Outline

- Human dialogue considerations
- Information state
- Evaluation
- Markov decision processes
Linguistics of Human Conversation

- Turn-taking
- Speech Acts
- Grounding
Turn-taking

Dialogue is characterized by turn-taking.

A:

B:

A:

B:

...

So how do speakers know when to take the floor?
Adjacency pairs

Sacks et al. (1974)

- **Adjacency pairs**: current speaker selects next speaker
 - Question/answer
 - Greeting/greeting
 - Compliment/downplayer
 - Request/grant
- Silence inside the pair is meaningful:

 A: Is there something bothering you or not?
 (1.0)
 A: Yes or no?
 (1.5)
 A: Eh
 B: No.
Speech Acts

- Austin (1962): An utterance is a kind of action
- Clear case: performatives
 - I name this ship the Titanic
 - I second that motion
 - I bet you five dollars it will snow tomorrow
- Performative verbs (name, second)
- Locutionary (what was said)
- Illocutionary (what was meant)
- Is there any salt?
5 classes of “speech acts”

Searle (1975)

Assertives: committing the speaker to something’s being the case
(suggesting, putting forward, swearing, boasting, concluding)

Directives: attempts by speaker to get addressee to do something
(asking, ordering, requesting, inviting, advising, begging)

Commissives: Committing speaker to future course of action
(promising, planning, vowing, betting, opposing)

Expressives: expressing psychological state of the speaker about a state of affairs
(thanking, apologizing, welcoming, deploring).

Declarations: changing the world via the utterance
(I resign; You’re fired)
More Illocutionary acts: Grounding

• Why do elevator buttons light up?
• Clark (1996) (after Norman 1988)

 Principle of closure. Agents performing an action require evidence, sufficient for current purposes, that they have succeeded in performing it

• What is the linguistic correlate of this?
Grounding

- Need to know whether an action succeeded or failed
- Dialogue is also an action
 - a collective action performed by speaker and hearer
 - Common ground: set of things mutually believed by both speaker and hearer
- Need to achieve common ground, so hearer must ground or acknowledge speakers utterance.
How do speakers ground?
Clark and Schaefer

- **Continued attention:**
 - B continues attending to A

- **Relevant next contribution:**
 - B starts in on next relevant contribution

- **Acknowledgement:**
 - B nods or says continuers *(uh-huh)* or assessment *(great!)*

- **Demonstration:**
 - B demonstrates understanding A by *reformulating* A’s contribution, or by *collaboratively completing* A’s utterance

- **Display:**
 - B repeats verbatim all or part of A’s presentation
A human-human conversation

C₁: ...I need to travel in May.
A₁: And, what day in May did you want to travel?
C₂: OK uh I need to be there for a meeting that’s from the 12th to the 15th.
A₂: And you’re flying into what city?
C₃: Seattle.
A₃: And what time would you like to leave Pittsburgh?
C₄: Uh hmm I don’t think there’s many options for non-stop.
A₄: Right. There’s three non-stops today.
C₅: What are they?
A₅: The first one departs PGH at 10:00am arrives Seattle at 12:05 their time. The second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the last flight departs PGH at 8:15pm arrives Seattle at 10:28pm.
C₆: OK I’ll take the 5ish flight on the night before on the 11th.
C₇: OK.
Grounding examples

Display:
 C: I need to travel in May
 A: And, what day in May did you want to travel?

Acknowledgement
 C: I want to fly from Boston
 A: mm-hmm
 C: to Baltimore Washington International
Grounding Examples (2)

- Acknowledgement + next relevant contribution
 And, what day in May did you want to travel?
 And you’re flying into what city?
 And what time would you like to leave?

- The and indicates to the client that agent has successfully understood answer to the last question.
Grounding negative responses
From Cohen et al. (2004)

- System: Did you want to review some more of your personal profile?
- Caller: No.
- System: Okay, what’s next?

- System: Did you want to review some more of your personal profile?
- Caller: No.
- System: What’s next?
Information-State and Dialogue Acts

• For more than just form-filling
• Need to:
 • Decide when the user has asked a question, made a proposal, rejected a suggestion
 • Ground a user’s utterance, ask clarification questions, suggest plans
• Need models of interpretation and generation
 • Speech acts and grounding
 • More sophisticated representation of dialogue context than just a list of slots
Information-state architecture

- Information state
- Dialogue act interpreter
- Dialogue act generator
- Set of update rules
 - Update dialogue state as acts are interpreted
 - Generate dialogue acts
- Control structure to select which update rules to apply
Information-state

Speech

Natural Language Understanding

Dialogue Act Interpreter

Information State
- discourse context
- beliefs
- goals
- user model
- task context

Behavioral Agent
- update rules
- control

Speech

Natural Language Generation

Dialogue Act Generator
Dialog acts

- Also called “conversational moves”
- An act with (internal) structure related specifically to its dialogue function
- Incorporates ideas of grounding
- Incorporates other dialogue and conversational functions that Austin and Searle didn’t seem interested in
Verbmobil task

- Two-party scheduling dialogues
- Speakers were asked to plan a meeting at some future date
- Data used to design conversational agents which would help with this task
- (cross-language, translating, scheduling assistant)
<table>
<thead>
<tr>
<th>Dialogue Acts</th>
<th>Natural Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>THANK</td>
<td>thanks</td>
</tr>
<tr>
<td>GREET</td>
<td>Hello Dan</td>
</tr>
<tr>
<td>INTRODUCE</td>
<td>It’s me again</td>
</tr>
<tr>
<td>BYE</td>
<td>Alright, bye</td>
</tr>
<tr>
<td>REQUEST-COMMENT</td>
<td>How does that look?</td>
</tr>
<tr>
<td>SUGGEST</td>
<td>June 13th through 17th</td>
</tr>
<tr>
<td>REJECT</td>
<td>No, Friday I’m booked all day</td>
</tr>
<tr>
<td>ACCEPT</td>
<td>Saturday sounds fine</td>
</tr>
<tr>
<td>REQUEST-SUGGEST</td>
<td>What is a good day of the week for you?</td>
</tr>
<tr>
<td>INIT</td>
<td>I wanted to make an appointment with you</td>
</tr>
<tr>
<td>GIVE_REASON</td>
<td>Because I have meetings all afternoon</td>
</tr>
<tr>
<td>FEEDBACK</td>
<td>Okay</td>
</tr>
<tr>
<td>DELIBERATE</td>
<td>Let me check my calendar here</td>
</tr>
<tr>
<td>CONFIRM</td>
<td>Okay, that would be wonderful</td>
</tr>
<tr>
<td>CLARIFY</td>
<td>Okay, do you mean Tuesday the 23rd?</td>
</tr>
</tbody>
</table>
Dialog Act Markup in Several Layers (DAMSL): forward looking function

STATEMENT: a claim made by the speaker
INFO-REQUEST: a question by the speaker
CHECK: a question for confirming information

INFLUENCE-ON-ADDRESSEE (=Searle's directives)
OPEN-OPTION: a weak suggestion or listing of options
ACTION-DIRECTIVE: an actual command

INFLUENCE-ON-SPEAKER (=Austin's commissives)
OFFER: speaker offers to do something
COMMIT: speaker is committed to doing something

CONVENTIONAL: other
OPENING: greetings
CLOSING: farewells
THANKING: thanking and responding to thanks
DAMSL: backward looking function

AGREEMENT speaker's response to previous proposal
ACCEPT accepting the proposal
ACCEPT-PART accepting some part of the proposal
MAYBE neither accepting nor rejecting the proposal
REJECT-PART rejecting some part of the proposal
REJECT rejecting the proposal
HOLD putting off response, usually via subdialogue
ANSWER answering a question
UNDERSTANDING whether speaker understood previous
SIGNAL-NON-UNDER. speaker didn't understand
SIGNAL-UNDER. speaker did understand
ACK demonstrated via continuer or assessment
REPEAT-REPHRASE demonstrated via repetition or reformulation
COMPLETION demonstrated via collaborative completion
A DAMSL Labeling

[info-req, ack] A_1: And, what day in May did you want to travel?
[assert, answer] C_2: OK uh I need to be there for a meeting that’s from the 12th to the 15th.
[info-req, ack] A_2: And you’re flying into what city?
[assert, answer] C_3: Seattle.
[info-req, ack] A_3: And what time would you like to leave Pittsburgh?
[check, hold] C_4: Uh hmm I don’t think there’s many options for non-stop.
[assert] There’s three non-stops today.
[info-req] C_5: What are they?
[assert, open-option] A_5: The first one departs PGH at 10:00am arrives Seattle at 12:05 their time. The second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the last flight departs PGH at 8:15pm arrives Seattle at 10:28pm.
[accept, ack] C_6: OK I’ll take the 5ish flight on the night before on the 11th.
[check, ack] A_6: On the 11th?
[assert, ack] OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air flight 115.
Conversation Acts

Traum and Hinkelmann (1992)

<table>
<thead>
<tr>
<th>Act Type</th>
<th>Sample Acts</th>
</tr>
</thead>
<tbody>
<tr>
<td>turn-taking</td>
<td>take-turn, keep-turn, release-turn, assign-turn</td>
</tr>
<tr>
<td>grounding</td>
<td>acknowledge, repair, continue</td>
</tr>
<tr>
<td>core speech acts</td>
<td>inform, wh-question, accept, request, offer</td>
</tr>
<tr>
<td>argumentation</td>
<td>elaborate, summarize, question-answer, clarify</td>
</tr>
</tbody>
</table>
Generating Dialogue Acts

• Two examples
 • Confirmation
 • Rejection
Confirmation

- Errors: Speech is a pretty errorful channel
 - Humans use grounding to confirm that they heard correctly
 - ASR is way worse than humans!
- Dialog systems need to do even more grounding and confirmation than humans
 - Users are confused when system doesn’t give explicit acknowledgement signal.

Stifelman et al. (1993), Yankelovich et al. (1995)
Explicit confirmation

S: Which city do you want to leave from?
U: Baltimore
S: Do you want to leave from Baltimore?
U: Yes
Explicit confirmation

U: I’d like to fly from Denver Colorado to New York City on September 21st in the morning on United Airlines

S: Let’s see then. I have you going from Denver Colorado to New York on September 21st. Is that correct?

U: Yes
Implicit confirmation: display

U: I’d like to travel to Berlin
S: When do you want to travel to Berlin?

U: Hi I’d like to fly to Seattle Tuesday morning
S: Traveling to Seattle on Tuesday, August eleventh in the morning. Your name?
Implicit vs. Explicit

- Complementary strengths
- Explicit: easier for users to correct systems’ mistakes (can just say “no”)
- But explicit is cumbersome and long
- Implicit: much more natural, quicker, simpler (if system guesses right).
Implicit and Explicit

- Early systems: all-implicit or all-explicit
- Modern systems: adaptive

How to decide?
- ASR system can give confidence metric.
- This expresses how convinced system is of its transcription of the speech
- If high confidence, use implicit confirmation
- If low confidence, use explicit confirmation
Computing confidence

• Simplest: use acoustic log-likelihood of user’s utterance
• More features
 • Prosodic: utterances with longer pauses, F0 excursions, longer durations
 • Backoff: did we have to backoff in the LM?
 • Cost of an error: Explicit confirmation before moving money or booking flights
Rejection

• “I’m sorry, I didn’t understand that.”
• Reject when:
 • ASR confidence is low
 • Best interpretation is semantically ill-formed
• Might have four-tiered level of confidence:
 • Below confidence threshold, reject
 • Above threshold, explicit confirmation
 • If even higher, implicit confirmation
 • Even higher, no confirmation
Automatic Interpretation of Dialogue Acts

• How do we automatically identify dialogue acts?
 • Given an utterance:
 • Decide whether it is a QUESTION, STATEMENT, SUGGEST, or ACK
 • Perhaps we can just look at the form of the utterance to decide?
Can we just use the surface syntactic form?

YES-NO-Qs have auxiliary-before-subject syntax:

Will breakfast be served on USAir 1557?

STATEMENTs have declarative syntax:

I don’t care about lunch

COMMANDs have imperative syntax:

Show me flights from Milwaukee to Orlando on Thursday night
<table>
<thead>
<tr>
<th>Surface form</th>
<th>Speech act</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can I have the rest of your sandwich?</td>
<td>Question</td>
</tr>
<tr>
<td>I want the rest of your sandwich</td>
<td>Declarative</td>
</tr>
<tr>
<td>Give me your sandwich!</td>
<td>Imperative</td>
</tr>
</tbody>
</table>
Dialogue Act ambiguity

Can you give me a list of the flights from Atlanta to Boston?

• This looks like an INFO-REQUEST.
• If so, the answer is:
 • YES.
• But really it’s a DIRECTIVE or REQUEST, a polite form of:
 Please give me a list of the flights...
• What looks like a QUESTION can be a REQUEST
Indirect speech acts

Utterances which use a surface statement to ask a question
Utterances which use a surface question to issue a request
Dialogue Act ambiguity

- What looks like a STATEMENT can be a QUESTION:

<table>
<thead>
<tr>
<th>Us</th>
<th>OPEN-OPTION</th>
<th>I was wanting to make some arrangements for a trip that I’m going to be taking uh to LA uh beginnnning of the week after next</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>HOLD</td>
<td>OK uh let me pull up your profile and I’ll be right with you here. [pause]</td>
</tr>
<tr>
<td>Ag</td>
<td>CHECK</td>
<td>And you said you wanted to travel next week?</td>
</tr>
<tr>
<td>Us</td>
<td>ACCEPT</td>
<td>Uh yes.</td>
</tr>
</tbody>
</table>
DA interpretation as statistical classification: Features

- **Words and Collocations:**
 - **Please or would you**: good cue for REQUEST
 - **Are you**: good cue for INFO-REQUEST

- **Prosody:**
 - **Rising pitch** is a good cue for INFO-REQUEST
 - **Loudness/stress** can help distinguish yeah/AGREEMENT from yeah/BACKCHANNEL

- **Conversational Structure**
 - **Yeah** following a proposal is probably AGREEMENT; **yeah** following an INFORM probably a BACKCHANNEL
An example of dialogue act detection: Correction Detection

- If system misrecognizes an utterance, and either
 - Rejects
 - Via confirmation, displays its misunderstanding
- Then user has a chance to make a **correction**
 - Repeat themselves
 - Rephrasing
 - Saying “no” to the confirmation question.
Corrections

• Unfortunately, corrections are harder to recognize than normal sentences!
• Swerts et al (2000): corrections misrecognized twice as often (in terms of WER) as non-corrections!!!
• Why?
 • Prosody seems to be largest factor: hyperarticulation
 • Liz Shriberg example:
 • “NO, I am DE-PAR-TING from Jacksonville”
A Labeled dialogue (Swerts et al)

<table>
<thead>
<tr>
<th>Turn</th>
<th>Conversation Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>On which day of the week do you want to leave?</td>
</tr>
<tr>
<td>S</td>
<td>Sorry, I didn’t hear anything from you. Please tell me your departure date</td>
</tr>
<tr>
<td>U</td>
<td>Um tomorrow</td>
</tr>
<tr>
<td>S</td>
<td>You can say the departure date. For example, you can say ’today’ or ’tomorrow’. Or you can say ’Monday’, ’Tuesday’, ’Wednesday’...</td>
</tr>
<tr>
<td>U</td>
<td>Tomorrow</td>
</tr>
<tr>
<td>S</td>
<td>You can say the departure date. For example, you can say ’today’ or ’tomorrow’. Or you can say ’Monday’, ’Tuesday’, ’Wednesday’...</td>
</tr>
<tr>
<td>U</td>
<td>Saturday</td>
</tr>
<tr>
<td>S</td>
<td>Do you want to leave on Saturday?</td>
</tr>
<tr>
<td>U</td>
<td>Yes</td>
</tr>
<tr>
<td>S</td>
<td>What time do you want to leave?</td>
</tr>
<tr>
<td>U</td>
<td>Eight o’clock A M</td>
</tr>
<tr>
<td>S</td>
<td>Do you want to leave around ten o'clock p-m</td>
</tr>
<tr>
<td>U</td>
<td>Eight o’clock</td>
</tr>
<tr>
<td>S</td>
<td>Do you want to leave around ten o'clock p-m</td>
</tr>
<tr>
<td>U</td>
<td>No</td>
</tr>
<tr>
<td>S</td>
<td>What time do you want to leave?</td>
</tr>
<tr>
<td>U</td>
<td>Eight o’clock A M</td>
</tr>
</tbody>
</table>
Machine learning to detect user corrections: features

- Lexical information (no, correction, I don’t, swear words)
- Prosodic indicators of hyperarticulation
 - increases in F0 range, pause duration, word duration
- Length
- ASR confidence
- LM probability
- Various dialogue features (repetition)
Prosodic Features

- Shriberg et al. (1998)
- Decision tree trained on simple acoustically-based prosodic features
 - Slope of F0 at the end of the utterance
 - Average energy at different places in utterance
 - Various duration measures
 - All normalized in various ways
- These helped distinguish
 - Statement (S)
 - Yes-no-question (QY)
 - Declarative question (QD) (“You’re going to the store?”)
 - Wh-question (QW)
Prosodic Decision Tree for making S/QY/QW/QD decision
Dialogue System Evaluation

- Always two kinds of evaluation
 - Extrinsic: embedded in some external task
 - Intrinsic: evaluating the component as such

- What constitutes success or failure for a dialogue system?
Reasons for Dialogue System Evaluation

1. A metric to compare systems
 • can’t improve it if we don’t know where it fails
 • can’t decide between two systems without a goodness metric
2. A metric as an input to reinforcement learning:
 • automatically improve conversational agent performance via learning
PARADISE evaluation

- Maximize Task Success
 - Efficiency Measures
 - Quality Measures
Task Success

- % of subtasks completed
- Correctness of each questions/answer/error msg
- Correctness of total solution
 - Error rate in final slots
 - Generalization of Slot Error Rate
- Users’ perception of whether task was completed
Efficiency Cost

Polifroni et al. (1992), Danieli and Gerbino (1995)
Hirschman and Pao (1993)

- Total elapsed time in seconds or turns
- Number of queries
- Turn correction ration: number of system or user turns used solely to correct errors, divided by total number of turns
Quality Cost

- # of times ASR system failed to return any sentence
- # of ASR rejection prompts
- # of times user had to barge-in
- # of time-out prompts
- Inappropriateness (verbose, ambiguous) of system’s questions, answers, error messages
Concept accuracy:

- “Concept accuracy” or “Concept error rate”
- % of semantic concepts that the NLU component returns correctly
- I want to arrive in Austin at 5:00
 - DESTCITY: Boston
 - Time: 5:00
- Concept accuracy = 50%
- Average this across entire dialogue
- “How many of the sentences did the system understand correctly”
- Can be used as either quality cost or task success
PARADISE: Regress against user satisfaction

- Maximize user satisfaction
 - Maximize task success
 - Minimize costs
 - Efficiency measures
 - Quality measures
Regressing against user satisfaction

- Questionnaire to assign each dialogue a “user satisfaction rating”: this is dependent measure
- Set of cost and success factors are independent measures
- Use regression to train weights for each factor
Experimental Procedures

- Subjects given specified tasks
- Spoken dialogues recorded
- Cost factors, states, dialog acts automatically logged; ASR accuracy, barge-in hand-labeled
- Users specify task solution via web page
- Users complete User Satisfaction surveys
- Use multiple linear regression to model User Satisfaction as a function of Task Success and Costs; test for significant predictive factors
User Satisfaction: Sum of Many Measures

- Was the system easy to understand? (TTS Performance)
- Did the system understand what you said? (ASR Performance)
- Was it easy to find the message/plane/train you wanted? (Task Ease)
- Was the pace of interaction with the system appropriate? (Interaction Pace)
- Did you know what you could say at each point of the dialog? (User Expertise)
- How often was the system sluggish and slow to reply to you? (System Response)
- Did the system work the way you expected it to in this conversation? (Expected Behavior)
- Do you think you'd use the system regularly in the future? (Future Use)
Performance Functions from Three Systems

- ELVIS User Sat. = 0.21* COMP + 0.47 * MRS - 0.15 * ET
- TOOT User Sat. = 0.35* COMP + 0.45* MRS - 0.14*ET
- ANNIE User Sat. = 0.33*COMP + 0.25* MRS -.33* Help

- COMP: User perception of task completion (task success)
- MRS: Mean (concept) recognition accuracy (cost)
- ET: Elapsed time (cost)
- Help: Help requests (cost)
Evaluation Summary

- Best predictors of User Satisfaction:
 - Perceived task completion
 - mean recognition score (concept accuracy)
- Performance model useful for system development
 - Making predictions about system modifications
 - Distinguishing ‘good’ dialogues from ‘bad’ dialogues
- As part of a learning model
Now that we have a success metric

- Could we use it to help drive learning?
- Learn an optimal policy or strategy for how the conversational agent should behave
New Idea: Modeling a dialogue system as a probabilistic agent

- A conversational agent can be characterized by:
 - The current knowledge of the system
 - Set of states S the agent can be in
 - Set of actions A the agent can take
 - A goal G, which implies
 - A success metric that tells us how well the agent achieved its goal
 - A way of using this metric to create a strategy or policy π for what action to take in any particular state.
What do we mean by actions A and policies π?

- Kinds of decisions a conversational agent needs to make:
 - When should I ground/confirm/reject/ask for clarification on what the user just said?
 - When should I ask a directive prompt, when an open prompt?
 - When should I use user, system, or mixed initiative?
A threshold is already a policy – a human-designed one!

- Could we learn what the right action is
 - Rejection
 - Explicit confirmation
 - Implicit confirmation
 - No confirmation
- By learning a policy which,
 - given various information about the current state,
 - dynamically chooses the action which maximizes dialogue success
Another strategy decision

- Open versus directive prompts
- When to do mixed initiative

- How we do this optimization?
- Markov Decision Processes
Review: Open vs. Directive Prompts

- Open prompt
 - System gives user very few constraints
 - User can respond how they please:
 - “How may I help you?” “How may I direct your call?”

- Directive prompt
 - Explicit instructs user how to respond
 - “Say yes if you accept the call; otherwise, say no”
Review: Restrictive vs. Non-restrictive grammars

- **Restrictive grammar**
 - Language model which strongly constrains the ASR system, based on dialogue state

- **Non-restrictive grammar**
 - Open language model which is not restricted to a particular dialogue state
Kinds of Initiative

- How do I decide which of these initiatives to use at each point in the dialogue?

<table>
<thead>
<tr>
<th>Grammar</th>
<th>Open Prompt</th>
<th>Directive Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restrictive</td>
<td>Doesn’t make sense</td>
<td>System Initiative</td>
</tr>
<tr>
<td>Non-restrictive</td>
<td>User Initiative</td>
<td>Mixed Initiative</td>
</tr>
</tbody>
</table>
Modeling a dialogue system as a probabilistic agent

- A conversational agent can be characterized by:
 - The current knowledge of the system
 - A set of states S the agent can be in
 - A set of actions A the agent can take
 - A goal G, which implies
 - A success metric that tells us how well the agent achieved its goal
 - A way of using this metric to create a strategy or policy π for what action to take in any particular state.
Goals are not enough

- Goal: user satisfaction
- OK, that’s all very well, but
 - Many things influence user satisfaction
 - We don’t know user satisfaction until after the dialogue is done
 - How do we know, state by state and action by action, what the agent should do?
- We need a more helpful metric that can apply to each state
Utility

- A utility function
 - maps a state or state sequence
 - onto a real number
 - describing the goodness of that state
 - i.e. the resulting “happiness” of the agent

- Principle of Maximum Expected Utility:
 - A rational agent should choose an action that maximizes the agent’s expected utility
Maximum Expected Utility

- Principle of Maximum Expected Utility:
 - A rational agent should choose an action that maximizes the agent’s expected utility
- Action A has possible outcome states Result\textsubscript{i}(A)
- E: agent’s evidence about current state of world
- Before doing A, agent estimates prob of each outcome
 - P (Result\textsubscript{i}(A) \mid Do(A), E)
- Thus can compute expected utility:

\[
EU(A \mid E) = \sum_i P(\text{Result}_i(A) \mid Do(A), E) \cdot U(\text{Result}_i(A))
\]
Utility (Russell and Norvig)
Markov Decision Processes

- Or MDP

- Characterized by:
 - a set of states S an agent can be in
 - a set of actions A the agent can take
 - A reward $r(a,s)$ that the agent receives for taking an action in a state

(+ Some other things I’ll come back to (gamma, state transition probabilities))
What is a state?

• In principle, MDP state could include any possible information about dialogue
 • Complete dialogue history so far
• Usually use a much more limited set
 • Values of slots in current frame
 • Most recent question asked to user
 • User’s most recent answer
 • ASR confidence
 • etc.
Actions in MDP models of dialogue

- Speech acts!
 - Ask a question
 - Explicit confirmation
 - Rejection
 - Give the user some database information
 - Tell the user their choices
- Do a database query
A brief tutorial example

- Levin et al. (2000)
- A Day-and-Month dialogue system
- Goal: fill in a two-slot frame:
 - Month: November
 - Day: 12th
- Via the shortest possible interaction with user
State in the Day-and-Month example

- Values of the two slots day and month.
- Total:
 - 2 special initial state s_i and s_f.
 - 365 states with a day and month
 - 1 state for leap year
 - 12 states with a month but no day
 - 31 states with a day but no month
 - 411 total states
Actions in the Day-and-Month example

ad: a question asking for the day

am: a question asking for the month

adm: a question asking for the day+month

af: a final action submitting the form and terminating the dialogue
A simple reward function

- For this example, let’s use a cost function
- A cost function for entire dialogue
- Let

 \(N_i \) = number of interactions (duration of dialogue)
 \(N_e \) = number of errors in the obtained values (0-2)
 \(N_f \) = expected distance from goal
 (0 for complete date, 1 if either data or month are missing, 2 if both missing)

- Then (weighted) cost is:

 \[C = w_i \times N_i + w_e \times N_e + w_f \times N_f \]
2 possible policies

Policy 1 (directive)

- $d=0, m=0$ → Which day?
- $d=D, m=0$ → Which month?
- $d=D, m=M$ → Goodbye.
- $d=-1, m=-1$

$c_1 = -3w_i + 2p_d w_e$

Policy 2 (open)

- $d=0, m=0$ → What date?
- $d=D, m=M$ → Goodbye.
- $d=-1, m=-1$

$c_2 = -2w_i + 2p_o w_e$

$P_d =$ probability of error in directive prompt

$P_o =$ probability of error in open prompt
2 possible policies

Strategy 1 is better than strategy 2 when improved error rate justifies longer interaction:

\[p_o - p_d > \frac{w_i}{2w_e} \]

Policy 1 (directive)

\[c_1 = -3w_i + 2p_d w_e \]

Policy 2 (open)

\[c_2 = -2w_i + 2p_o w_e \]
That was an easy optimization

Only two actions, only tiny # of policies
In general, number of actions, states, policies is quite large
So finding optimal policy π^* is harder
We need reinforcement learning

Back to MDPs:
MDP

- We can think of a dialogue as a trajectory in state space

\[S_1 \rightarrow a_1, r_1 \rightarrow a_2, r_2 \rightarrow a_3, r_3 \cdots \]

- The best policy \(\pi^* \) is the one with the greatest expected reward over all trajectories
- How to compute a reward for a state sequence?
Reward for a state sequence

- One common approach: discounted rewards
- Cumulative reward Q of a sequence is discounted sum of utilities of individual states

$$Q([s_0, a_0, s_1, a_1, s_2, a_2 \cdots]) = R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \cdots$$

- Discount factor γ between 0 and 1
- Makes agent care more about current than future rewards; the more future a reward, the more discounted its value
The Markov assumption

- MDP assumes that state transitions are Markovian

\[
P(s_{t+1} \mid s_t, s_{t-1}, \ldots, s_o, a_t, a_{t-1}, \ldots, a_o) = P_T(s_{t+1} \mid s_t, a_t)
\]
Expected reward for an action

- Expected cumulative reward $Q(s,a)$ for taking a particular action from a particular state can be computed by Bellman equation:

$$Q(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q(s',a')$$

- Expected cumulative reward for a given state/action pair is:
 - immediate reward for current state
 - + expected discounted utility of all possible next states s'
 - Weighted by probability of moving to that state s'
 - And assuming once there we take optimal action a'
What we need for Bellman equation

- A model of $p(s' | s, a)$
- Estimate of $R(s, a)$

How to get these?

- If we had labeled training data
 - $P(s' | s, a) = C(s, s', a) / C(s, a)$
- If we knew the final reward for whole dialogue $R(s_1, a_1, s_2, a_2, ..., s_n)$
- Given these parameters, can use value iteration algorithm to learn Q values (pushing back reward values over state sequences) and hence best policy
Final reward

- What is the final reward for whole dialogue \(R(s_1,a_1,s_2,a_2,...,s_n) \)?
- This is what our automatic evaluation metric PARADISE computes:
 - the general goodness of a whole dialogue!!!!!
How to estimate \(p(s' \mid s,a) \) without labeled data

Have random conversations with real people:

- Carefully hand-tune small number of states and policies
- Then can build a dialogue system which explores state space by generating a few hundred random conversations with real humans
- Set probabilities from this corpus

Have random conversations with simulated people:

- Now you can have millions of conversations with simulated people
- So you can have a slightly larger state space
An example

- NJFun system, people asked questions about recreational activities in New Jersey
- Idea of paper: use reinforcement learning to make a small set of optimal policy decisions
Very small # of states and acts

- States: specified by values of 8 features
 - Which slot in frame is being worked on (1-4)
 - ASR confidence value (0-5)
 - How many times a current slot question had been asked
 - Restrictive vs. non-restrictive grammar
 - Result: 62 states

- Actions: each state only 2 possible actions
 - Asking questions: System versus user initiative
 - Receiving answers: explicit versus no confirmation.
Ran system with real users

- 311 conversations
- Simple binary reward function
 - 1 if competed task (finding museums, theater, winetasting in NJ area)
 - 0 if not
- System learned good dialogue strategy: Roughly
 - Start with user initiative
 - Backoff to mixed or system initiative when re-asking for an attribute
 - Confirm only a lower confidence values
State of the art

- Only a few MDP systems were built
- Current direction:
 - Partially observable MDPs (POMDPs)
 - We don’t REALLY know the user’s state (we only know what we THOUGHT the user said)
- So need to take actions based on our BELIEF, i.e., a probability distribution over states rather than the “true state”