Lecture 10: End-to-end neural network speech recognition
Outline

- Iterative training of HMM systems
- Connectionist temporal classification (CTC)
 - Lexicon-free CTC
- Listen, Attend, & Spell (LAS)
 - Combining CTC and LAS
- Convolutional transformer
HMM-GMM ASR model

Transcription: Samson

Pronunciation: S – AE – M – S –AH – N

Sub-phones: 942 – 6 – 37 – 8006 – 4422 ...

Hidden Markov Model (HMM):

942 → 942 → 6

Acoustic Model:

GMM models:
P(x|s)
x: input features
s: HMM state

Audio Input:

Features

Features

Features
DNN Hybrid Acoustic Models

Transcription: Samson
Sub-phones: 942 – 6 – 37 – 8006 – 4422 …

Hidden Markov Model (HMM):

Use a DNN to approximate: P(s|x)

Apply Bayes’ Rule:
P(x|s) = P(s|x) * P(x) / P(s)

Audio Input:

DNN * Constant / State prior
Training an HMM system (Viterbi)

- Given our lexicon + HMM structure, and some acoustic model, we can:
 - Generate the best alignment of HMM states to acoustic observations
- With an alignment of HMM states to observations:
 - Build a new acoustic model. Treat current state/obs mapping as training data+labels
 - This acoustic model is hopefully better than previous one
- Repeat the align -> rebuild acoustic model process until convergence
 - Add parameters / complexity to acoustic model each iteration
Forced Alignment

- Computing the “Viterbi path” over the training data is called “forced alignment”
- Because we know which word string to assign to each observation sequence.
- We just don’t know the state sequence.
- So we use a_{ij} to constrain the path to go through the correct words
- And otherwise do normal Viterbi
- Result: state sequence!
HMM-GMM Embedded Training
Initialization: “Flat start”

- Transition probabilities:
 - Set to zero any that you want to be “structurally zero” (lexicon/pronunciation)
 - Set the rest to identical values

- Likelihoods:
 - Initialize GMM μ and σ of each state to global mean and variance of all training data
How can we improve?

- Lexicon introduces too many pronunciation assumptions. Requires hand engineering.
- Iteratively building HMM systems requires complex “recipes” to progressively improve alignments + acoustic models.
- HMM-DNN systems perform better, but still require the above.
 - ... can we use deep learning approaches to *replace* the HMM-based approaches so far?
HMM-Free Recognition with CTC

Transcription: Samson

Characters: SAMSON

Collapsing function: SS___AA_M_S___O___NNNN

Acoustic Model:

Use a DNN to approximate: P(a|x)

The distribution over characters

Audio Input:

(Graves & Jaitly. 2014)
Example Results (WSJ)

YET A REHABILITATION CRU IS ONHAND IN THE BUILDING LOOGGING BRICKS PLASTER AND BLUEPRINTS FOR FORTY TWO NEW BEDROOM APARTMENTS

YET A REHABILITATION CREW IS ON HAND IN THE BUILDING LUGGING BRICKS PLASTER AND BLUEPRINTS FOR FORTY TWO NEW BEDROOM APARTMENTS

THIS PARCLE GUNA COME BACK ON THIS ISLAND SOM DAY SOO
THE SPARKLE GONNA COME BACK ON THIS ISLAND SOMEDAY SOON

TRADE REPRESENTIGD JUIKER WARANTS THAT THE U S WONT BACKCOFF ITS PUSH FOR TRADE BARIOR REDUCTIONS
TRADE REPRESENTATIVE YEUTTER WARNS THAT THE U S WONT BACK OFF ITS PUSH FOR TRADE BARRIER REDUCTIONS

TREASURY SECRETARY BAGER AT ROHIE WOS IN AUGGRAL PRESSSED FOUR ARISE IN THE VALUE OF KOREAS CURRENCY
TREASURY SECRETARY BAKER AT ROH TAE WOOS INAUGURAL PRESSSED FOR A RISE IN THE VALUE OF KOREAS CURRENCY
CTC Loss Function

Labels at each time index are conditionally independent (like HMMs). Model is *discriminative*

\[
CTC(x) = - \log \Pr(y^*|x) \quad \Pr(a|x) = \prod_{t=1}^{T} \Pr(a_t, t|x)
\]

Sum over all time-level labelings consistent with the output label.

\[
\Pr(y|x) = \sum_{a \in B^{-1}(y)} \Pr(a|x)
\]

T=3, transcript: HI
Time-level labelings: HI_, H_I, _HI

Final loss maximizes probability of transcript y^*

(Graves & Jaitly, ICML 2014)
CTC Loss Function: Dynamic Programming

Node \((s, t)\) in the diagram represents \(\alpha_{s,t}\) – the CTC score of the subsequence \(Z_{1:s}\) after \(t\) input steps.
Collapsing Example

Per-frame argmax:

After collapsing:
yet a rehabilitation crew is on hand in the building lugging bricks plaster and blueprints for forty two new bedroom apartments

Reference:
yet a rehabilitation crew is on hand in the building lugging bricks plaster and blueprints for forty two new bedroom apartments

(Hannun, Maas, Jurafsky, & Ng. 2014)
Decoding with a Language Model

Lexicon
[a, …, zebra]

Language Model
\(p(\text{“yeah”} \mid \text{“oh”}) \)

Character Probabilities
__o_o_h__y_e__a_a_h

Character Error Rate

Word Error Rate

(Hannun, Maas, Jurafsky, & Ng. 2014)
CTC Inference: Simple Beam Search

A standard beam search algorithm with an alphabet of \(\{\epsilon, a, b\} \) and a beam size of three.

(\text{Hannun}. 2017)
CTC Inference: Beam Search over Collapsed Outputs

The CTC beam search algorithm with an output alphabet \{\epsilon, a, b\} and a beam size of three.

(Hannun, 2017)
Recurrence Matters!

P(a | x_1) -> Features (x_1) ->

P(a | x_2) -> Features (x_2) ->

P(a | x_3) -> Features (x_3) ->

Architecture	CER
DNN | 22

(Hannun, Maas, Jurafsky, & Ng. 2014)
Earlier work on CTC with phonemes

Table 1. Label Error Rate (LER) on TIMIT. CTC and hybrid results are means over 5 runs, ± standard error. All differences were significant \((p < 0.01) \), except between weighted error BLSTM/HMM and CTC (best path).

<table>
<thead>
<tr>
<th>System</th>
<th>LER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context-independent HMM</td>
<td>38.85 %</td>
</tr>
<tr>
<td>Context-dependent HMM</td>
<td>35.21 %</td>
</tr>
<tr>
<td>BLSTM/HMM</td>
<td>33.84 ± 0.06 %</td>
</tr>
<tr>
<td>Weighted error BLSTM/HMM</td>
<td>31.57 ± 0.06 %</td>
</tr>
<tr>
<td>CTC (best path)</td>
<td>31.47 ± 0.21 %</td>
</tr>
<tr>
<td>CTC (prefix search)</td>
<td>30.51 ± 0.19 %</td>
</tr>
</tbody>
</table>

(Graves, Fernández, Gomez, & Schmidhuber. 2006)
Figure 4. Evolution of the CTC Error Signal During Training. The left column shows the output activations for the same sequence at various stages of training (the dashed line is the ‘blank’ unit); the right column shows the corresponding error signals. Errors above the horizontal axis act to increase the corresponding output activation and those below act to decrease it. (a) Initially the network has small random weights, and the error is determined by the target sequence only. (b) The network begins to make predictions and the error localises around them. (c) The network strongly predicts the correct labelling and the error virtually disappears.

(Graves, Fernández, Gomez, & Schmidhuber. 2006)
Outline

- Iterative training of HMM systems
- Connectionist temporal classification (CTC)
 - Lexicon-free CTC
- Listen, Attend, & Spell (LAS)
 - Combining CTC and LAS
- Convolutional transformer
Rethinking Decoding

Out of Vocabulary Words
syriza
abo--
schmidhuber
rona
fru--

Character Probabilities
__oo_h__
y_e_aa_h

Character Language Model
p(h | o,h, y,e,a,)

Character Probabilities
__oo_h__
y_e_aa_h

Lexicon
[a, …, zebra]

Language Model
“ye,” “oh”

Character Probabilities
__oo_h__
y_e_aa_h

(Maas*, Xie*, Jurafsky, & Ng. 2015)
Beam Search Decoding

Inputs CTC likelihoods $p_{\text{ctc}}(c|x_t)$, character language model $p_{\text{clm}}(c|s)$

Parameters language model weight α, insertion bonus β, beam width k

Initialize $Z_0 \leftarrow \{\emptyset\}$, $p_b(\emptyset|x_{1:0}) \leftarrow 1$, $p_{\text{nb}}(\emptyset|x_{1:0}) \leftarrow 0$

for $t = 1, \ldots, T$ **do**

$Z_t \leftarrow \{\}$

for s **in** Z_{t-1} **do**

$p_b(s|x_{1:t}) \leftarrow p_{\text{ctc}}(c|x_t)p_{\text{tot}}(s|x_{1:t-1})$ \hspace{2cm} \triangleright Handle blanks

$p_{\text{nb}}(s|x_{1:t}) \leftarrow p_{\text{ctc}}(c|x_t)p_{\text{nb}}(s|x_{1:t-1})$ \hspace{2cm} \triangleright Handle repeat character collapsing

Add s to Z_t

for c **in** ζ' **do**

$s^+ \leftarrow s + c$

if $c \neq s_{t-1}$ then

$p_{\text{nb}}(s^+|x_{1:t}) \leftarrow p_{\text{ctc}}(c|x_t)p_{\text{clm}}(c|s)^{\alpha}p_{\text{tot}}(c|x_{1:t-1})$

else

$p_{\text{nb}}(s^+|x_{1:t}) \leftarrow p_{\text{ctc}}(c|x_t)p_{\text{clm}}(c|s)^{\alpha}p_b(c|x_{1:t-1})$ \hspace{2cm} \triangleright Repeat characters have “_” between

end if

Add s^+ to Z_t

end for

$Z_t \leftarrow k$ most probable s by $p_{\text{tot}}(s|x_{1:t})|s|^{\beta}$ in Z_t \hspace{2cm} \triangleright Apply beam

end for

Return $\arg\max_{s \in Z_t} p_{\text{tot}}(s|x_{1:T})|s|^{\beta}$
Lexicon-Free & HMM-Free on Switchboard

- HMM-GMM
- CTC No LM
- CTC + 7-gram
- CTC + NN LM
- HMM-DNN

(Maas*, Xie*, Jurafsky, & Ng. 2015)
Example Results (Switchboard) ~19% CER

i don't know what the rain force have to do with it but you know their chop a those down af the tr minus rat everyday
i- i don't kn- i don't know what the rain forests have to do with it but you know they're chopping those down at a tremendous rate everyday

come home and get back in to regular cloos aga
come home and get back into regular clothes again

i guess down't here u we just recently move to texas so my wor op has change quite a bit muh we ook from colorado were and i have a cloveful of sweaters so tuth
i guess down here uh we just recently moved to texas so my wardrobe has changed quite a bit um we moved from colorado where and i have a closet full of sweaters that

i don't know whether state lit state hood whold itprove there a conomy i don't i don't know that to that the actove being a state
i don't know whether state woul- statehood would improve their economy i don't i don't know that the ve- the act of being a state

(Maas*, Xie*, Jurafsky, & Ng. 2015)
Transcribing Out of Vocabulary Words

Truth: yeah i went into the i do not know what you think of fidelity but
HMM-GMM: yeah when the i don’t know what you think of fidelity it even them
CTC-CLM: yeah i went to i don’t know what you think of fidelity but um

Truth: no no speaking of weather do you carry a altimeter slash barometer
HMM-GMM: no i’m not all being the weather do you uh carry a uh helped emitters last brahms her
CTC-CLM: no no beating of whether do you uh carry a uh a time or less barometer

Truth: i would ima- well yeah it is i know you are able to stay home with them
HMM-GMM: i would amount well yeah it is i know um you’re able to stay home with them
CTC-CLM: i would ima- well yeah it is i know uh you’re able to stay home with them

(Maas*, Xie*, Jurafsky, & Ng. 2015)
Comparing Alignments

HMM-GMM phone probabilities

CTC character probabilities

(HMM slide from Dan Ellis)
Learning Phonemes and Timing

- Take all phone segments from HMM-GMM alignments (k)
- Align all segments to start at the same time = 0
- Compute the average CTC character probabilities during the segment (c, e, k)
- Vertical line shows median end time of phone segment from HMM-GMM alignments
Learning Phonemes and Timing

(Maas*, Xie*, Jurafsky, & Ng. 2015)
Outline

- Iterative training of HMM systems
- Connectionist temporal classification (CTC)
 - Lexicon-free CTC
- **Listen, Attend, & Spell (LAS)**
 - Combining CTC and LAS
- Convolutional transformer
Listen, Attend, and Spell

- Discriminative, character-based encoder-decoder
- Unlike CTC:
 - outputs also condition on previous outputs so far
 - No blank/epsilon. LAS just outputs characters
- Attention-based decoder. Precursor to modern encoder-decoder and transformer approaches

\[
P(y|x) = \prod_{i} P(y_i|x, y_{<i})
\]

\[
h = \text{Listen}(x)
\]
\[
P(y|x) = \text{AttendAndSpell}(h, y)
\]

(Chan, Jaitly, Le, & Vinyals. 2015)
Listen, Attend, and Spell

Figure 1: Listen, Attend and Spell (LAS) model: the listener is a pyramidal BLSTM encoding our input sequence \(x \) into high level features \(\mathbf{h} \), the speller is an attention-based decoder generating the \(y \) characters from \(\mathbf{h} \).

(Chan, Jaitly, Le, & Vinyals. 2015)
Listen, Attend, and Spell

Alignment between the Characters and Audio

(Can, Jaitly, Le, & Vinyals. 2015)
Listen, Attend, and Spell

Table 1: WER comparison on the clean and noisy Google voice search task. The CLDNN-HMM system is the state-of-the-art system, the Listen, Attend and Spell (LAS) models are decoded with a beam size of 32. Language Model (LM) rescoring was applied to our beams, and a sampling trick was applied to bridge the gap between training and inference.

<table>
<thead>
<tr>
<th>Model</th>
<th>Clean WER</th>
<th>Noisy WER</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLDNN-HMM [20]</td>
<td>8.0</td>
<td>8.9</td>
</tr>
<tr>
<td>LAS</td>
<td>16.2</td>
<td>19.0</td>
</tr>
<tr>
<td>LAS + LM Rescoring</td>
<td>12.6</td>
<td>14.7</td>
</tr>
<tr>
<td>LAS + Sampling</td>
<td>14.1</td>
<td>16.5</td>
</tr>
<tr>
<td>LAS + Sampling + LM Rescoring</td>
<td>10.3</td>
<td>12.0</td>
</tr>
</tbody>
</table>
CTC + LAS Multi-Task Approach

\[\mathcal{L}_{MTL} = \lambda \mathcal{L}_{CTC} + (1 - \lambda) \mathcal{L}_{Attention} \]

Fig. 1: Our proposed Joint CTC-attention based end-to-end framework: the shared encoder is trained by both CTC and attention model objectives simultaneously. The shared encoder transforms our input sequence \(\mathbf{x} \) into high level features \(\mathbf{h} \), the location-based attention decoder generates the character sequence \(\mathbf{y} \).

(Kim, Hori, & Watanabe. 2017)
CTC + LAS Multi-Task Approach

Table 1: Character Error Rate (CER) on clean corpora WSJ1 (80 hours) and WSJ0 (15 hours), and a noisy corpus CHiME-4 (18 hours). None of our experiments used any language model or lexicon information. (Word Error Rate (WER) of our model MTL(λ = 0.2) was 18.2% and WER of [7] was 18.6% on WSJ1. Note that this is not an exact comparison because the hyper parameters were not completely same as [7].)

<table>
<thead>
<tr>
<th>Model (train)</th>
<th>CER (valid)</th>
<th>CER (eval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSJ-train_si284 (80hrs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTC</td>
<td>11.48</td>
<td>8.97</td>
</tr>
<tr>
<td>Attention (content-based)</td>
<td>13.68</td>
<td>11.08</td>
</tr>
<tr>
<td>Attention (location-based)</td>
<td>11.98</td>
<td>8.17</td>
</tr>
<tr>
<td>MTL (λ = 0.2)</td>
<td>11.27</td>
<td>7.36</td>
</tr>
<tr>
<td>MTL (λ = 0.5)</td>
<td>12.00</td>
<td>8.31</td>
</tr>
<tr>
<td>MTL (λ = 0.8)</td>
<td>11.71</td>
<td>8.45</td>
</tr>
<tr>
<td>WSJ-train_si84 (15hrs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTC</td>
<td>27.41</td>
<td>20.34</td>
</tr>
<tr>
<td>Attention (content-based)</td>
<td>28.02</td>
<td>20.06</td>
</tr>
<tr>
<td>Attention (location-based)</td>
<td>24.98</td>
<td>17.01</td>
</tr>
<tr>
<td>MTL (λ = 0.2)</td>
<td>23.03</td>
<td>14.53</td>
</tr>
<tr>
<td>MTL (λ = 0.5)</td>
<td>26.28</td>
<td>16.24</td>
</tr>
<tr>
<td>MTL (λ = 0.8)</td>
<td>32.21</td>
<td>21.30</td>
</tr>
<tr>
<td>CHiME-4-tr05_multi (18hrs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTC</td>
<td>37.56</td>
<td>48.79</td>
</tr>
<tr>
<td>Attention (content-based)</td>
<td>43.45</td>
<td>54.25</td>
</tr>
<tr>
<td>Attention (location-based)</td>
<td>35.01</td>
<td>47.58</td>
</tr>
<tr>
<td>MTL (λ = 0.2)</td>
<td>32.08</td>
<td>44.99</td>
</tr>
<tr>
<td>MTL (λ = 0.5)</td>
<td>34.56</td>
<td>46.49</td>
</tr>
<tr>
<td>MTL (λ = 0.8)</td>
<td>35.41</td>
<td>48.34</td>
</tr>
</tbody>
</table>

\[
e_{u,l} = \begin{cases}
\text{content-based}: \\
\mathbf{w}^T \tanh(W_{s_{u-1}} + V h_l + b) \\
\text{location-based}: \\
f_u = \mathbf{F} \ast a_{u-1} \\
\mathbf{w}^T \tanh(W_{s_{u-1}} + V h_l + U f_{u,l} + b) \\
\end{cases}
\]

\[
a_{u,l} = \frac{\exp(\gamma e_{u,l})}{\sum_l \exp(\gamma e_{u,l})}
\]

\[
\mathcal{L}_{\text{MTL}} = \lambda \mathcal{L}_{\text{CTC}} + (1 - \lambda) \mathcal{L}_{\text{Attention}}
\]
CTC + LAS Multi-Task Approach

Fig. 2: Comparison of learning curves: CTC, location-based attention model, and MTL with $(\lambda = 0.2, 0.5, 0.8)$. The character accuracy on the validation set of CHiME-4 is calculated by edit distance between hypothesis and reference. Note that the reference history were used in the attention and our MTL models.

(Kim, Hori, & Watanabe. 2017)
CTC + LAS Multi-Task Approach

Fig. 3: Comparison of speed in learning alignments between characters (y-axis) and acoustic frames (x-axis) between the location-based attention model (1st row) and our model MTL (2nd row) over training epoch (1, 3, 5, 7, and 9). All alignments are for one manually chosen utterance (F05.442C020U.CAF_REAL - "THE ONE HUNDRED SHARE INDEX CLOSED SIX POINT EIGHT POINTS LOWER AT ONE THOUSAND SEVEN HUNDRED FIFTY NINE POINT NINE") in the noisy CHiME-4 evaluation set.

(Kim, Hori, & Watanabe. 2017)
CTC + LAS Multi-Task Approach

Table 1: Character error rate (CER) for conventional attention and hybrid CTC/attention end-to-end ASR. Corpus of Spontaneous Japanese speech recognition (CSJ) task.

<table>
<thead>
<tr>
<th>Model</th>
<th>Hour</th>
<th>Task1</th>
<th>Task2</th>
<th>Task3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention</td>
<td>581</td>
<td>11.4</td>
<td>7.9</td>
<td>9.0</td>
</tr>
<tr>
<td>MTL</td>
<td>581</td>
<td>10.5</td>
<td>7.6</td>
<td>8.3</td>
</tr>
<tr>
<td>MTL + joint decoding (rescoring)</td>
<td>581</td>
<td>10.1</td>
<td>7.1</td>
<td>7.8</td>
</tr>
<tr>
<td>MTL + joint decoding (one pass)</td>
<td>581</td>
<td>10.0</td>
<td>7.1</td>
<td>7.6</td>
</tr>
<tr>
<td>MTL-large + joint decoding (rescoring)</td>
<td>581</td>
<td>8.4</td>
<td>6.2</td>
<td>6.9</td>
</tr>
<tr>
<td>MTL-large + joint decoding (one pass)</td>
<td>581</td>
<td>8.4</td>
<td>6.1</td>
<td>6.9</td>
</tr>
<tr>
<td>GMM-discr. (Moriya et al., 2015)</td>
<td>236 for AM, 581 for LM</td>
<td>11.2</td>
<td>9.2</td>
<td>12.1</td>
</tr>
<tr>
<td>DNN/HMM (Moriya et al., 2015)</td>
<td>236 for AM, 581 for LM</td>
<td>9.0</td>
<td>7.2</td>
<td>9.6</td>
</tr>
<tr>
<td>CTC-syllable (Kanda et al., 2016)</td>
<td>581</td>
<td>9.4</td>
<td>7.3</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Figure 2: The effect of weight parameter λ in Eq. (14) on the CSJ evaluation tasks (The CERs were obtained by one-pass decoding).

(Hori, Watanabe, Zhang, & Chan. 2017)
Outline

- Iterative training of HMM systems
- Connectionist temporal classification (CTC)
 - Lexicon-free CTC
- Listen, Attend, & Spell (LAS)
 - Combining CTC and LAS
- Convolutional transformer
Conformer: Convolution-augmented Transformer for Speech Recognition

- Sequence-to-sequence transformer with multi-headed self attention.
- Transformer encoder combines attention (global context) with convolution (local invariance)
- Transducer loss directly optimizes for output sequence

Figure 1: Conformer encoder model architecture. Conformer comprises of two macaron-like feed-forward layers with half-step residual connections sandwiching the multi-headed self-attention and convolution modules. This is followed by a post layernorm.

(Gulati et al., 2020)
Conformer: RNN-Transducer loss

- Directly optimizes target word sequence as correct label
 - Graphemes (letters) or word parts (10k-50k) used in practice
- Learned combination of acoustic + language model pieces
- Conditions on sequence output so far (y_{t-1})
- Single alignment:

$$P(z|x) = \prod_i P(z_i|x, t_i, \text{Labels}(z_{1:-(i-1)}))$$

- Maximize $P(y|x)$ by summing over all consistent alignments
 (like CTC encoder can output blank):

$$P(y|x) = \sum_{z \in \mathcal{Z}(y,T)} P(z|x)$$

RNN-T loss: (Graves, 2012) Figure: Rao, Sak, & Prabhavalkar, 2017
Conformer: Convolutional transformer encoder

- Sequence-to-sequence transformer with multi-headed self attention. Directly optimizes target word sequence
- Combines attention (global context) with convolution (local invariance)

Figure 1: Conformer encoder model architecture. Conformer comprises of two macaron-like feed-forward layers with half-step residual connections sandwiching the multi-headed self-attention and convolution modules. This is followed by a post layernorm.

Figure 2: Convolution module. The convolution module contains a pointwise convolution with an expansion factor of 2 projecting the number of channels with a GLU activation layer, followed by a 1-D Depthwise convolution. The 1-D depthwise conv is followed by a Batchnorm and then a swish activation layer.

Figure 3: Multi-Headed self-attention module. We use multi-headed self-attention with relative positional embedding in a pre-norm residual unit.

Figure 4: Feed forward module. The first linear layer uses an expansion factor of 4 and the second linear layer projects it back to the model dimension. We use swish activation and a pre-norm residual units in feed forward module.

(Gulati et al., 2020)
Conformer: Putting it all together

1 hidden layer LSTM (RNN)

3 hidden layer LSTM (RNN). Pre-trained as language model

(Gulati et al., 2020)
Conformer: Convolution-augmented Transformer for Speech Recognition

Table 2: Comparison of Conformer with recent published models. Our model shows improvements consistently over various model parameter size constraints. At 10.3M parameters, our model is 0.7% better on test other when compared to contemporary work, ContextNet(S) [10]. At 30.7M model parameters our model already significantly outperforms the previous published state of the art results of Transformer Transducer [7] with 139M parameters.

<table>
<thead>
<tr>
<th>Method</th>
<th>#Params (M)</th>
<th>WER Without LM</th>
<th>WER With LM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>testclean</td>
<td>testother</td>
</tr>
<tr>
<td>Hybrid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer [33]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CTC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuartzNet [9]</td>
<td>19</td>
<td>3.90</td>
<td>11.28</td>
</tr>
<tr>
<td>LAS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer [34]</td>
<td>270</td>
<td>2.89</td>
<td>6.98</td>
</tr>
<tr>
<td>Transformer [19]</td>
<td>-</td>
<td>2.2</td>
<td>5.6</td>
</tr>
<tr>
<td>LSTM</td>
<td>360</td>
<td>2.6</td>
<td>6.0</td>
</tr>
<tr>
<td>Transducer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer [7]</td>
<td>139</td>
<td>2.4</td>
<td>5.6</td>
</tr>
<tr>
<td>ContextNet(S) [10]</td>
<td>10.8</td>
<td>2.9</td>
<td>7.0</td>
</tr>
<tr>
<td>ContextNet(M) [10]</td>
<td>31.4</td>
<td>2.4</td>
<td>5.4</td>
</tr>
<tr>
<td>ContextNet(L) [10]</td>
<td>112.7</td>
<td>2.1</td>
<td>4.6</td>
</tr>
<tr>
<td>Conformer (Ours)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conformer(S)</td>
<td>10.3</td>
<td>2.7</td>
<td>6.3</td>
</tr>
<tr>
<td>Conformer(M)</td>
<td>30.7</td>
<td>2.3</td>
<td>5.0</td>
</tr>
<tr>
<td>Conformer(L)</td>
<td>118.8</td>
<td>2.1</td>
<td>4.3</td>
</tr>
</tbody>
</table>

(Gulati et al. 2020)
Dual Mode ASR: Joint encoder + training for streaming & full context models

Figure 1: A simplified illustration of the similarity and difference between Streaming ASR and Full-context ASR networks. Modern end-to-end streaming and full-context ASR models share most of the neural architectures and training recipes in common, with the most significant difference in the ASR encoder (highlighted). Streaming ASR encoders are auto-regressive models, with each prediction of the current timestep conditioned on previous ones (no future context). We show examples of feed-forward layer, convolution layer and self-attention layer in the encoder of streaming and full-context ASR respectively. With Dual-mode ASR, we unify them without parameters overhead.
Dual Mode ASR: Joint encoder + training for streaming & full context models

Table 3: Summary of our results on Librispeech dataset (Panayotov et al., 2015). We report WER on TestClean and TestOther (noisy) set. Compared with standalone ContextNet and Conformer models, Dual-mode ASR models have both higher accuracy in average and better streaming latency.

<table>
<thead>
<tr>
<th>Method</th>
<th>Mode</th>
<th># Params (M)</th>
<th>Test Clean/Other WER(%)</th>
<th>Latency@50 (ms)</th>
<th>Latency@90 (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM-LAS</td>
<td>Full-context</td>
<td>360</td>
<td>2.6 / 6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QuartzNet-CTC</td>
<td>Full-context</td>
<td>19</td>
<td>3.9 / 11.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer</td>
<td>Full-context</td>
<td>29</td>
<td>3.1 / 7.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer</td>
<td>Full-context</td>
<td>139</td>
<td>2.4 / 5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ContextNet</td>
<td>Full-context</td>
<td>31.4</td>
<td>2.4 / 5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conformer</td>
<td>Full-context</td>
<td>30.7</td>
<td>2.3 / 5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer</td>
<td>Streaming</td>
<td>18.9</td>
<td>5.0 / 11.6</td>
<td>80</td>
<td>190</td>
</tr>
<tr>
<td>ContextNet</td>
<td>Streaming</td>
<td>31.4</td>
<td>4.5 / 10.0</td>
<td>70</td>
<td>270</td>
</tr>
<tr>
<td>Conformer</td>
<td>Streaming</td>
<td>30.7</td>
<td>4.6 / 9.9</td>
<td>140</td>
<td>280</td>
</tr>
<tr>
<td>ContextNet Look-ahead</td>
<td>Streaming</td>
<td>31.4</td>
<td>4.1 / 9.0</td>
<td>150</td>
<td>420</td>
</tr>
<tr>
<td>Dual-mode Transformer</td>
<td>Full-context</td>
<td>29</td>
<td>3.1 / 7.9</td>
<td>(-0.6) / 11.5 (-0.1)</td>
<td>-50 (-130)</td>
</tr>
<tr>
<td>Dual-mode ContextNet</td>
<td>Full-context</td>
<td>31.8</td>
<td>2.3 / 5.3</td>
<td>(-0.6) / 8.5 (-1.5)</td>
<td>40 (-30)</td>
</tr>
<tr>
<td>Dual-mode Conformer</td>
<td>Full-context</td>
<td>30.7</td>
<td>2.5 / 5.9</td>
<td>(-0.9) / 9.2 (-0.7)</td>
<td>10 (-130)</td>
</tr>
</tbody>
</table>

Table 4: Ablation studies of weight sharing, joint training and in-place distillation. We report WER on TestOther (noisy) set (Panayotov et al., 2015) using ContextNet with same training settings.

<table>
<thead>
<tr>
<th>Weight Sharing</th>
<th>Joint Training</th>
<th>Inplace Distillation</th>
<th>TestOther WER(%)</th>
<th>Latency@50 (ms)</th>
<th>Latency@90 (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>8.5</td>
<td>40</td>
<td>160</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>10.2 (+1.7)</td>
<td>120 (+80)</td>
<td>310 (+150)</td>
</tr>
<tr>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>10.6 (+2.1)</td>
<td>90 (+50)</td>
<td>290 (+130)</td>
</tr>
<tr>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>9.9 (+1.4)</td>
<td>50 (+10)</td>
<td>210 (+50)</td>
</tr>
</tbody>
</table>

(Yu et al., 2021)
Appendix