Lecture 4: ASR: Learning: EM (Baum-Welch)
Outline for Today

- Baum-Welch = EM = Forward-Backward
- How this fits into the ASR component of course
 - April 8: HMMs, Forward, Viterbi Decoding
 - On your own: N-grams and Language Modeling
- Apr 10: Training: Baum-Welch (Forward-Backward)
- Apr 10: Advanced Decoding
- Apr 15: Acoustic Modeling and GMMs
- Apr 17: Feature Extraction, MFCCs
- May 27: Deep Neural Net Acoustic Models
The Learning Problem

Learning: Given an observation sequence O and the set of possible states in the HMM, learn the HMM parameters A and B.

- Baum-Welch = Forward-Backward Algorithm (Baum 1972)
- Is a special case of the EM or Expectation-Maximization algorithm (Dempster, Laird, Rubin)
- The algorithm will let us train the transition probabilities $A= \{a_{ij}\}$ and the emission probabilities $B=\{b_i(o_t)\}$ of the HMM
Input to Baum-Welch

- O unlabeled sequence of observations
- Q vocabulary of hidden states

For ice-cream task
- $O = \{1, 3, 2, ..., \}$
- $Q = \{H, C\}$
Starting out with Observable Markov Models

- How to train?
- Run the model on observation sequence O.
- Since it’s not hidden, we know which states we went through, hence which transitions and observations were used.

- Given that information, training:
 - $B = \{b_k(o_t)\}$: Since every state can only generate one observation symbol, observation likelihoods B are all 1.0
 - $A = \{a_{ij}\}$:

$$a_{ij} = \frac{C(i \rightarrow j)}{\sum_{q \in Q} C(i \rightarrow q)}$$
Extending Intuition to HMMs

- For HMM, cannot compute these counts directly from observed sequences.
- Baum-Welch intuitions:
 - Iteratively estimate the counts.
 - Start with an estimate for a_{ij} and b_k, iteratively improve the estimates.
- Get estimated probabilities by:
 - computing the forward probability for an observation
 - dividing that probability mass among all the different paths that contributed to this forward probability.
The Backward algorithm

- We define the backward probability as follows:
 \[\beta_t(i) = P(o_{t+1}, o_{t+2}, \ldots o_T, | q_t = i, \Phi) \]

- This is the probability of generating partial observations \(o_{t+1}^{T} \) from time \(t+1 \) to the end, given that the HMM is in state \(i \) at time \(t \) and of course given \(\Phi \).
The Backward algorithm

1. Initialization:

 \[\beta_T(i) = a_{i,F}, \; 1 \leq i \leq N \]

2. Recursion (again since states 0 and \(q_F \) are non-emitting):

 \[\beta_t(i) = \sum_{j=1}^{N} a_{ij} b_j(o_{t+1}) \beta_{t+1}(j), \; 1 \leq i \leq N, 1 \leq t < T \]

3. Termination:

 \[P(O|\lambda) = \alpha_T(q_F) = \beta_1(0) = \sum_{j=1}^{N} a_{0j} b_j(o_1) \beta_1(j) \]
Inductive step of the backward algorithm

- Computation of $\beta_t(i)$ by weighted sum of all successive values β_{t+1}

\[
\beta_t(i) = \sum_j \beta_{t+1}(j) a_{ij} b_i(o_{t+1})
\]
Intuition for re-estimation of a_{ij}

- We will estimate \hat{a}_{ij} via this intuition:

$$\hat{a}_{ij} = \frac{\text{expected number of transitions from state } i \text{ to state } j}{\text{expected number of transitions from state } i}$$

- Numerator intuition:
 - Assume we had some estimate of probability that a given transition $i \rightarrow j$ was taken at time t in observation sequence.
 - If we knew this probability for each time t, we could sum over all t to get expected value (count) for $i \rightarrow j$.

Re-estimation of a_{ij}

- Let ξ_t be the probability of being in state i at time t and state j at time $t+1$, given $O_{1..T}$ and model Φ:

$$\xi_t(i,j) = P(q_t = i, q_{t+1} = j \mid O, \lambda)$$

- We can compute ξ from not-quite-ξ, which is:

$$\text{not_quite_}\xi_t(i,j) = P(q_t = i, q_{t+1} = j, O \mid \lambda)$$
Computing not-quite-ξ

The four components of $P(q_t = i, q_{t+1} = j, O \mid \lambda)$: α, β, a_{ij} and $b_j(o_t)$

$$\text{not-quite}-\xi_t(i, j) = \alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)$$
From not-quite-ξ to ξ

- We want:
 \[
 \xi_t(i, j) = P(q_t = i, q_{t+1} = j \mid O, \lambda)
 \]

- We’ve got:
 \[
 not_quite_\xi_t(i, j) = P(q_t = i, q_{t+1} = j, O \mid \lambda)
 \]

- Which we compute as follows:
 \[
 not_quite_\xi_t(i, j) = \alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)
 \]
From not-quite-ξ to ξ

- We want:

$$\xi_t(i,j) = P(q_t = i, q_{t+1} = j \mid O, \lambda)$$

- We’ve got:

$$\text{not_quite_} \xi_t(i,j) = P(q_t = i, q_{t+1} = j, O \mid \lambda)$$

- Since:

$$P(X \mid Y, Z) = \frac{P(X,Y \mid Z)}{P(Y \mid Z)}$$

- We need:

$$\xi_t(i,j) = \frac{\text{not_quite_} \xi_t(i,j)}{P(O \mid \lambda)}$$
From not-quite-\(\xi\) to \(\xi\)

\[
\xi_t(i, j) = \frac{\text{not quite} - \xi_t(i, j)}{P(O \mid \lambda)}
\]

\[
\text{not-quite-} \xi_t(i, j) = \alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)
\]

\[
P(O \mid \lambda) = \alpha_T(q_F) = \beta_T(q_0) = \sum_{j=1}^{N} \alpha_t(j) \beta_t(j)
\]

\[
\xi_t(i, j) = \frac{\alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)}{\alpha_T(q_F)}
\]
From ξ to a_{ij}

\[\hat{a}_{ij} = \frac{\text{expected number of transitions from state } i \text{ to state } j}{\text{expected number of transitions from state } i} \]

- The expected number of transitions from state i to state j is the sum over all t of ξ
- The total expected number of transitions out of state i is the sum over all transitions out of state i
- Final formula for reestimated a_{ij}:

\[\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i, j)}{\sum_{t=1}^{T-1} \sum_{k=1}^{N} \xi_t(i, k)} \]
Re-estimating the observation likelihood b

- This is the probability of a given symbol v_k from the observation vocabulary V, given a state j: $\hat{b}_j(v_k)$.

$$\hat{b}_j(v_k) = \frac{\text{expected number of times in state } j \text{ and observing symbol } v_k}{\text{expected number of times in state } j}$$

We’ll need to know $\gamma_t(j)$: the probability of being in state j at time t:

$$\gamma_t(j) = P(q_t = j|O, \lambda)$$

$$\gamma_t(j) = \frac{P(q_t = j, O|\lambda)}{P(O|\lambda)}$$

$$\gamma_t(j) = \frac{\alpha_t(j)\beta_t(j)}{P(O|\lambda)}$$
Computing γ

$$\gamma_t(j) = \frac{P(q_t = j, O|\lambda)}{P(O|\lambda)}$$

$$\gamma_t(j) = \frac{\alpha_t(j)\beta_t(j)}{P(O|\lambda)}$$

$$\hat{b}_j(v_k) = \frac{\sum_{t=1}^{T} s.t. O_t = v_k \gamma_t(j)}{\sum_{t=1}^{T} \gamma_t(j)}$$
Summary

\[\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i, j)}{\sum_{t=1}^{T-1} \sum_{k=1}^{N} \xi_t(i, k)} \]

\[\hat{b}_j(v_k) = \frac{\sum_{t=1}^{T} I(s.t. O_t = v_k) \gamma_t(j)}{\sum_{t=1}^{T} \gamma_t(j)} \]

The ratio between the expected number of transitions from state i to j and the expected number of all transitions from state i.

The ratio between the expected number of times the observation data emitted from state j is \(v_k\), and the expected number of times any observation is emitted from state j.
The Forward-Backward Algorithm

function \textsc{forward-backward}(observations of len T, output vocabulary V, hidden state set Q) returns HMM=(A,B)

initialize A and B

iterate until convergence

\textbf{E-step}

$$\gamma_t(j) = \frac{\alpha_t(j) \beta_t(j)}{\alpha_T(q_F)} \quad \forall \ t \text{ and } j$$

$$\xi_t(i,j) = \frac{\alpha_t(i) a_{ij} b_{j(o_{t+1})} \beta_{t+1}(j)}{\alpha_T(q_F)} \quad \forall \ t, i, \text{ and } j$$

\textbf{M-step}

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \sum_{k=1}^{N} \xi_t(i,k)}$$

$$\hat{b}_j(v_k) = \frac{\sum_{t=1}^{T} \gamma_t(j)}{\sum_{t=1}^{T} \sum_{j=1}^{V} \gamma_t(j)}$$

return A, B
Summary: Forward-Backward Algorithm

- Initialize $\Phi=(A,B)$
- Compute α, β, ξ
- Estimate new $\Phi'=(A,B)$
- Replace Φ with Φ'
- If not converged go to 2
Applying FB to speech: Caveats

- Network structure of HMM is always created by hand
- no algorithm for double-induction of optimal structure and probabilities has been able to beat simple hand-built structures.
- Always Bakis network = links go forward in time
- Subcase of Bakis net: beads-on-string net:

- Baum-Welch only guaranteed to return local max, rather than global optimum
- At the end, we through away A and only keep B
Lecture 4b: Advanced Decoding
Outline for Today

- Advanced Decoding
- How this fits into the ASR component of course
 - April 8: HMMs, Forward, Viterbi Decoding
 - On your own: N-grams and Language Modeling
 - Apr 10: Training: Baum-Welch (Forward-Backward)
 - **Apr 10: Advanced Decoding**
 - Apr 15: Acoustic Modeling and GMMs
 - Apr 17: Feature Extraction, MFCCs
 - May 27: Deep Neural Net Acoustic Models
Advanced Search (= Decoding)

- How to weight the AM and LM
- Speeding things up: Viterbi beam decoding
- Multipass decoding
 - N-best lists
 - Lattices
 - Word graphs
 - Meshes/confusion networks
- Finite State Methods
What we are searching for

- Given Acoustic Model (AM) and Language Model (LM):

\[
\hat{W} = \arg \max_{W \in L} P(O \mid W)P(W)
\]
Combining Acoustic and Language Models

- We don’t actually use equation (1)
 \[\hat{W} = \arg \max_{W \in L} P(O \mid W)P(W) \]

- AM underestimates acoustic probability
 - Why? Bad independence assumptions
 - Intuition: we compute (independent) AM probability estimates; but if we could look at context, we would assign a much higher probability. So we are underestimating
 - We do this every 10 ms, but LM only every word.
 - Besides: AM isn’t a true probability

- AM and LM have vastly different dynamic ranges
Language Model Scaling Factor

- Solution: add a language model weight (also called language weight LW or language model scaling factor LMSF)

\[
\hat{W} = \arg \max_{W \in L} P(O \mid W) P(W)^{LMSF}
\]

- Value determined empirically, is positive (why?)
- Often in the range 10 +- 5.
Language Model Scaling Factor

- As LMSF is increased:
 - More deletion errors (since increase penalty for transitioning between words)
 - Fewer insertion errors
 - Need wider search beam (since path scores larger)
 - Less influence of acoustic model observation probabilities

Slide from Bryan Pellom
Word Insertion Penalty

• But LM prob \(P(W) \) also functions as penalty for inserting words
 • Intuition: when a uniform language model (every word has an equal probability) is used, LM prob is a \(1/V \) penalty multiplier taken for each word
 • Each sentence of \(N \) words has penalty \(N/V \)
 • If penalty is large (smaller LM prob), decoder will prefer fewer longer words
 • If penalty is small (larger LM prob), decoder will prefer more shorter words
• When tuning LM for balancing AM, side effect of modifying penalty
• So we add a separate word insertion penalty to offset

\[
(3) \quad \hat{W} = \arg\max_{W \in L} P(O \mid W) P(W)^{LMSF} WIP^{N(W)}
\]
Word Insertion Penalty

- Controls trade-off between insertion and deletion errors
 - As penalty becomes larger (more negative)
 - More deletion errors
 - Fewer insertion errors

- Acts as a model of effect of length on probability
 - But probably not a good model (geometric assumption probably bad for short sentences)
Log domain

- We do everything in log domain
- So final equation:

\[
\hat{W} = \text{argmax}_{W \in L} \log P(O \mid W) + LMSF \log P(W) + N \log \text{WIP}
\]
Speeding things up

- Viterbi is $O(N^2T)$, where N is total number of HMM states, and T is length
- This is too large for real-time search
- A ton of work in ASR search is just to make search faster:
 - Beam search (pruning)
 - Fast match
 - Tree-based lexicons
Beam search

- Instead of retaining all candidates (cells) at every time frame
- Use a threshold T to keep subset:
 - At each time t
 - Identify state with lowest cost D_{min}
 - Each state with cost $> D_{min} + T$ is discarded (‘pruned”) before moving on to time $t+1$
 - Unpruned states are called the active states
Viterbi Beam Search

\[\pi_A \rightarrow b_A(1) \rightarrow b_A(2) \rightarrow b_A(3) \rightarrow b_A(4) \]

\[\pi_B \rightarrow b_B(1) \rightarrow b_B(2) \rightarrow b_B(3) \rightarrow b_B(4) \]

\[\pi_C \rightarrow b_C(1) \rightarrow b_C(2) \rightarrow b_C(3) \rightarrow b_C(4) \]

\[t=0 \quad t=1 \quad t=2 \quad t=3 \quad t=4 \]
Viterbi Beam search

- Most common search algorithm for LVCSR
- Time-synchronous
 - Comparing paths of equal length
- Two different word sequences W1 and W2:
 - We are comparing $P(W1|O_{0t})$ and $P(W2|O_{0t})$
 - Based on same partial observation sequence O_{0t}
 - So denominator is same, can be ignored
- Time-asynchronous search (A^*) is harder
Viterbi Beam Search

- Empirically, beam size of 5-10% of search space
- Thus 90-95% of HMM states don’t have to be considered at each time t
- Vast savings in time.
On-line processing

- Problem with Viterbi search
 - Doesn’t return best sequence til final frame

- This delay is unreasonable for many applications.

- On-line processing
 - usually smaller delay in determining answer
 - at cost of always increased processing time.
On-line processing

- At every time interval I (e.g. 1000 msec or 100 frames):
 - At current time t_{curr}, for each active state q_{tcurr}, find best path $P(q_{tcurr})$ that goes from $t0$ to t_{curr} (using backtrace (ψ))
 - Compare set of best paths P and find last time t_{match} at which all paths P have the same state value at that time

- If t_{match} exists {
 - Output result from $t0$ to t_{match}
 - Reset/Remove ψ values until t_{match}
 - Set $t0$ to $t_{match}+1$
}

- Efficiency depends on interval I, beam threshold, and how well the observations match the HMM.

Slide from John-Paul Hosom
On-line processing

- **Example (Interval = 4 frames):**

 - At time 4, all best paths for all states A, B, and C have state B in common at time 2. So, $t_{\text{match}} = 2$.

 - Now output states BB for times 1 and 2, because no matter what happens in the future, this will not change. Set t_0 to 3.

Slide from John-Paul Hosom
• Now $t_{\text{match}} = 7$, so output from $t=3$ to $t=7$: BBABB, then set t_0 to 8.

• If $T=8$, then output state with best δ_8, for example C. Final result (obtained piece-by-piece) is then BBBBBABBC

Slide from John-Paul Hosom
Problems with Viterbi

- It’s hard to integrate sophisticated knowledge sources
 - Trigram grammars
 - Parser-based LM
 - long-distance dependencies that violate dynamic programming assumptions
 - Knowledge that isn’t left-to-right
 - Following words can help predict preceding words

Solutions
- Return multiple hypotheses and use smart knowledge to rescore them
- Use a different search algorithm, A* Decoding (=Stack decoding)
Multipass Search

Speech Input → Simple Knowledge Source → N-Best Decoder → N-Best List → Rescoring → Smarter Knowledge Source → 1-Best Utterance

N-Best List:
- Alice was beginning to get...
- Every happy family
- In a hole in the ground...
- If music be the food of love...
- If music be the foot of dove...

1-Best Utterance:
If music be the food of love
Ways to represent multiple hypotheses

- N-best list
 - Instead of single best sentence (word string), return ordered list of N sentence hypotheses

- Word lattice
 - Compact representation of word hypotheses and their times and scores

- Word graph
 - FSA representation of lattice in which times are represented by topology
Another Problem with Viterbi

- The forward probability of observation given word string

\[P(O|W) = \sum_{S \in S_1^T} P(O, S|W) \]

- The Viterbi algorithm makes the “Viterbi Approximation”

\[P(O|W) \approx \max_{S \in S_1^T} P(O, S|W) \]

- Approximates \(P(O|W) \)
 - with \(P(O|\text{best state sequence}) \)
Solving the best-path-not-best-words problem

- Viterbi returns best path (state sequence) not best word sequence
 - Best path can be very different than best word string if words have many possible pronunciations
- Two solutions
 - Modify Viterbi to sum over different paths that share the same word string.
 - Do this as part of N-best computation
 - Compute N-best word strings, not N-best phone paths
 - Use a different decoding algorithm (A*) that computes true Forward probability.
Sample N-best list

<table>
<thead>
<tr>
<th>Rank</th>
<th>Path</th>
<th>AM logprob</th>
<th>LM logprob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>it’s an area that’s naturally sort of mysterious</td>
<td>-7193.53</td>
<td>-20.25</td>
</tr>
<tr>
<td>2.</td>
<td>that’s an area that’s naturally sort of mysterious</td>
<td>-7192.28</td>
<td>-21.11</td>
</tr>
<tr>
<td>3.</td>
<td>it’s an area that’s not really sort of mysterious</td>
<td>-7221.68</td>
<td>-18.91</td>
</tr>
<tr>
<td>4.</td>
<td>that scenario that’s naturally sort of mysterious</td>
<td>-7189.19</td>
<td>-22.08</td>
</tr>
<tr>
<td>5.</td>
<td>there’s an area that’s naturally sort of mysterious</td>
<td>-7198.35</td>
<td>-21.34</td>
</tr>
<tr>
<td>6.</td>
<td>that’s an area that’s not really sort of mysterious</td>
<td>-7220.44</td>
<td>-19.77</td>
</tr>
<tr>
<td>7.</td>
<td>the scenario that’s naturally sort of mysterious</td>
<td>-7205.42</td>
<td>-21.50</td>
</tr>
<tr>
<td>8.</td>
<td>so it’s an area that’s naturally sort of mysterious</td>
<td>-7195.92</td>
<td>-21.71</td>
</tr>
<tr>
<td>9.</td>
<td>that scenario that’s not really sort of mysterious</td>
<td>-7217.34</td>
<td>-20.70</td>
</tr>
<tr>
<td>10.</td>
<td>there’s an area that’s not really sort of mysterious</td>
<td>-7226.51</td>
<td>-20.01</td>
</tr>
</tbody>
</table>
N-best lists

- Again, we don’t want the N-best paths
- That would be trivial
 - Store N values in each state cell in Viterbi trellis instead of 1 value
- But:
 - Most of the N-best paths will have the same word string
 - Useless!!!
 - It turns out that a factor of N is too much to pay
Computing N-best lists

- In the worst case, an admissible algorithm for finding the N most likely hypotheses is exponential in the length of the utterance.
- For example, if AM and LM score were nearly identical for all word sequences, we must consider all permutations of word sequences for whole sentence (all with the same scores).
- But of course if this is true, can’t do ASR at all!
Computing N-best lists

- Instead, various non-admissible algorithms:
 - (Viterbi) Exact N-best
 - (Viterbi) Word Dependent N-best
- And one admissible
 - A* N-best
Exact N-best for time-synchronous Viterbi

- Due to Schwartz and Chow; also called “sentence-dependent N-best”
- Idea: each state stores multiple paths
- Idea: maintain separate records for paths with distinct word histories
 - History: whole word sequence up to current time t and word w
 - When 2 or more paths come to the same state at the same time, merge paths w/same history and sum their probabilities.
 - i.e. compute the forward probability within words
- Otherwise, retain only N-best paths for each state
Exact N-best for time-synchronous Viterbi

- Efficiency:
 - Typical HMM state has 2 or 3 predecessor states within word HMM
 - So for each time frame and state, need to compare/merge 2 or 3 sets of N paths into N new paths.
 - At end of search, N paths in final state of trellis give N-best word sequences
- Complexity is O(N)
 - Still too slow for practical systems
 - N is 100 to 1000
 - More efficient versions: word-dependent N-best
Word-dependent (‘bigram’) N-best

- Intuition:
 - Instead of each state merging all paths from start of sentence
 - We merge all paths that share the same previous word

- Details:
 - This will require us to do a more complex traceback at the end of sentence to generate the N-best list
Word-dependent (‘bigram’) N-best

- At each state preserve total probability for each of $k \ll N$ previous words
 - K is 3 to 6; N is 100 to 1000
- At end of each word, record score for each previous word hypothesis and name of previous word
 - So each word ending we store “alternatives”
- But, like normal Viterbi, pass on just the best hypothesis
- At end of sentence, do a traceback
 - Follow backpointers to get 1-best
 - But as we follow pointers, put on a queue the alternate words ending at same point
 - On next iteration, pop next best
Word Lattice

SO IT'S
IT'S
THERE'S
THAT'S

AN
AREA

THE
THAT

SCENARIO

NATURALLY
NOT
REALLY

SORT
OF

MYSTERIOUS
- Timing information removed

Word Graph

- Timing information removed
- Overlapping copies of words merged
- AM information removed
- Result is a WFST
- Natural extension to N-gram language model
Converting word lattice to word graph

- Word lattice can have range of possible end frames for word
- Create an edge from \((w_i, t_i)\) to \((w_j, t_j)\) if \(t_{j-1}\) is one of the end-times of \(w_i\)
Lattices

• Some researchers are careful to distinguish between word graphs and word lattices
• But we’ll follow convention in using “lattice” to mean both word graphs and word lattices.
• Two facts about lattices:
 • Density: the number of word hypotheses or word arcs per uttered word
 • Lattice error rate (also called “lower bound error rate”): the lowest word error rate for any word sequence in lattice
 • Lattice error rate is the “oracle” error rate, the best possible error rate you could get from rescoring the lattice.
 • We can use this as an upper bound
Posterior lattices

- We don’t actually compute posteriors:

\[
\hat{W} = \arg\max_{W \in \mathcal{L}} \frac{P(O|W)P(W)}{P(O)} = \arg\max_{W \in \mathcal{L}} P(O|W)P(W)
\]

- Why do we want posteriors?
 - Without a posterior, we can choose best hypothesis, but we can’t know how good it is!
 - In order to compute posterior, need to
 - Normalize over all different word hypothesis at a time
 - Align all the hypotheses, sum over all paths passing through word
Mesh = Sausage = pinched lattice
Summary: one-pass vs. multipass

- Potential problems with multipass
 - Can’t use for real-time (need end of sentence)
 - (But can keep successive passes really fast)
 - Each pass can introduce inadmissible pruning
 - (But one-pass does the same w/beam pruning and fastmatch)

- Why multipass
 - Very expensive KSs. (NL parsing, higher-order n-gram, etc.)
 - Spoken language understanding: N-best perfect interface
 - Research: N-best list very powerful offline tools for algorithm development
 - N-best lists needed for discriminant training (MMIE, MCE) to get rival hypotheses
Weighted Finite State Transducers for ASR

- An alternative paradigm for ASR
- Used by Kaldi
- Weighted finite state automaton that transduces an input sequence to an output sequence
Weighted Finite State Acceptors

Diagram 1:
- State 0 transitions to State 1 with the input 'using/1.'
- State 1 transitions to State 2 with the input 'data/0.66' and intuition/0.33.'
- State 2 transitions to State 4 with the input 'are/0.5.'
- State 4 transitions to State 5 with the inputs 'better/0.7' and 'worse/0.3.'

Diagram 2:
- State 0 transitions to State 1 with the input 'd/1.'
- State 1 transitions to State 2 with the inputs 'ey/0.5' and 'ae/0.5.'
- State 2 transitions to State 3 with the inputs 't/0.3' and 'dx/0.7.'
- State 3 transitions to State 4 with the input 'ax/1.'
Weighted Finite State Transducers
WFST Algorithms

Composition: combine transducers at different levels. If G is a finite state grammar and P is a pronunciation dictionary, \(P \circ G \) transduces a phone string to word strings allowed by the grammar.

Determinization: Ensures each state has no more than one output transition for a given input label.

Minimization: transforms a transducer to an equivalent transducer with the fewest possible states and transitions.
WFST-based decoding

• Represent the following components as WFSTs
 • Context-dependent acoustic models (C)
 • Pronunciation dictionary (D)
 • n-gram language model (L)

• The decoding network is defined by their composition:
 \[C \circ D \circ L \]

• Successively determinize and combine the component transducers, then minimize the final network
G

0 -> jill/0.693, bill/1.386 -> 1

1 -> read/0.400, wrote/1.832, fled/1.771 -> 2/0
\[
\min(\det(L \circ G))
\]
Advanced Search (= Decoding)

- How to weight the AM and LM
- Speeding things up: Viterbi beam decoding
- Multipass decoding
 - N-best lists
 - Lattices
 - Word graphs
 - Meshes/confusion networks
- Finite State Methods