜋𝜃)

Output: Rollouts

2. The Learner

Input: Batches of rollouts from the 
generator.

Output: Updated policy 𝜋𝜃+1

• Why rollouts become ”stale"

• Deliberate asynchronous RL

• Multiple gradient steps per batch

• Large replay buffers

• Separate generation and training 
clusters (one cluster optimized for 
inference, while another cluster 
optimized for gradient computation) 
require weight transfer between 
clusters, which introduce latency

25



Off-policy mitigations

Why off-policy is a problem

- Biased gradient estimates

- Importance weight explosion

- Reward hacking amplification
• Mitigation strategies

• PPO clipping

• KL penalty against the reference policy

• Algorithms without critiques/advantages 
(reducing the window of off-policy drifts) 
such as GRPO or REINFORCE

• Less epochs

• SGLang / vLLM’s continuous batching with 
weight streaming

• Pipeline RL’s in-flight weight update

26



Lecture Plan 
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Speculative decoding (20 mins)

Off-policy drift & on-policy distillation (20 mins)
Off-policy, on-policy, online RL, off-line RL

RL infra and off-policy drift

On-policy distillation

Long context extension (25 mins)

Inference-time scaling (15 min)



On-policy distillation (aka, generalized knowledge distillation)
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• First introduced by (Gu et al, 2023) and (Agarwal et al, 2023), and later amplified by 
Qwen3’s Tech report and ThinkingMachine’s blog (https://thinkingmachines.ai/blog/on-policy-distillation/)

• Prior distillation methods were teacher-centric (thus off-policy w.r.t the learner)

• On-policy distillation is student-centric (thus on-policy w.r.t the learner)

Gu et al. 2023

https://thinkingmachines.ai/blog/on-policy-distillation/
https://thinkingmachines.ai/blog/on-policy-distillation/
https://thinkingmachines.ai/blog/on-policy-distillation/
https://thinkingmachines.ai/blog/on-policy-distillation/
https://thinkingmachines.ai/blog/on-policy-distillation/


KL Divergence: how Q differs from the target P
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Forward KL — "Mean-seeking” or “mass-covering”

• Weighted by P(x): penalizes Q where P has mass but Q does not

• Q covers all modes of P → over-estimates support

• Used in variational inference (ELBO)

Reverse KL — "Mode-seeking” or “mode-collapsing”

• Weighted by Q(x): penalizes Q where Q has mass but P does not

• Q concentrates on one mode of P → under-estimates support

• Used in RLHF: KL penalty keeps policy close to reference model



On-policy distillation vs standard knowledge distillation
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Let 𝑝𝑇  = teacher, 𝑝𝜃= student, 𝑦 ∗ = ground truth, 𝑥 = input

• Knowledge distillation (Hinton et al., 2015) 

• Sequential knowledge distillation (Kim & Rush, 2016)

• On-policy knowledge distillation (Gu et al., 2023; Agarwal et al, 2023)

loss = forward KL

loss = NLL

loss = reverse KL

off-policy

off-policy

on-policy



loss context Hard vs soft Learning style

SFT NLL on gold output Ground-truth context Hard labels

KD Forward KL Ground-truth context Soft dist Mass-covering

SeqKD NLL on teacher’s output Teacher-generated context Hard labels Mass-covering

GKD Reverse KL Student-generated context Soft dist Mode-seeking

Agarwal et al. 2023



On-policy distillation

32

• The implication of reverse-KL: the context 
comes from the student’s own generation.

• This eliminates train-test mismatch (exposure 
bias): the student learns to recover from its 
own mistakes. 

• The mode-seeking property encourages the 
student to be sharp and confident on its best 
behaviors rather than diffusely covering all of 
the teacher's modes.

Gu et al. 2023



On policy distillation vs RL
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sampling Reward signal GPU requirement

Supervised fine-tuning Off-policy dense light

Reinforcement learning On-policy sparse heavy

On-policy distillation On-policy dense light

• On policy distillation can be viewed as the best of both worlds of SFT and RL --- 



On-policy distillation for domain-specific adaptation 
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• One very cool use case of on-policy distillation is domain-specific adaptation of OSS 
models, e.g., fine-tuning Qwen-8B on a domain-specific corpus (i.e., internal 
documents of a company), which can be viewed as a form of midtraining.

• Doing this in a naïve way (applying midtraining on top of the off-the-shelf OOS model 
which has been already post-trained) will cause degradation of capabilities acquired 
through the previous post-training (e.g., instruction following)

• On-policy distillation (on an instruction-tuning dataset, 30%) recovers the instruction 
following capability after acquiring the new domain-specific knowledge thru mid-
training (70%)



Lecture Plan 
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Speculative decoding (20 mins)

Off-policy drift & on-policy distillation (20 mins)
Off-policy, on-policy, online RL, off-line RL

RL infra and off-policy drift

On-policy distillation

Long context extension (25 mins)

Inference-time scaling (15 min)



Scaling reasoning requires scaling long-context
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• When applications require very long-context windows (100k to 2 million tokens):

• Software engineering tasks that demand understanding the entire repository

• Legal analysis that involves careful review of documents spanning hundreds of pages

• Personalized chat interactions conditioned on prolonged interaction histories

• Solving extremely challenging math problems that require elaborate sequences of 
trial and error across different problem-solving strategies



Scaling reasoning requires scaling long-context
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What makes long-context challenging for LLMs

• Data limitation: most internet documents aren’t long enough to support pre-training 
with extremely long context windows

• Compute/memory limitation: standard attention requires quadratic computation

• Generalization limitation of positional embeddings: models trained on shorter 
sequences doesn’t generalize well on longer sequences 



Typical document lengths of internet data

Source Type Typical Length (Approx. Tokens) Description

Common Crawl (Web) 600 – 1,200
Includes blog posts, news, and landing pages. 
Many "documents" are highly fragmented.

Wikipedia 500 – 1,500
While some entries are long, the median article is 
relatively concise.

Scientific Papers (arXiv) 5,000 – 10,000+
These are among the longest "natural" documents 
in most sets.

Books (Project Gutenberg) 50,000 – 100,000+
The "long-tail" of the data; rare but critical for 
long-range dependency.

GitHub (Code) 100 – 5,000
Code files vary wildly; many scripts are quite 
short, while libraries are long.

38



Sinusoidal positional embeddings (Vaswani et al., 2017)
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• Where 𝑝𝑜𝑠 is the position index, 𝑖 is the dimension index, 
and 𝑑 is the model dimension.

• Used in the original Transformer (Vaswani et al., 2017) 

• We are revisiting this because it helps to learn RoPE 
(Rotary positional embedding) that is recently important 
for LLMs and long-context extension



https://erdem.pl/2021/05/understanding-positional-encoding-in-transformers



Sinusoidal positional embeddings (Vaswani et al., 2017)
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• Where 𝑝𝑜𝑠 is the position index, 𝑖 is the dimension index, and 𝑑 is the model dimension.

• Why this particular sinusoidal form?

• Unique absolute positional embedding pre-defined for any position (whether seen 
during training or not)

• Captures relative distance! For any offset k, 𝑃𝐸𝑝𝑜𝑠+𝑘  can be represented as a linear 

function of 𝑃𝐸𝑝𝑜𝑠

• Two important things to note:

• Positional embedding is “added” to the token embedding

• Previously unseen positional embeddings during training, while can be defined, are 
still unseen to the model, thus the model can’t interpret them  



Learned positional embeddings
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• Randomly initialized, and then learned via backprop 

• Used broadly in early days of LLMs, such as BERT, Roberta, GPT-2, GPT-3, Albert, Electra, 
BART

• It is not possible to define the positional embedding for a previously unseen position.

• Also doesn’t generalize to positions beyond those seen during training.

• But performance was better when the model learns the positional encoding themselves

• This became a major bottleneck for long-context extension however, thus no longer used 
in recent LLMs 



RoPE: Rotary Position Embedding (Su et al., 2021)
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Rotations are applied to just 
query and key vectors, 
not value vectors!

• Recall Attention

• Attention with RoPE

After query and key vectors 
are computed, multiply 
them with the rotation 
matrix!



RoPE: Rotary Position Embedding (Su et al., 2021)
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The full rotation matrix of RoPE would then look like this:

Where m is the position index, i is 
the dimension index, 𝜃𝑖 = 𝑏−2𝑖/𝑑 is 
the frequency for dimension pair 𝑖, 
and 𝑏 is the base frequency 
(typically 𝑏 = 10,000)



RoPE: Rotary Position Embedding (Su et al., 2021)
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• RoPE encodes position by *rotating* the query and key vectors in the 2D plane.

Recall the rotation matrix:

Where m is the position index, i is 
the dimension index, 𝜃𝑖 = 𝑏−2𝑖/𝑑 is 
the frequency for dimension pair 𝑖, 
and 𝑏 is the base frequency 
(typically 𝑏 = 10,000)



RoPE: Rotary Position Embedding (Su et al., 2021)
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• RoPE encodes position by *rotating* the query and key vectors in the 2D plane. 

• High-frequency dimensions (small 𝑖): rotate rapidly, encoding fine-grained local positional 
information. These dimensions cycle through many full rotations over the training length.

• Low-frequency dimensions (large 𝑖): rotate slowly, encoding broad/global positional 
information. These dimensions complete very few full rotations even over very long 
sequences.

• Dimension pair 0: 𝜃0 = 1.0 — highest frequency, one full rotation every ∼ 6.28 tokens

• Dimension pair 31: 𝜃31 = 0.01 — one rotation every ∼ 628 tokens

• Dimension pair 63: 𝜃63 = 0.0001 — one rotation every ∼ 62,832 tokens



RoPE: Rotary Position Embedding (Su et al., 2021)
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• Attention with RoPE

• Relative distance

• because the transposed R rotates backward, we have While their corresponding 
rotation matrices are all 
different, by the time q and 
k are multiplied, the 
rotational angle becomes 
identical! v

“Taylor” and “Swift” at 
position 10 and 11 will get 
the exact same result as 
“Taylor and “Swift” at 
position 100 and 101!



RoPE: Roterary Positional Embedding (Su et al., 2021)
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Feature Original Sinusoidal (2017) RoPE (LLaMA, PaLM, etc.)

Integration
Additive: Added to the input 
embedding before the first layer

Multiplicative: Applied to $Q$ and $K$ at 
every attention layer

Norm 
preservation

Increases the token embedding’s 
norm

Preserves the token embedding’s norm

Relative 
Distance

Mathematically captured, but due 
to the additive integration, the 
information gets muddled up by the 
time QKV attention is computed

Mathematically captured via the rotation 
angle and the information is cleanly available 
when the QKV attention is computed

Extrapolation Struggles significantly
Allows for additional long context extension 
techniques such as "Position Interpolation”, 
"NTK scaling”, and YARN



Long context extension practices 
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1. Position Encoding Modifications

RoPE scaling appears to be the most common family of approaches (as of 2026):

• Linear interpolation (Position Interpolation): Scales position indices down by a factor so the 
model sees familiar relative positions. Introduced by Meta for extending LLaMA from 
2K→32K+. Requires light fine-tuning.

• NTK-aware interpolation: Adjusts the rotary base frequency rather than linearly 
compressing positions. Better preserves high-frequency components. Has "dynamic NTK" 
variants that adapt scaling based on sequence length at inference.

• YaRN (Yet another RoPE extensioN): Combines NTK scaling with an attention temperature 
correction and a ramp function that treats different frequency bands differently—
interpolating low frequencies while extrapolating high frequencies.



Long context extension practices 
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2. Progressive / Staged Training

A common recipe (used by LongLLaMA, LongAlign, Llama 3.1, etc.):

• Start from a base model (e.g., 4K–8K context).

• Apply position encoding modification.

• Continual pretraining on long documents with progressively increasing sequence lengths 
(e.g., 8K → 32K → 64K → 128K), often with a relatively small amount of data (billions of 
tokens, not trillions).

• Fine-tune on long-context instruction data.

• The key insight is that you don't need the full pretraining budget—typically 0.1–1% of 
original pretraining tokens suffices for adaptation.



Long context extension practices 
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3. Data Engineering

• Upsampling long documents in the continued pretraining mix (books, code repos, long-
form articles, concatenated related documents).

• Synthetic long-context tasks: Needle-in-a-haystack retrieval, long-range QA, multi-
document summarization.

• LongAlign-style instruction tuning with tasks specifically requiring the model to use 
information spread across the full context.

• Self-instruct for long contexts: Using a capable model to generate long-context instruction-
response pairs.



Long context extension practices 
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4. Attention Architecture Modifications

• Sparse / sliding window attention combined with global attention tokens (Longformer-
style).

• Flash Attention (and FlashAttention-2/3) to reduce memory from O(n²) to O(n) during 
training.

• Grouped Query Attention (GQA) or Multi-Query Attention (MQA): Reduces KV cache 
memory, enabling longer contexts at inference.



Lecture Plan 
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Speculative decoding (20 mins)

Off-policy drift & on-policy distillation (20 mins)
Off-policy, on-policy, online RL, off-line RL

RL infra and off-policy drift

On-policy distillation

Long context extension (20 mins)

Inference-time scaling (10 min)
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• This notion was intensely popularized by OpenAI’s O1 release in Sep 2024

• Though it was preceded by the GDM paper from Aug 2024

• And it also appeared less explicitly in the “Let’s verify step by step” paper from May 2023



Test time compute scaling Instead of scaling only training time compute, 
what if we scale test time compute?

Instead of training more, 
what if we let the model think more?
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• This paper challenges the dominant paradigm in LLM development by demonstrating that 
intelligently scaling test-time compute can yield larger performance gains than simply 
scaling model parameters 

• For a fixed inference budget, smaller models using smart test-time compute strategies 
can outperform larger models using standard decoding

• For compute-optimal allocation, seek an optimal balance between 

• Model size (pretraining FLOPs)

• Number of generated samples or revision steps (test-time FLOPs)
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• Test-time compute scaling strategies evaluated:

• Best-of-N sampling: Generate N independent solutions, select best via verifier

• Weighted Best-of-N: Sample from compute-optimal temperature distributions

• Sequential revisions: Iteratively refine single solutions using model self-critique

• Beam search with PRMs: Maintain multiple solution candidates, pruning based on 
step-level rewards

• Diverse beam search: Encourage exploration across different solution approaches

• Verification methods evaluated:

• Outcome-supervised reward models (ORMs): Trained to predict solution correctness

• Process-supervised reward models (PRMs): Trained to evaluate correctness at each 
reasoning step

• Domain-specific verifiers: For problems with checkable solutions (e.g., code execution)
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• Key findings:

• On MATH-500, a 14B parameter model with optimized test-time compute matched or 
exceeded the performance of models 4× larger

• The compute-optimal strategy allocated roughly equal FLOPs to pretraining and 
inference for their experimental setup

• Sequential revision strategies showed particularly strong scaling on tasks requiring 
refinement and error correction

• PRMs enabled 4-8× more efficient compute usage compared to ORMs w/ beam search

• Practical takeaways:

• Don't default to the largest model!

• Invest in verification! 

• High-quality reward models, especially PRMs, dramatically improve test-time scaling
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